
Data Partitioning with a Realistic Performance Model of Networks of
Heterogeneous Computers

Alexey Lastovetsky
Department of Computer Science

University College Dublin, Belfield
Dublin 4, Ireland

Alexey.Lastovetsky@ucd.ie

Ravi Reddy
Department of Computer Science

University College Dublin, Belfield
Dublin 4, Ireland

Manumachu.Reddy@ucd.ie

Abstract
The paper presents a performance model of a

network of heterogeneous computers that takes
account of the heterogeneity of memory structure
and other architectural differences. Under this
model, the speed of each processor is represented
by a function of the size of the problem whereas
standard models use single numbers to represent
the speeds of the processors. We prove that this
model is more realistic than the standard ones
when the network includes computers with
significantly different memory structure. We
formulate a problem of partitioning of an n-
element set over p heterogeneous processors using
this advanced performance model and give its
efficient solution of the complexity O(p2×log2n).

1. Introduction

Networks of heterogeneous computers are a

promising parallel architecture attracting more and
more researchers. Unlike traditional homogeneous
parallel platforms, this heterogeneous parallel
architecture uses processors running at different
speeds. This makes programming networks a
challenging task. Data and computations should be
distributed unevenly to provide the best execution
performance.

A number of algorithms of parallel solution of
scientific and engineering problems on
heterogeneous networks have been designed and
implemented [1-4]. They use different
performance models of networks of heterogeneous
computers to distribute computations amongst the
processors involved in their execution. But all the
models use a single positive number to represent

the speed of a processor, and computations are
distributed amongst the processors such that their
volume is proportional to this speed of the
processor.

The paper presents a more advanced
performance model of a network of heterogeneous
computers. Under this model, the speed of each
processor is represented by a function of the size
of the problem. We start with motivation behind
the conception of this model followed by its
presentation and demonstrate that it is more
realistic than the standard ones when the network
includes computers with significantly different
memory structure. Then we formulate a problem
of partitioning of an n-element set over p
heterogeneous processors using this advanced
performance model and give its efficient solution
of the complexity O(p2×log2n).

2. Performance model

It is a well known fact that as the size of the

problem increases, the data elements involved in
the execution of the application move to lower
levels of memory hierarchy thus resulting in the
decrease of absolute speed of execution of the
application. This is because more machine cycles
are used to access the data elements at lower levels
of hierarchy. Despite absolute speed of execution
of an application being a decreasing function of
the size of the problem, in many real life
situations, the relative speeds of the processors
involved in the execution of the application are a
constant function of the size of the problem and
thus can be approximated by a single number.

This is shown to be the case for a small network
of two processors running matrix-matrix

Table 1. Specifications of the two computers

Machine Name cpu MHz Main Memory
(KB)

Cache
(KB)

Comp1 499 513960 512

Comp2 440 524288 1024

Table 2. Specifications of the four computers

Machine Name cpu MHz Main Memory
(KB)

Cache (KB)

Comp1 499 513960 512

Comp2 440 524288 1024

Comp3 996 254576 256

Comp4 499 126176 512

multiplication and Cholesky factorization and
whose sizes of the levels of memory hierarchy are
shown in Table 1. The processors demonstrate
absolute speeds that are decreasing functions of
the size of the problem as shown in Figure 1 but
demonstrate approximately the same relative speed
as shown in Figure 2. One can see that the
processors have almost the same size at each level
of their memory hierarchies. However if the
processors have significantly different sizes at
each level of their memory hierarchies, they may
not demonstrate relative speeds, which are
constant functions of the size of the problem. This
is shown in Figure 3 for a network of four
computers. The sizes of the levels of memory
hierarchy for these computers are shown in Table
2. As can be seen from Figure 3, each pair of
processors with significantly different memory
structure exhibits non-constant relative speeds as
the size of the problem increases. If we use such
networks of heterogeneous computers for
execution of parallel or distributed algorithms, we
cannot represent their speed by a single number.
Realistically we must represent the speed by a
function of the size of the problem.

In the experiments presented in Figure 3 we
used straightforward serial algorithms. One may
argue that this analysis is applicable to distributed
computing rather than to parallel computing as
parallel algorithms are normally based on serial
algorithms much more efficiently using the
memory hierarchy than the straightforward ones.
Experiments presented in Figure 4 deal with serial
algorithms derived from the two-dimensional
block-cyclic parallel algorithms implemented in
ScaLAPACK [5]. Indeed in this case relative
speeds can be approximated by single numbers for

much wider range of problem size but become far
away from constants functions for larger problem
sizes.

