Experiments with mpC:
Efficient Solving Regular Problems
on Heterogeneous Networks of Computers
via Irregularization

Dmitry Arapov, Alexey Kalinov, Alexey Lastovetsky, and Ilya Ledovskih

Institute for System Programming, Russian Academy of Sciences
25, Bolshaya Kommunisticheskaya str., Moscow 109004, Russia
mpc@ispras.ru

Abstract. mpC is a medium-level parallel language for programming
heterogeneous networks of computers. It allows to write libraries of par-
allel routines adaptable to peculiarities of any particular executing mul-
tiprocessor system to ensure efficient running. The adaptable routines
distribute data and computations in accordance with performances of
participating processors. In this case even the problems traditionally con-
sidered regular, become irregular. Advantages of mpC for efficient solving
of regular problems on heterogeneous networks of computers are demon-
strated with an mpC routine implementing Cholesky factorization, with
efficiency of the mpC routine being compared with ScaLAPACK one.

1 Imntroduction

A heterogeneous network of computers, being the most common parallel archi-
tecture available to common users, can be used for high-performance comput-
ing. Taking into account that in the 1990s network capacity increases surpassed
processor speed increases [1], pp.6—7, one can predict increasing their impor-
tance as a low-cost platform for parallel high-performance computations. Ef-
ficient programming heterogeneous networks of computers has some difficulties
which do not arise when programming traditional homogeneous supercomputers.
The point is that to use the full performance potential of a heterogenous net-
work of computers, it is necessary to distribute data and computations among
processors in accordance with their performances. That heterogeneity of data
distribution leads to considering irregular such problems as, for example, dense
linear algebra problems, traditionally considered regular when solving on homo-
geneous multiprocessor computing systems.

One can ascertain absence of suitable and handy tools for parallel program-
ming irregular applications for heterogeneous networks of computers. Both high-
level parallel languages like HPF [2] and low-level message-passing packages like
MPI [3] are not suitable for the purpose, since they do not have facilities to de-
tect performance characteristics of a particular executing multiprocessor hard-
ware and distribute data and computations among its processors in accordance
with results of the detection.

The situation has induced us to develop mpC — a medium-level parallel lan-
guage for programming heterogeneous networks of computers, that, like the C
language, combines assembler (MPI) flexibility and efficiency with high-level
programming language convenience. The mpC language is an ANSI C extension
allowing to write libraries of parallel routines adaptable to peculiarities of any
particular executing parallel computer system to ensure efficient running.

We will demonstrate advantages of mpC with such a generally-known chal-
lenge in parallel computations as Cholesky factorization. We use almost the
same parallel algorithm, that is used in ScaLAPACK [4] in case of 1-D proces-
sor grid, and use LAPACK [5] and BLAS [6] for local computations. The main
difference between our parallel algorithm and the ScaLAPACK one is data dis-
tribution. We consider the Cholesky factorization to be an irregular problem
and distribute data among processors of an executing parallel machine in ac-
cordance with their relative performances. ScaLAPACK considers the problem
regular and distributes data in accordance with homogeneous block-cyclic dis-
tribution. Of course, we make no pretensions to solve all problems but only want
to demonstrate how mpC allows slightly to modify a good parallel algorithm to
obtain an adaptable routine for heterogeneous networks of computers.

Our parallel mpC function will hide its parallel nature from a caller. It cor-
responds to an easy-to-use style of parallel programming, when all parallel com-
putations are encapsulated in library functions. This approach makes transition
from sequential programming in C to parallel programming in mpC very simple.

Section 2 introduces a parallel algorithm of Cholesky factorization. Section
3 describes implementation of the algorithm in mpC, introducing all necessary
details of the mpC language. Section 4 compares the mpC and ScaLAPACK
Cholesky factorization routines running on networks of workstations.

More about mpC can be found in [7-10] as well as at mpC home page
(bttp://www.ispras.ru/"mpc), where additionally free mpC software is available.

2 Algorithm of Cholesky Factorization in mpC

Cholesky factorization of a real symmetric positive definite matrix is an ex-
tremely important computation, arising in a variety of scientific and engineering
applications. It is a well-known challenge for efficient and scalable parallel im-
plementation because of large volumes of interprocessor communications.

