
Classification of Partioning Problems for Networks of
Heterogeneous Computers

Alexey Lastovetsky and Ravi Reddy

Department of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
{alexey.lastovetsky, manumachu.reddy}@ucd.ie

Abstract. The paper presents a classification of mathematical problems encoun-
tered during partitioning of data when designing parallel algorithms on networks
of heterogeneous computers. We specify problems with known efficient solutions
and open problems. Based on this classification, we suggest an API for partition-
ing mathematical objects commonly used in scientific and engineering domains
for solving problems on networks of heterogeneous computers. These interfaces
allow the application programmers to specify simple and basic partitioning crite-
ria in the form of parameters and functions to partition their mathematical objects.
These partitioning interfaces are designed to be used along with various program-
ming tools for parallel and distributed computing on heterogeneous networks.

1 Introduction

Parallel solution of regular and irregular problems on a heterogeneous network of com-
puters typically consists of two macro-steps:

• Decomposition of the whole problem into a set of sub-problems that can be solved
in parallel by interacting processes;

• The mapping of these parallel processes to the computers of the network.

An irregular problem is characterized by some inherent coarse-grained or large-grained
structure. This structure implies a quite deterministic decomposition of the whole prob-
lem into relatively small number of subtasks, which are of different size and can be
solved in parallel. Correspondingly, a natural way of decomposition of the whole pro-
gram, which solves the irregular problem on a network of computers, is a set of parallel
processes, each solving its subtask and all together interacting via message passing. As
sizes of these subtasks are typically different, the processes perform different volumes
of computation. Therefore, the mapping of these processes to the computers of the ex-
ecuting HNOC should be performed very carefully to ensure the best execution time of
the program.
The most natural decomposition of aregular problem is a large number of small iden-
tical subtasks that can be solved in parallel. As those subtasks are identical, they are
all of the same size. Multiplication of twon×n dense matrices is an example of a reg-
ular problem. This problem is naturally decomposed inton2 identical subtasks, each
of which is to compute one element of the resulting matrix. The main idea behind an
efficient solution to a regular problem on a heterogeneous network of computers is to



transform the problem into an irregular problem, the structure of which is determined by
the structure of the executing network rather than the structure of the problem itself. So,
the whole regular problem is decomposed into a set of relatively large sub-problems,
each made of a number of small identical subtasks stuck together. The size of each sub-
problem, that is, the number of elementary identical subtasks constituting the subprob-
lem, depends on the speed of the processor, on which the subproblem will be solved.
Correspondingly, the parallel program, which solves the problem on the heterogeneous
network of computers, is a set of parallel processes, each solving one subproblem on a
separate physical processor and all together interacting via message passing. The vol-
ume of computations performed by each of these processes should be proportional to
its speed.
Thus, while the step of problem decomposition is trivial for irregular problems, it be-
comes key for a regular problem. In fact, at this very step the application programmer
designs a heterogeneous data parallel algorithm by working out a generic decomposi-
tion of the regular problem parameterized by the number and speed of processors. Most
typically the generic decomposition takes the form of data partitioning.
Existing programming systems for heterogeneous parallel computing [1]- [4] support
the mapping of parallel algorithms to the executing network but provide very poor sup-
port for generic heterogeneous decomposition of regular problems implied by the num-
ber and speed of processors. The application programmers need to solve corresponding
data partitioning problems and design and implement all supportive code from scratch.
Our own experience with using mpC and HMPI for parallel solution regular problems
on networks of computers has shown how tedious and error-prone this step of applica-
tion development can be.
This motivated us to try and automate the step of heterogeneous decomposition of reg-
ular problems by designing a library of functions solving typical partitioning problems
for networks of heterogeneous computers. Our original approach was to do it by just
collecting existing algorithms, designing an API to these algorithms and implementing
the API. The main problem we came across on this way was that no classification of
partitioning problems was found that might be used as a basis of API design. Existing
algorithms created a very fragmented picture. Therefore the main goal of our research
became to classify partitioning problems for networks of heterogeneous computers.
Such classification had to help to specify problems with known efficient solutions and
identify open problems. Then based on this classification an API would have to be de-
signed and partially implemented (for problems that have known efficient solutions). An
additional requirement to this classification was that it had to be useful for distributed
computing on networks as well.
Our approach to classification of partitioning problems is based on two corner stones:

• A realistic performance model of networks of heterogeneous computers,
• A natural classification of mathematical objects most commonly used in scientific,

engineering and business domains for parallel (and distributed) solving problems
on networks of heterogeneous computers.

