
A Variable Group Block Distribution Strategy for Dense
Factorizations on Networks of Heterogeneous

Computers

Alexey Lastovetsky, Ravi Reddy

Department of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland

{alexey.lastovetsky, manumachu.reddy}@ucd.ie

Abstract. In this paper, we present a static data distribution strategy called Vari-
able Group Block distribution to optimize the execution of factorization of a
dense matrix on a network of heterogeneous computers. The distribution is based
on a functional performance model of computers, which tries to capture differ-
ent aspects of heterogeneity of the computers including the (multi-level) memory
structure and paging effects.

1 Introduction

The paper presents a static data distribution strategy called Variable Group Block dis-
tribution to optimize the execution of factorization of a dense matrix on a network of
heterogeneous computers. The Variable Group Block distribution strategy is a modifi-
cation of Group Block distribution strategy, which was proposed in [1] for 1D parallel
Cholesky factorization, developed into a more general 2D distribution strategy in [2]
and applied to 1D LU factorization in [3], [4].

The Group Block distribution strategy is based on the performance model, which
represents the speed of each processor by a constant positive number and computations
are distributed amongst the processors such that their volume is proportional to this
speed of the processor. However the single number model is efficient only if the relative
speeds of the processors involved in the execution of the application are a constant
function of the size of the problem and can be approximated by a single number. This
is true mainly for homogeneous distributed memory systems where:

– The processors have almost the same size at each level of their memory hierarchies,
and

– Each computational task assigned to a processor fits in its main memory.

But the model becomes inefficient in the following cases:

– The processors have significantly different memory structure with different sizes
of memory at each level of memory hierarchy. Therefore, beginning from some
problem size, the same task will still fit into the main memory of some processors
and stop fitting into the main memory of others, causing the paging and visible
degradation of the speed of these processors. This means that their relative speed
will start significantly changing in favor of non-paging processors as soon as the
problem size exceeds the critical value.

– Even if the processors of different architectures have almost the same size at each
level of the memory hierarchy, they may employ different paging algorithms re-
sulting in different levels of speed degradation for the task of the same size, which
again means the change of their relative speed as the problem size exceeds the
threshold causing the paging.

Thus considering the effects of processor heterogeneity, memory heterogeneity, and the
effects of paging significantly complicates the design of algorithms distributing compu-
tations in proportion with the relative speed of heterogeneous processors. One approach
to this problem is to just avoid the paging as it is normally done in the case of paral-
lel computing on homogeneous multi-processors. However avoiding paging in local
and global heterogeneous networks may not make sense because in such networks it is
likely to have one processor running in the presence of paging faster than other proces-
sors without paging. It is even more difficult to avoid paging in the case of distributed
computing on global networks. There may not be a server available to solve the task of
the size you need without paging.

Therefore, to achieve acceptable accuracy of distribution of computations across
heterogeneous processors in the possible presence of paging, a more realistic perfor-
mance model of a set of heterogeneous processors is needed. In [5], we suggested a
functional performance model of computers that integrates some of the essential fea-
tures underlying applications run on general-purpose common heterogeneous networks,
such as the processor heterogeneity in terms of the speeds of the processors, the mem-
ory heterogeneity in terms of the number of memory levels of the memory hierarchy
and the size of each level of the memory hierarchy, and the effects of paging. Under
this model, the speed of each computer is represented by a continuous and relatively
smooth function of problem size.

The Variable Group Block distribution strategy presented in this paper uses this
functional performance model to optimize the execution of factorization of a dense
square matrix on a network of heterogeneous computers.

The functional model does not take into account the effects on the performance of
the processor caused by several users running heavy computational tasks simultane-
ously. It supposes only one user running heavy computational tasks and multiple users
performing routine computations and communications, which are not heavy like email
clients, browsers, audio applications, text editors etc.

The rest of the paper is organized as follows. In the next section, we present the
Variable Group Block distribution strategy. We then show experimental results on a
local network of heterogeneous computers to demonstrate the efficiency of the Variable
Group Block Distribution strategy over the Group Block Distribution Strategy.