Cholesky factorization factors an n x n, symmetric, positive-definite matrix
A into a product of a lower triangular matrix L and its transpose, i.e., A = LL".
One can partition the nzn matrices A, L and LT and write the system as

A A3 _ [Lu 0] [Li Ly | _ [LuLiy L1 Ly

Asr As2 Loy Ls2 0 L2T2 L21L'1rl LQngl + L22L2TZ ’
where blocks A11 and L11 are np; X np1, Aa1, Loy are (n —np1) X np, A22, 122
are (n —np1) X (n —np1). L11 and L22 is lower triangular, np is the size of the
first block. Assuming that L;;, the lower triangular Cholesky factor of A;;, is

known, one can rearrange the block equations

Ly + Ay (Lrlrl)_l ’
Agy (A22 - L21Lgl = L22L;r2) .

The factorization can be done by recursively applying the step outlined above
to the updated matrix Ass. The parallel implementation of the corresponding
ScaLAPACK routine PDPOTRF [11] is based on the above scheme and a block
cyclic distribution of matrix A over a P x @) process grid with a block size of
np X np. The routine assumes that the lower (upper) triangular portion of A
is stored in the lower (upper) triangle of a two-dimensional array and that the
computed elements of L overwrite the given elements of A (here and henceforth
when speaking of an array we mean a Fortran array, that is, that column elements
of an 2-D array are allocated contiguously).

Our mpC Cholesky factorization routine implements almost the same algo-
rithm that is implemented by the ScaLAPACK one in the case of 1-D process
grid (P=1) and the lower triangular portion of A used to compute L. Namely,
to compute above steps it involves the following operations:

1. process Pr, which has L1, Lo, calls LAPACK function dpotf2 to compute
Cholesky factor Ly and sets a flag if 411 is not positively defined;

2. process Pr calls BLAS function dtrsm to compute Cholesky factor Lo; if A1q
is positively defined;

3. process Pr broadcasts the column panel, L;; and Lo;, as well as the flag to
all other processes and stops the computation if A;; is not positively defined;

4. all processes stop the computation if A;; is not positively defined or oth-
erwise update matrix Ass in parallel, that involves calls to BLAS functions
dsyrk and dgemm by each process updating its local portions of matrix Ass.

The main difference between the mpC and the ScaLAPACK routines lies in
data distribution. In fact, in our case (P=1) the ScaLAPACK routine divides
matrix A into a number of column panels with just the same width n; and
distributes them cyclically over @ processes (see Fig. 1) where @, nb are input
parameters of the routine.

The mpC routine distribution is almost the same. The only difference is that
column panel with width n,;, calculated as follows

Di
Np; = Q s Ny Q) (1)
Zj:l Py

is placed to i-th process, where @, n, are input parameters of the routine, and
p; are the relative speed of j-th process (j =1,...,Q).

Suppose we have a 18 x 18 matrix, P =1, @ = 2, np = 3 and the underlying
network of computers consists of two processors, each running one process and
the second being twice faster. Figure 1 shows the ScaLAPACK data distribution
and figure 2 shows the mpC data distribution. In this case ny = 2, npe = 4.

Fig. 1. ScaLAPACK(left) and mpC(right) data distributions when the underlying pro-
cess grid consists of two processors, the second being twice as fast. Black columns belong
to the first process and white columns belong to the second one

3 Implementation of the Cholesky Factorization in mpC

The mpC language is an ANSI C superset allowing the user to specify the topol-
ogy of and to define the so-called network objects (in particular, dynamically)
as well as to distribute data and computations over the network objects. The
mpC programming environment uses this information to map (in run time) the
mpC network objects to any underlying heterogeneous network in such a way
that to ensures efficient running of the application on the network.