This paper is structured as follows. In section 2, we describe the realistic performance
model of networks of heterogeneous computers. In section 3, we identify the mathemat-
ical objects. In section 4, we classify the problems encountered during partitioning of



sets. Based on this classification, we suggest an API for partitioning sets. Due to limita-
tions on the length of the paper, we only briefly outline the classification of partitioning
problems for matrices, graphs, and trees, and the corresponding API.

2 Performance Model of Networks of Heterogeneous Computers

Most algorithms of data partitioning for networks of heterogeneous computers use per-
formance models where each processor is represented by a single positive number that
characterizes its relative speed. Data partitioning is performed such that the volume of
computations executed by the processor be proportional to its speed.
It is a well known fact that the absolute speed of a processor is a decreasing function
of data simultaneously stored in the memory of the processor and used by the proces-
sor in computations. The memory typically has a hierarchical structure with levels of
fixed sizes. Higher levels are substantially faster and smaller than lower ones. There-
fore, as more processed data are stored in the memory, the more levels of the memory
hierarchy they fill. As a result more data become stored in slow memory. This increases
the average execution time of a single arithmetic operation decreasing the speed of the
processor. Figure 1(a) illustrates this fact using matrix multiplication on two comput-
ers: modern Dell computer csserver (Linux, main memory of 513960 KB, cache of 512
KB), and relatively old Sun computer csultra01 (Solaris, main memory of 524888 KB,
cache of 1024 KB).
Nonetheless the above simple performance model is suitable in many real life situations
where the relative speeds of the processors involved in the execution of the application
are a constant function of the size of the problem and thus can be approximated by
single numbers. Figure 1(b) gives an example of such a situation. The relative speed
of computers csserver and csultra01 demonstrated on matrix multiplication may be ap-
proximated by a single number, 3, with sufficient accuracy. However if the processors
have significantly different sizes at each level of their memory hierarchies, they may
demonstrate significantly different relative speeds dependent on the size of the prob-
lem. Figure 2 gives us relative speeds of different pairs of computers experimentally
obtained during multiplication of matrices of different sizes. If we use such networks

Fig. 1. (a)Absolute Speeds ofcsserverandcsserver01against the size of the problem in matrix
manipulation. (b) The relative speed of these computers against the size of these problems.



Fig. 2. Relative speeds of computers against the size of the problem in matrix multipli-
cation. Computers involved are:zaphod(main memory of 254576 KB, cache of 512 KB),
csparlx02(126176 KB, 512 KB),csserver(513960 KB, 512 KB),csultra01(524288 KB, 1024
KB).

of heterogeneous computers for execution of parallel or distributed algorithms, we can-
not represent their relative speeds by single numbers. Realistically in this case we must
represent the speed by a function of the size of the problem.
Therefore, we suggest using a more realistic model that takes into account the impact
of heterogeneity of memory and memory hierarchies on performance.Under this model,
each processor is represented by a decreasing function of the problem size that charac-
terizes its speed. In practice, the function is obtained by interpolation of a relatively
small number of experimental results for different problem sizes. Constant functions
will be just a special case. In addition, the model takes account of memory limitations
and characterizes each processor by the maximal size of problem it can solve. The lat-
ter feature makes little sense when computing on a local network because in this case
the user has some idea about the power of available computers and the size of problem
that can be solved on the network. This feature does make sense when the user solves
problems on a global network. In that case, the user may have no idea of the number
and configurations of computers that may be involved in computations. Therefore if the
problem size is big enough, some computer whose speed is estimated based on a small
number of experiments may be assigned to solve a subproblem of the size that cannot
be solved on the computer at all.

3 Classification of Partitioning Problems

The core of scientific, engineering or business applications is the processing of some
mathematical objects that are used in modeling corresponding real-life problems. In
particular, partitioning of such mathematical objects is a core of any data parallel al-
gorithm. Our analysis of various scientific, engineering and business domains resulted
in the following short list of mathematical objects commonly used in parallel and dis-
tributed algorithms:sets(ordered and non-ordered),matrices (and multidimensional
arrangements),graphsandtrees.
These mathematical structures give us the second dimension for our classification of



partitioning problems. In the next section, we present our approach to classification of
partitioning problems using sets as mathematical objects. We also suggest an API based
on the classification.

4 Partitioning Problems for Sets and Ordered Sets

There are two main criteria used for partitioning aset:

a) The number of elements in each partition should be proportional to the speed of the
processor owning that partition.

b) The sum of weights of the elements in each partition should be proportional to the
speed of the processor owning that partition.