2 Variable Group Block Distribution

Before we present our Variable Group Block distribution strategy, we briefly explain
the LU Factorization algorithm of a dense (n×b)×(n×b) square matrixA, one step of
which is shown in Figure 1.n is the number of blocks of sizeb×b [6], [7]. On a ho-
mogeneousp-processor linear array, a CYCLIC(b) distribution of columns is used to
distribute the matrixA. The cyclic distribution would assign columns of blocks with

Fig. 1. One step of the LU factorization algorithm of a dense square matrix (n×b)×(n×b).

numbers 0,1,2,. . . ,n-1 to processors 0,1,2,. . . ,p-1,0,1,2,. . . ,p-1,0,. . . , respectively, for a
p-processor linear array (nÀp), until all n columns of blocks are assigned. At each
step of the algorithm, the processor that owns the pivot block factors it and broadcasts
it to all the processors, which update their remaining blocks. At the next step, the next
column ofb×b blocks becomes the pivot panel, and the computation progresses. Fig-
ure 1 shows how the column panel,L11 andL21, and the row panel,U11 andU12, are
computed and how the trailing submatrixA22 is updated. Because the largest fraction of
the work takes place in the update ofA22, therefore, to obtain maximum parallelism all
processors should participate in the updating. SinceA22 reduces in size as the compu-
tation progresses, a cyclic distribution is used to ensure that at any stageA22 is evenly
distributed over all processors, thus obtaining a balanced load.

Two load balancing algorithms, namely, Group Block algorithm and Dynamic Pro-
gramming algorithm [7] have been proposed to obtain optimal static distribution over
p heterogeneous processors arranged in a linear array. The Group Block distribution
partitions the matrix into groups (orgeneralized blocksin terms of [2]), all of which
have the same number of blocks. The number of blocks per group (size of the group)
and the distribution of the blocks in the group amongst the processors are fixed and are
determined based on speeds of the processors, which are represented by a single con-
stant number. Same is the case with Dynamic Programming distribution except that the
distribution of the blocks in the group amongst the processors is determined based on
dynamic programming algorithm.

We propose a static distribution strategy called Variable Group Block distribution,
which is a modification of the Group Block algorithm. It uses the functional model
where absolute speed of the processor is represented by a function of a size of the
problem. Since the Variable Group Block distribution uses the functional model where
absolute speed of the processor is represented by a function of a size of the problem,
the distribution uses absolute speeds at each step of the LU factorization that are based
on the size of the problem solved at that step. That is at each step, the number of blocks
per group and the distribution of the blocks in the group amongst the processors are

Fig. 2.The matrixA is partitioned using Variable Group Block distribution. The size of the matrix
is shown in blocks of sizeb×b. This figure illustrates the distribution forn=18,b=32,p=3. The
distribution inside groups G1, G2, and G3 are{2,1,1,0,0,0}, {2,1,0,0,0}, and{2,2,1,1,0,0,0}. At
each step of the distribution, the absolute speed of the processor is obtained based on the update
of the trailing matrix. Since the Variable Group Block distribution uses the functional model
where the absolute speed of the processor is represented by a function of the problem size, the
distribution uses absolute speeds at each step that are based on the size of the problem solved at
that step.

determined based on absolute speeds of the processors given by the functional model,
which are based on solving the problem size at that step. Thus it takes into account the
effects of (multi-level) memory structure and paging.

Figure 2 illustrates the Variable Group Block distribution of a dense square (n×b)×(n×b)
matrix A overp heterogeneous processors. The Variable Group Block distribution is a
static data distribution that vertically partitions the matrix intom groups of blocks of
sizeb whose column sizes areg1,g2,. . . ,gm as shown in Figure 2.

The groups are non-square matrices of sizes (n×b)×(g1×b), (n×b)×(g2×b), . . . ,
(n×b)×(gm×b) respectively. The steps involved in the distribution are:

1. The sizeg1 of the first group G1 of blocks is calculated as follows:

– Using the data partitioning algorithm [5], we obtain an optimal distribution of
matrix A such that the number of blocks assigned to each processor is pro-
portional to the speed of the processor. The optimal distribution derived is
given by (xi , si) (0≤ i ≤ p−1), where xi is the size of the subproblem such
that ∑p−1

i=0 xi=n2 and si is the absolute speed of the processor used to com-
pute the subproblem xi for processor i. Calculate the load indexl i = si

∑p−1
k=0 sk

(0≤ i ≤ p−1).
– The size of the groupg1 is equal tob1/min(l i)c (0≤ i ≤ p−1). If g1/p < 2,

then g1=b2/min(l i)c. This condition is imposed to ensure there is sufficient
number of blocks in the group.

– This group G1 is now partitioned such that the number of blocks g1,i is propor-
tional to the speeds of the processors si where∑p−1

i=0 g1,i=g1 (0≤ i ≤ p−1).

2. To calculate the sizeg2 of the second group, we repeat step 1 for the number of
blocks equal to (n-g1)2 in matrixA. This is represented by the sub-matrixAn-g1,n-g1

Table 1. Specifications of the twelve computers. Paging is the size of the matrix beyond which
point paging started happening.