In mpC, a programmer deals with a new kind of resource — computing space
— a set of virtual processors represented in run-time by actual processes. The
resource can be managed with allocating and discarding regions of computing
space called network objects (or simply networks). Allocating network objects in
the computing space and discarding them is performed in similar fashion to allo-
cating and discarding data objects in the storage in the C language. A network
object may be used to distribute data, to compute expressions, and to execute
statements. Every network has a parent — the virtual processor initiated its al-
location and belonging to both the newly created network and one of networks
created before. The only virtual processor defined from the beginning of program
execution till its termination is the pre-defined virtual host-processor.

So, in our mpC application we, first of all, define a network object over which
we want to distribute data and computations. Every network object, declared
in an mpC program, has a type. The network type specifies the number and
performances of virtual processors, links between these processors, as well as
separates the parent. For our purpose we declare the family of network types,
named HeterolNet,

/*1.1%/ nettype HeteroNet(n, pln]) {
/%1.2%/ coord I=n;

/%1.3%/ node { I>=0: p[I]; };
/*1.4x/ };

parametrized with integer parameter n and vector parameter p consisting of n
integers. The family of network types corresponds to network objects consisting

of n virtual processors. The virtual processors are related to the coordinate sys-
tem with coordinate variable I ranging from O to n-1. The relative performance
of the virtual processor with coordinate I being characterized by the value of
p[I]. By default the network parent has coordinate 0.

The high-level mpC function Ch, implementing the Cholesky factorization,
looks as follows

/* 2.1%/ void [*]Ch(double *[host]A,

/* 2.2%/ int [host]N,

/* 2.3%/ int *[host]INF0) {

/* 2.4x/ repl int nprocs, * ipowers;

/* 2.5%x/ repl double * powers;

/* 2.6%x/ MPC_Processors_static_info(&nprocs, &powers);
/* 2.7x/ IntPowers(nprocs,powers,&ipowers) ;

/* 2.8%x/ {

/* 2.9%/ net HeteroNet(nprocs,ipowers) w;

/%2.10%/ double* [w]da;

/*2.11%/ int [w]info=0;

/%2.12%/ repl int [wln, * [wlmap, [w]lsource[1]l= {0};
/%2.13%/ n=N;

/*2.14%/ if (I coordof da == 0)

/*2.16%/ [host]da=A;

/*2.16%/ else

/%2.17%/ da=[w]lmalloc(n*n*[w] (sizeof (double)));
/*2.18%/ map=[w]lmalloc(n*[w]lsizeof (int));

/%2.19%/ [wlDistr(n, [wlnprocs, [w]powers ,map) ;
/%2.20%/ ([([wlnprocs)w]) ChScatter(da,n,map);
/%2.21%/ info=([([wlnprocs)w])ParCh(da,n,map);
/%2.22%/ *INFO=[host]info[+];

/%2.23%/ if (I coordof da != 0) [w]free(da);
/*2.24%/ [wlfree(map);

/*2.26%/ }

/*2.26%/ free(ipowers);

/*2.27%/ }

The function is a so-called basic mpC function with three arguments belonging
to the virtual host-processor: pointer A to the source matrix, dimension N of
the matrix, and pointer INFO to an indicator of the termination status. There
are three kinds of function in mpC: basic, network, and nodal functions. Basic
function is called and executed on the entire computing space. Only in basic
functions networks may be defined. Network function is called and executed on
a network object. Nodal function can be executed completely by any one virtual
processor. Any C function is considered a nodal function in mpC.

Line 2.4 defines integer variable nprocs and pointer ipowers to integer. Both
variable nprocs and data object, that ipowers points to, are declared replicated
over the entire computing space. By definition, data object distributed over a
region of the computing space (in particular, over the entire computing space)

comprises a set of components of any one type so that each virtual processor
of the region holds one component. By definition, a distributed data object is
replicated if all its components is equal to each other.

Line 2.5 defines pointer powers distributed over the entire computing space
and specifies that it points to a replicated data object.

Line 2.6 calls library nodal function MPC_Processors_static_info on the
entire computing space returning the number of actual processors and their
relative performances. So, after this call replicated variable nprocs will hold
the number of actual processors, and replicated array powers will hold their
relative performances. Note, that the possibility to detect in run time the detailed
information about characteristics of an executing actual parallel machine is an
important peculiarity of the mpC language making it a suitable tool for efficient
programming heterogeneous networks of computers.