Additional restrictions that may be imposed on partitioning of anordered setare:

• The elements in the set are well ordered and should be distributed into disjoint
contiguous chunks of elements.

The most general problem of partitioning a set can be formulated as follows:

• Given: (1) A set ofn elements with weightswi (i=0,. . . ,n-1), and (2) A Well or-
dered set ofp processors whose speeds are functions of the size of the problem,
si = f i(x), with an upper boundbi on the number of elements stored by each pro-
cessor (i=0,. . . ,p-1),

• Partition the set intop disjoint partitions such that: (1) The sum of weights in each
partition is proportional to the speed of the processor owning that partition, and
(2) The number of elements assigned to each processor does not exceed the upper
bound on the number of elements stored by it.

The most general partitioning problem for an ordered set can be formulated as follows:

• Given: (1) A set ofn elements with weightswi (i=0,. . . ,n-1), and (2) A Well or-
dered set ofp processors whose speeds are functions of the size of the problem,
si = f i(x), with an upper boundbi on the number of elements stored by each pro-
cessor (i=0,. . . ,p-1),

• Partition the set intop disjoint contiguous chunks such that: (1) The sum of weights
of the elements in each partition is proportional to the speed of the processor own-
ing that partition, and (2) The number of elements assigned to each processor does
not exceed the upper bound on the number of elements stored by it.

The most general partitioning problems for a set and an ordered set are very difficult
and open for research. At the same time, there are a number of important special cases
of these problems with known efficient solutions. The special cases are obtained by
applying one or more of the following simplifying assumptions:

• All elements in the set have the same weight. This assumption eliminatesn addi-
tional parameters of the problem.

• The speed of each processor is a constant function of the problem size.
• There are no limits on the maximal number of elements assigned to a processor.



Table 1.Special cases of partioning of a set

Mode of Parallel Computation Weights of el-
ements are the
same

Weights of el-
ements are
different

Speeds are functions of problem size & no limits on num-
ber of elements stored by each processor.

Complexity No Known Results

O(p× logn)
Speeds are single constant numbers and an upper on num-
ber of elements stored that each processor can hold.

Complexity NP-Hard?

O(p)
Speeds are single constant numbers & no limits on num-
ber of elements stored that each processor can hold.

Complexity NP-Hard?

O(p)

One example of a special partitioning problem for a set is:

• Given: (1) A set ofn elements, and (2) A well-ordered set ofp processors whose
speeds are represented by single constant numbers,s0, s1,. . . ,si .

• Partition the set intop disjoint partitions such that the number of elements in each
partition is proportional to the speed of the processor owning that partition.

This problem is trivial of the complexity O(p). Another example of a special partitioning
problem for a set is:

• Given: (1) A set ofn elements, and (2) A well-ordered set ofp processors whose
speeds are functions of the size of the problem,si = f i(x) (i=1,. . . ,p-1).

• Partition the set intop disjoint partitions such that the number of elements in each
partition is proportional to the speed of the processor owning that partition.

An algorithm of the complexity O (p× logn) solving this problem is given in [5].
Table 1 and Table 2 summarize specific partitioning problems for a set and an ordered
set respectively and their current state to the best knowledge of the authors.
Based on this classification, we suggest the following API to application programmers
for partitioning a set intop disjoint partitions:

typedef double(*User_defined_metric)(int p, const double*speeds,
const double*actual,const double*ideal);
int Partition_set (int p,int pn,const double*speeds,const int *psizes,
const int *mlimits, int n,const double*w int ordering,int processor_reordering,
int type_of_metric, User_defined_metric umf,int *metric, int *np)

Parameterp is the number of partitions of the set. Parametersspeedsandpsizesspec-
ify speeds of processors forpn problem sizes. These parameters are 1D arrays of size
p×pn logically representing 2D arrays of shape[p][pn] . The speed of thei-th processor
for j -th problem size is given by the[i][j] -th element ofspeedswith the problem size
itself given by the[i][j] -th element ofpsizes. Parametermlimits gives the maximum



Table 2.Special cases of partioning of an ordered set

Mode of Parallel Computation Weights of el-
ements are the
same

Weights of el-
ements are
different
Rearrangement
of Processors
Allowed Not

allowed
Speeds are functions of the size of the problem & no up-
per bound exists on number of elements that each proces-
sor can hold.

Complexity No
Known
Results

No
known
Results

O(p× logn)
Speeds are single constant numbers & an upper bound ex-
ists on number of elements that each processor can hold.