Machine
Name

Architecture cpu
MHz

Total
Main

Memory
(kBytes)

Available
Main

Memory
(kBytes)

Cache
(kBytes)

Paging
(LU)

X1 Linux 2.4.20-20.9 i686
Intel Pentium III

997 513304 363264 256 6000

X2 Linux 2.4.18-3 i686
Intel Pentium III

997 254576 65692 256 5000

X3 Linux 2.4.20-
20.9bigmem

Intel(R) Xeon(TM)

2783 7933500 2221436 512 11000

X4 Linux 2.4.20-
20.9bigmem

Intel(R) Xeon(TM)

2783 7933500 3073628 512 11000

X5 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 415904 512 8500

X6 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 364120 512 8500

X7 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 215752 512 8000

X8 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 134400 512 6500

X9 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 134400 512 6500

X10 SunOS 5.8 sun4u sparc
SUNW,Ultra-5_10

440 524288 409600 2048 5000

X11 SunOS 5.8 sun4u sparc
SUNW,Ultra-5_10

440 524288 418816 2048 5000

X12 SunOS 5.8 sun4u sparc
SUNW,Ultra-5_10

440 524288 395264 2048 5000

shown in Figure 2. We recursively apply this procedure until we have fully verti-
cally partitioned the matrixA.

3. For algorithms such as LU Factorization, only blocks below the pivot are updated.
The global load balancing is guaranteed by the distribution in groups; however, for
the group that holds the pivot it is not possible to balance the workload due to the
lack of data. Therefore it is possible to reduce the processing time if the last blocks
in each group are assigned to fastest processors, that is when there is not enough
data to balance the workload then it should be the fastest processors doing the work.
That is in each group, processors are reordered to start from the slowest processors
to the fastest processors for load balance purposes.

In LU Factorization, the size of the matrix shrinks as the computation goes on. This
means that the size of the problem to be solved shrinks with each step. Consider the first
step. After the factorization of the first block ofb columns, there remainn-1 blocks ofb
columns to be updated. At the second step, the number of blocks ofb columns to update
is only n-2. Thus the speeds of the processors to be used at each step should be based
on the size of the problem solved at each step, which means that for the first step, the
absolute speed of the processors calculated should be based on the update ofn-1 blocks
of b columns and for the second step, the absolute speed of the processors calculated
should be based on the update ofn-2 blocks ofb columns. Since the Variable Group
Block distribution uses the functional model where absolute speed of the processor is
represented by a function of a size of the problem, the distribution uses absolute speeds
at each step that are calculated based on the size of the problem solved at that step.

For two dimensional processor grids, the Variable Group Block algorithm is applied
to columns and rows independently.

3 Experimental Results

A small heterogeneous local network of 12 different Solaris and Linux workstations
shown in Table 1 is used in the experiments. The network is based on 100 Mbit Ethernet
with a switch enabling parallel communications between the computers. The amount of
memory, which is the difference between the main memory and free main memory
shown in the tables, is used by the operating system processes and few other user appli-
cation processes that perform routine computations and communications such as email
clients, browsers, text editors, audio applications etc. These processes use a constant
percentage of CPU.

For the parallel LU factorization application, the absolute speed of a processor must
be obtained based on the execution of DGEMM routine on a dense non-square matrix
of size m1×m2. The reason is that the computational cost of the application mainly
falls into the update of the trailing submatrix, which is performed by this routine. Even
though there are two parametersm1 andm2 representing the size of the problem, the
parameterm1 is fixed and is equal ton during the application of the set partitioning
algorithm [5].

To apply the set partitioning algorithm to determine the optimal data distribution
for such an application, we need to extend it for problem size represented by two para-
meters,m1 andm2. The speed function of a processor is geometrically a surface when
represented by a function of two parameterss=f(m1,m2). However since the parame-
ter m1 is fixed and is equal ton, the surface is reduced to a lines=f(m1,m2)=f(n,m2).
The set partitioning algorithm can be extended here easily to obtain optimal solutions
for problem spaces with two or more parameters representing the problem size. Each
such problem space is reduced to a problem formulated using a geometric approach and
tackled by extensions of our geometric set-partitioning algorithm. Con-sider for exam-
ple the case of two parameters representing the problem size where neither of them is
fixed. In this case, the speed functions of the processors are represented by surfaces.
The optimal solution provided by a geometric algorithm would divide these surfaces to
produce a set of rectangular partitions equal in number to the number of processors such
that the number of elements in each partition (the area of the partition) is proportional
to the speed of the processor.