Line 2.7 calls nodal function IntPower which allocates and initializes repli-
cated integer array ipowers holding relative processor performances.

At the point, we have obtained enough information about characteristics of
the executing multiprocessor to define properly a network object to perform our
parallel Cholesky factorization. Line 2.9 defines automatic network w, the type
of which, being an instance of the corresponding family of network types, is
defined only in run time, and which executes the most of the rest of computa-
tions and communications. It consists of nprocs virtual processors, the relative
performance of the i-th virtual processor being characterized by the value of
ipowers[i]. The definition of the network causes its allocation (or creation) in
run time. The mpC programming environment will ensure the optimal mapping
of virtual processors of the network w into a set of actual processes representing
the entire computing space. So, just one process from processes running on each
of actual processors will be involved in the Cholesky factorization, and the more
powerful is the virtual processor, the more powerful actual processor will execute
the corresponding process.

Note, that the possibility to define a network type (or requirements to virtual
processors) in run time and to map the virtual processors into actual processes
in accordance with the network type requirements is a key advantage of the mpC
programming environment making it a suitable tool for programming heteroge-
neous networks.

Having defined the network, we can distribute data and computations over
it. Construct [w] in the definition of pointer da in line 2.10 just says that the
pointer is distributed over network w. By default, if the distribution of a variable
is not specified, it means that the variable is distributed over:

— the entire computing space if defined in a basic function;
— the corresponding network if defined in a network function.

Construct [*] specifies that the data object is distributed over the entire com-
puting space, and construct [host] specifies that the data object belongs to the
host.

The assignment in line 2.13 broadcasts the value of N to all components of
distributed variable n. In general, the simple assignment is extended in mpC to
express data transfer between virtual processors of the same network object.

The if-else statement in lines 2.14-2.17 sets a value of distributed pointer
da. On the virtual host-processor its component points to matrix A, and on other
virtual processors of the network w its components point to an allocated array.
Unlike the previous statement, the execution of this statement does not need any
communications between virtual processors constituting network w. In fact, this
statement is divided into a set of independent undistributed statements each of
which is executed by the corresponding virtual processor using the corresponding
data components. Such statement is called an asynchronous statement.

The control expression in the if-else statement contains unusual binary op-
erator coordof. Its result is an integer value distributed over w, each component
of which is equal to the value of coordinate variable I of the virtual processor
to which the component belongs. The right operand of the operator coordof is
not evaluated and used only to specify a region of the computing space. Note,
that coordinate variable I is treated as an integer variable distributed over the
region.

Line 2.19 calls nodal function Distr on network w. The execution of this func-
tion call just on network w is provided with prefix unary network cast operator
[w], cutting from values of Distr, nprocs, and powers just the components,
belonging to w, and resulting in all operands of the function call are distributed
over network w. A compiler uses the information about distribution of operands
of the expression to determine the region of the computing space where the
expression is evaluated and the statement is executed.

The function Distr allocates array map and calculates its elements defining
the distribution of columns of the matrix over virtual processors of network w.
The calculation is based on formula (1). So, after this call, map[i] holds the
number of the virtual processor to which the i-th column belongs, and the more
powerful is the virtual processor, the more columns are assigned to it.

Line 2.20 calls network function ChScatter on network w to scatter the ma-
trix A in accordance with mapping provided by the array map. The function
ChScatter has the following function prototype:

/*3.1%/ int [net SimpleNet(p)v]ChScatter(double* da,
/*3.2%/ const repl int n,
/*3.3%/ const repl int* map);

In general, a network function is called and executed on some network, and its
value is also distributed over the same network. The function ChScatter has
two special formal parameters — so-called network parameter v, representing the
network on which the function is executed, and parameter p, treated in the func-
tion as a replicated over network v integer variable. The family of network types,
named SimpleNet, is the simplest one introducing only a coordinate system and
declared in standard header file mpc.h as follows:

/*4.1%/ nettype SimpleNet(n) { coord I=n; };

Except the network parameter, no network can be used or declared in the net-
work function. Only data objects belonging to the network parameter may be
defined in its body. In addition, the corresponding components of an externally-
defined distributed data object can be used. Unlike basic functions, network
functions (as well as nodal functions) can be called in parallel. Any network of a
relevant type can be used as an actual network parameter in a network-function
call. In our case, the network w is such a network argument, nprocs being other
special argument.