Complexity No
Known
Results

No
known
Results

O(p)
Speeds are single constant numbers & no limits exist on
number of elements stored that each processor can hold.

Complexity No
Known
Results

No
known
Results

O(p)

number of elements that each processor can hold.
Parametern is the number of elements in the set, and parameterw is the weights of
its elements. Ifw is NULL , then the set is partitioned intop disjoint partitions such
that criterion (a) is satisfied. If parametersw, speedsandpsizesare all set toNULL ,
then the set is partitioned intop disjoint partitions such that the number of elements in
each partition is the same. Ifw is notNULL , then the set is partitioned intop disjoint
partitions such that criterion (b) is satisfied. Ifw is not NULL andspeedsis NULL ,
then the set is partitioned intop equally weighted disjoint partitions.
Parameterordering specifies if the set is well ordered (=1) or not (=0).
Parametertype_of_metricspecifies whose metric should be used to determine the qual-
ity of the partitioning. Iftype_of_metric isUSER_SPECIFIED, then the user provides
a metric functionumf, which is used to calculate the quality of the partitioning. Oth-
erwise, the system-defined metric is used which is the weighted Euclidean metric. The
output parametermetric gives the quality of the partitioning, which is the deviation of
the partitioning achieved from the ideal partitioning satisfying the partitioning criteria.
If w is NULL and the set is not ordered, the output parameternp is an array of size
p, wherenp[i] gives the number of elements assigned to thei-th partition. If the set
is well ordered, processori gets the contiguous chunk of elements with indexes from
np[i] uptonp[i]+np[i+1]-1 .
If w is notNULL and the set is well ordered, then the user needs to specify if the im-
plementations of this operation may reorder the processors before partitioning (Boolean
parameterprocessor_reorderingis used to do it). One typical reordering is to order the
processors in the decreasing order of their speeds.
If w is notNULL , the set is well ordered and the processors cannot be reordered, then



the output parameternp is an array of sizep, wherenp[i] gives the number of elements
of the set assigned to thei-th partition. Specifically, processori gets the contiguous
chunk of elements with indexes fromnp[i] uptonp[i]+np[i+1]-1 .
If w is NULL , the set is well ordered and the processors may be reordered, thennp is
an array of size2×p, wherenp[i] gives index of a processor andnp[i+1] gives the size
of the contiguous chunk assigned to processor given by the indexnp[i] .
If w is notNULL and the set is not ordered, thennp is an array of sizen, containing
the partitions to which the elements in the set belong. Specifically,np[i] contains the
partition number in which elementi belongs to.
Some of the typical examples where the partitioning interfaces for sets can be used are
striped partitioning of a matrix and simple partitioning of a graph. In striped partition-
ing of a matrix, a matrix is divided into groups of complete rows or complete columns,
the number of rows or columns being proportional to speeds of the processors. In sim-
ple partitioning of an unweighted graph, the set of vertices are partitioned into disjoint
partitions such that the criterion (a) is satisfied. In simple partitioning of a weighted
graph, the set of vertices are partitioned into disjoint partitions such that criterion (b) is
satisfied.

5 Conclusion

The same approach is applied to classification of partitioning problems for matrices,
graphs, and trees. More information on partitioning these mathematical objects and
related API can be found in [6].

References

1. Arapov, D., Kalinov, A., Lastovetsky, A., Ledovskih, I.: A Language Approach to High Perfor-
mance Computing on Heterogeneous Networks. Parallel and Distributed Computing Practices
2(3), pp.87-96, 1999

2. Lastovetsky, A., Arapov, D., Kalinov, A., Ledovskih, I.: A Parallel Language and Its Program-
ming System for Heterogeneous Networks. Concurrency: Practice and Experience 12(13),
pp.1317-1343, 2000

3. Lastovetsky, A.: Adaptive Parallel Computing on Heterogeneous Networks with mpC. Parallel
Computing 28(10), pp.1369-1407, 2002

4. Lastovetsky, A., Reddy,R.: HMPI: Towards a Message-Passing Library for Heterogeneous
Networks of Computers. In Proceedings of the 17th International Parallel and Distributed
Processing Symposium (IPDPS 2003), CD-ROM/Abstracts Proceedings, IEEE Computer So-
ciety 2003

5. Lastovetsky, A., Reddy, R.: Towards a Realistic Model of Parallel Computation on Networks
of Heterogeneous Computers. Technical Report, University College Dublin, April 2003

6. Lastovetsky, A., Reddy, R.: Classification of Partitioning Problems for Networks of Hetero-
geneous Computers. Technical Report, University College Dublin, December 2003