The absolute speed of the processor in number of floating point operations per sec-
ond is calculated using the formula (2×n×b×n×b)/(execution time) wheren×b is the
size of the dense square matrix. The computer X6 exhibited the fastest speed of 130
MFlops for execution of DGEMM routine on a dense 8500×8500 matrix whereas the
computer X1 exhibited the lowest speed of 19 MFlops for execution of DGEMM rou-
tine on a dense 4500×4500 matrix. The ratio130/19≈ 6.8 suggests that the processor
set is reasonably heterogeneous and it should also be noted that paging has not started
happening at this problem size for both the computers.

We use a piece-wise linear function approximation to represent the speed function
[5]. This approximation of speed function for a processor is built using a set of few
experimentally obtained points. The block sizeb used in the experiments is 32, which
is typical for cache-based workstations [3], [8].

Figure 3 shows the speedup of the LU Factorization application using the Variable
Group Block distribution strategy over the application using the Group Block Distri-

LU Factorization

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

16000 18000 20000 22000 24000 26000 28000 30000 32000

Size of the matrix (n)

Sp
ee

du
p

50005000×

20002000 ×

Fig. 3. Speedup of Variable Group Block Distribution over Group Block Distribution. For the
Group Block Distribution, the single number speeds are obtained using DGEMM for a dense
square matrix. For the solid lined curve, the matrix used is of size 2000×2000. For the dashed
curve, the matrix used is of size 5000×5000.

bution strategy. The speedup calculated is the ratio of the execution time of the LU
Factorization application using the Group Block distribution strategy over the execu-
tion time of the application using the Variable Group Block Distribution strategy.

4 Conclusions and future work

In this paper, we presented a static data distribution strategy called Variable Group
Block distribution to optimize the execution of factorization of a dense matrix on a
network of heterogeneous computers. The distribution is based on a functional perfor-
mance model of computers, which integrates some of the essential features underly-
ing applications run on general-purpose common heterogeneous networks, such as the
processor heterogeneity in terms of the speeds of the processors, the memory hetero-
geneity in terms of the number of memory levels of the memory hierarchy and the size
of each level of the memory hierarchy, and the effects of paging.

Future work would involve extension of Variable Group Block distribution strategy
to optimize the execution of factorization of a dense matrix on a heterogeneous network
of computers using a functional model that would incorporate communication cost para-
meters, namely, latency and the bandwidth of the communication links interconnecting
the processors.

References

1. Arapov, D., Kalinov, A., Lastovetsky, A., Ledovskih, I.: Experiments with mpC: Efficient
Solving Regular Problems on Heterogeneous Networks of Computers via Irregularization. Pro-
ceedings of the 5th International Symposium on Solving Irregularly Structured Problems in
Parallel (IRREGULAR’98), Lecture Notes in Computer Science, Vol. 1457, (1998) 332–343

2. Kalinov, A., Lastovetsky, A.: Heterogeneous Distribution of Computations While Solving
Linear Algebra Problems on Networks of Heterogeneous Computers. Proceedings of the 7th
International Conference on High Performance Computing and Networking Europe (HPCN
Europe’99), Lecture Notes in Computer Science, Vol. 1593, (1999) 191–200

3. Barbosa, J., Tavares, J., Padilha, A.J.: Linear Algebra Algorithms in a Heterogeneous Cluster
of Personal Computers. Proceedings of the 9th Heterogeneous Computing Workshop (HCW
2000) 147-159

4. Barbosa, J., Morais, C.N., Padilha, A.J.: Simulation of Data Distribution Strategies for LU
Factorization on Heterogeneous Machines. Proceedings of the 17th International Parallel and
Distributed Processing Symposium (IPDPS 2003)

5. Lastovetsky, A., Reddy, R.: Data Partitioning with a Realistic Performance Model of Net-
works of Heterogeneous Computers. Proceedings of the 18th International Parallel and Distrib-
uted Processing Symposium (IPDPS 2004)

6. Choi, J., Dongarra, J., Ostrouchov, L.S., Petitet, A.P., Walker, D.W., Whaley, R.C.: The De-
sign and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Rou-tines.
Scientific Programming, Vol. 5, (1996) 173-184

7. Beaumont, O., Boudet, V., Petitet, A., Rastello, F., Robert, Y.: A Proposal for a Heterogeneous
Cluster ScaLAPACK (Dense Linear Solvers). IEEE Transactions on Computers, Vol. 50, (2001)
1052–1070

8. Blackford, L.S., Choi, J., Cleary, A., DAzevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK
Users Guide. SIAM (1997)