Line 2.21 calls network function ParCh (described below) to compute in par-
allel the Cholesky factor of the matrix. It returns the value of flag info detecting
how computation is terminated on each of virtual processors of network w.

Line 2.22 calculates the sum of all components of info and assigns the result
to *INFQ. The result of postfix unary operator [+] is distributed over w. All its
components are equal to the sum of all components of its operand info. Here,
the result of prefix unary network cast operator [host] is the component of its
operand belonging to the virtual host-processor. So, the statement assigns the
sum of all components of info to *INFO on the virtual host-processor.

Line 2.23 frees the memory allocated for the matrix on all virtual processors
of w different from the host-virtual processor.

Network w is discarded when execution of the block in lines 2.8-2.25 ends.

Note, that we do not gather result to the host. The algorithm implemented by
ParCh ensures that Cholesky factor of the matrix will appear on each of virtual
processors of network w.

The network function strictly computed Cholesky factor of the matrix is the
following:

/* 5.1%/ int [net SimpleNet (p)w]ParCh(double* da,

/* 5.2x/ const repl int n,

/* 5.3/ const repl int* map) {
/* 5.4%x/ repl int ngroups,*displs,*ncols,group,k;

/* 5.5%/ repl int coor,displsg,ncolsg;

/* 5.6%/ int i,j,dim,info=0,displ,coor_1,displsk,ncolsk;
/* 5.7/ double one=1.0, minus_one=-1.0;

/* 5.8%/ MakeGroups(n, map, &ngroups, &ncols, &displs);

/* 5.9x¥/ for (group=0;group<ngroups;group++) {

/*5.10%/ displsg=displs[group];

/*5.11%/ ncolsg=ncols[group];

/*5.12%/ coor=map [displsg];

/*5.13%/ if (coor == (I coordof da)) {

/*5.14x%/ /* calculate L11, */
/*5.15%/ /* call of the LAPACK function dpotf2 */
/*5.16%/ dpotf2_("L",&ncolsg,da+displsg*(n+1) ,&n,&info);
/*5.17%/ if(!'info && group < ngroups-1) {

/%5.18%/ /* calculate L21, */
/*5.19%/ /* call of the BLAS lev.3 function dtrsm */

/*5.20%/ dim=n-displsg-ncolsg;

/*521*/ dtrsm_("R","L","T","N",

/*5.22%/ &dim,&ncolsg,&one,

/*5.23%/ da+displsg*(n+1),&n,

/*5.24%/ da+displsg*(n+1)+ncolsg,&n);
/*5.25%/ }

/*5.26%/ b

/*5.27*/ ([(Lwlp)w]l)ChBcast

/*5.28%/ (&info,coor,group,da,displs,ncols,n) ;
/*5.29%/ if ((repl int)info) return info;

/*5.30%/ for (k=group+1; k<ngroups; k++) {

/%5.31%/ int dim_n;

/*5.32x/ displsk=displs[k];

/*5.33%/ ncolsk=ncols[k];

/*5.34x%/ coor_l=map[displsk];

/*5.35%/ if (coor_1l == (I coordof da)) {

/*5.36%/ /* update the triangle part of the group */
/*5.37%/ /* call the BLAS level 3 function dsyrk */
/*5.38%/ dsyrk_("L","N",&ncolsk,&ncolsg,

/*5.39%/ &minus_one,da+displsg*n+displsk,&n,
/%5.40%/ &one,da+displsk*(n+1) ,&n);

/*5.41x/ /* update the rectangle part of the group */
/*5.42x/ /* call the BLAS level 3 function dgemm */
/*5.43%/ dim_n=n-displsk-ncolsk;

/*5.44%/ if(dim_n !'= 0) {

/*5.45%/ dgemm_("N","T",&dim_n,&ncolsk,&ncolsg,
/*5.46%/ &minus_one,da+displsg*n+displsk+ncolsk,
/*5.47%/ &n,da+displsg*n+displsk,&n,
/*5.48%/ &one,da+displsk*(n+1)+ncolsk,&n);
/*5.49%/ }

/*5.50%/ }

/*5.51%/ }

/*5.52%/ }

/%5.53%/ return 0;

/*5.54%/ }

Line 5.8 calls nodal function MakeGroups to collect columns in groups. After
the call, variable ngroups holds the total number of groups, ncols[i] holds the
number of columns in i-th group, and displs[i] holds its displacement. In the
above example (presented in Fig. 2), there are 6 groups: each of three groups,
belonging to the slower virtual processor, consists of two columns, and each of
three groups, belonging to the faster virtual processor, consists of four columns.

Lines 5.9-5.52 are the main loop of the algorithm.

Lines 5.10-5.12 calculate the number of columns in the current group as well
as the coordinate of the virtual processor holding it.

The statement in lines 5.13-5.26 computes matrix L1 by call to LAPACK
function dpotf2 and, if it has been successfully computed, and it is not the

latest group, compute matrix L2; by call to BLAS level 3 function dtrsm. The
computations are performed sequentially by the virtual processor holding the
corresponding group.

Lines 5.27-5.28 calls network function ChBcast to broadcast flag info and
matrix Ly; over network w.

Line 5.29 returns control and the value of info to a caller, if matrix L;; has
not been successfully computed. The value of control expression must be repli-
cated, since all virtual processors must either return or not return control to the
caller coordinately, and it is strictly checked by the compiler. This requirement
is an example of the programming style, supported by mpC, which allows to
avoid many errors which may arise in parallel programming. In this case, if we
do not say to compiler, that we guarantee replication of the value, it will detect
an error.

The loop in lines 5.30-5.51 updates matrix Aso in parallel, the triangle part
of the group is updated by BLAS level 3 function dsyrk, and the rectangle part
of the group is updated by BLAS level 3 function dgemm.

We have presented the most interesting part of about 200 lines of mpC code
implementing Cholesky factorization. One can see that it is not very difficult to
implement such a complex application in mpC, and as we demonstrate below,
our implementation is good enough. It consists of basic library function Ch and
a small set of network and nodal functions. We have demonstrated two levels of
modularity in mpC. The first level of modularity is provided by basic function
Ch, which creates a network and calls the network function ParCh on it, providing
the second level of modularity. One can see that our network function does not
depend on data distribution (1-D processor grid is assumed only) provided by
array map, and can be called from different basic functions on different networks
as well as from different network functions.

4 Experimental Results

We compared the running time of our ParCh mpC function and its ScaL.A-
PACK counterpart PDPOTRF. We used SPARCstation 20 (hostname alpha),
three SPARCstations 5 (hostnames gamma, beta, and delta), and SPARCclassic
(omega), with relative performances 180, 160, 160, 160, and 77 correspondingly
connected via 10Mbits Ethernet. We used the following networks: network gbo
consisting of gamma, beta, and omega; network gbd consisting of gamma, beta, and
delta, and so on. Note, that performances of processors in these networks are
detected automatically with a command of the mpC programming environment.

We used MPICH version 1.0.13 as a communication platform, GNU C com-
piler with optimization option -O2, and GNU fortran 77 compiler with opti-
mization option -O4. We started one process per workstation for both programs
and tuned n; to provide the best performance for the mpC and ScaLAPACK
routines.

Tables 1 and 2 demonstrate speedups computed relative to the LAPACK
routine dpotf2 executing sequential Cholesky factorization on gamma. One can

see that the mpC function ParCh and the ScaLAPACK routine PDPOTRF take
approximately the same time when running on homogeneous networks gb, gbd,
and practically homogeneous gbda (Table 1). After we enhance these networks
with low-performance omega, the mpC program allows to utilize the parallel
potential of performance-heterogeneous gbo, gbdo, and gbdao speeding up the
Cholesky factorization. At the same time, its ScaLAPACK counterpart does not
allow this, slowing down the Cholesky factorization (Table 2).

Table 1. Speedups on homogeneous networks

n gh ghd gbhda

mpC|ScaL|mpC|ScaL|mpc|ScaL
300{1.03{1.03|1.25|1.27|1.26|1.25
400(1.13(1.10|1.47|1.42|1.57|1.60
500/ 1.18 (1.17|1.56 |1.54 |1.76|1.73
600/ 1.27(1.24|1.69|1.65(1.91|1.90
70011.29(1.26 |1.75|1.75|2.01|2.03
800(1.33(1.32|1.82|1.84|2.11|2.12

Table 2. Speedups on heterogeneous networks

n gbo ghdo gbdao

mpC|ScaL.mpC|ScaL|mpc|ScaL
300({1.15|0.85|1.25|1.02 (1.33|1.11
400(1.2910.98|1.50|1.17 |1.62|1.37
500/1.38(1.04|1.64|1.29|1.84(1.43
600{1.48(1.09|1.76|1.36 |1.97|1.60
700{1.53|1.13|1.85(1.41|2.11|1.69
800|1.57(1.12|1.90|1.49 |2.20|1.77

5 Summary

Efficient programming heterogeneous networks of computers implies distributing
data and computations over processors in accordance with their performances.
It makes even regular problems be considered irregular. We have demonstrated
how mpC can be used for solving such irregular problems. The key facilities
making the mpC language and its programming environment unique tools for
programming such irregular applications are:

— facilities to detect the number and performances of processors of the execut-
ing network of computers;

— convenient facilities to formulate requirements on performances of virtual

processors constituting the abstract parallel machine (network object) ex-
ecuting computations and communications (facilities to specify a network
type in run time);

— convenient and natural facilities to allocate and discard network objects as

well as distribute data and computations over them.

References

[1]
2]
(3]
[4]

[9]

El-Rewini, H., and Lewis, T.: Introduction To Distributed Computing. IEEE Com-
puter Society Press, Los Alamitos, CA, 1997.

High Performance Fortran Forum, High Performance Fortran Language Specifica-
tion, version 1.1. Rice University, Houston TX, November 10, 1994

Message Passing Interface Forum, MPI: A Message-passing Interface Standard,
version 1.1, June 1995.

Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley,
K., Walker, D., and Whaley, D.: ScaLAPACK: A Portable Linear Algebra Library
for Distributed Memory Computers — Design Issues and Performance. UT, CS-95-
283, March 1995.

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, S., Octrouchov, S., and Sorensen, D.: LA-
PACK Users’ Guide, Second Edition. STAM, Philadelphia, PA, 1995.

Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.: A Set of Level 3 Basic
Linear Algebra Subprograms. ASM Trans. Math. Soft., 16, 1, pp.1-17, March 1990
Lastovetsky, A.: The mpC Programming Language Specification. Technical Report,
ISPRAS, Moscow, December 1994.

Arapov, D., Kalinov, A., and Lastovetsky, A.: Managing the Computing Space in
the mpC Compiler. Proceedings of the 1996 Parallel Architectures and Compila-
tion Techniques (PACT’96) conference, IEEE CS Press, Boston, MA, Oct. 1996,
pp-150-155.

Arapov, D., Kalinov, A., and Lastovetsky, A.: Resource Management in the mpC
Programming Environment. Proceedings of the 30th Hawaii International Confer-
ence on System Sciences (HICSS’30), IEEE CS Press, Maui, HI, January 1997.

[10] Arapov, D., Kalinov, A., Lastovetsky, A., Ledovskih, I., and Lewis, T.: A Pro-

gramming Environment for Heterogeneous Distributed Memory Machines. Pro-
ceedings of the 1997 Heterogeneous Computing Workshop (HCW’97) of the 11th
International Parallel Processing Symposium (IPPS’97), IEEE CS Press, Geneva,
Switzerland, April 1997, pp.32-45.

[11] Choi, J., Dongarra, J., Ostrouchov, S., Petitet, A., Walker, D., and Whaley, R.C.:

The Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Fac-
torization Routines. UT, CS-94-246, September, 1994.