Another interesting output of the experiments is
that even computers with similar structures of
memory hierarchy (such as Comp5 and Comp7)
may demonstrate significantly different relative
speeds for different sizes of the problem.
Therefore straightforward extension of the
standard performance model by adding such
additional parameters as the number of memory
levels and the size of each level will not work in
this case.

We suggest a realistic performance model of
networks of heterogeneous computers where each
processor is represented by its absolute speed as a
function of problem size. This integrated approach
takes account of all architectural differences in
computers having an impact on the performance of
computers depending on the size of the problem.
Our choice of the absolute speed is explained by
the fact that the absolute speed is guaranteed to be
a decreasing (or at least non-increasing) function
of problem size, which may not be the case for a
relative speed. This property of monotony is very
important in designing efficient partitioning
algorithms with the advanced performance model.

3. Algorithms of partitioning sets

One of the criteria to partitioning a set of n

elements over p heterogeneous processors is that
the number of elements in each partition should be

Table 3. Specifications of the seven computers
Machine Name cpu MHz Main Memory

(KB)
Cache (KB)

Comp3 997 254576 256

Comp5 997 511800 256

Comp6 997 511800 256

Comp7 2793 513304 512

Comp8 1977 1030508 512

Comp9 2783 7933500 512

Comp10 499 7143360 512

proportional to the speed of the processor owning
that partition. When the speed of the processor is
represented by a single number as in the case of
standard performance models of heterogeneous
networks, the algorithm used to perform the
partitioning is quite straightforward, of complexity
O(p).

This problem of partitioning a set becomes non-
trivial when the speeds of the processors are given
as a non-increasing function of the size of the
problem. Consider a small network of two
processors, whose speeds as functions of problem
size during the execution of the matrix-matrix
multiplication are shown in Figure 5. If we use
standard approach, we have to choose a point and
use the absolute speeds of the processors at that
point to partition the elements of the set such that
the number of elements is proportional to the
speed of the processor. If we choose the speeds

()0100 , ss at points ()00, sx and ()01, sx to

partition the elements of the set, the distribution
obtained will be unacceptable for the size of the

problem at points ()10, sy and ()11, sy where

processors demonstrate different relative speeds

compared to the relative speeds at points ()00, sx

and ()01, sx . If we choose the speeds ()1110 , ss at

points ()10, sy and ()11, sy to partition the

elements of the set, the distribution obtained will
be unacceptable for the size of the problem at

points ()00, sx and ()01, sx where processors

demonstrate different relative speeds compared to

the relative speeds at points ()10, sy and ()11, sy .

In some such cases, the partitioning of the set
obtained could be the worst possible distribution
where the number of elements per processor
obtained could be inversely proportional to the
speed of the processor. In such cases, it is better to

use an even distribution of equal number of
elements per processor than the distribution based
on using such wrong points.

The algorithms we propose are based on the
following observation: If a distribution of the
elements of the set amongst the processors is
obtained such that the number of elements is
proportional to the speed of the processor, then the
points, whose coordinates are number of elements
and speed, lie on a straight line passing through
the origin of the coordinate system and
intersecting the graphs of the processors with
speed versus the size of the problem in terms of
the number of elements. This is shown by the
geometric proportionality in Figure 6.

Our general approach to finding the optimal
straight line can be summarized as follows:

1. We assume that the speed of each processor
is represented by a non-increasing continuous
function of the size of the problem.

2. At each step, we have two lines both
passing through the origin. The sum of the number
of elements at the intersection points of the first
line with the graphs is less than the size of the
problem, and the sum of the number of elements at
the intersection points of second line with the
graphs is greater than the size of the problem.

3. The region between these two lines is
divided by a line passing through the origin into
two smaller regions, the upper region and the
lower region. If the sum of the number of elements
at the intersection points of this line with the
graphs is less than the size of the problem, the
optimal line lies in the lower region. If this sum is
greater than the size of the problem, the optimal
line lies in the upper region.

4. In general, the exact optimal line intersects
the graphs in points with non-integer sizes of the
problem. This line is only used to obtain an
approximate integer-valued solution. Therefore,
the finding of any other straight line, which is

close enough to the exact optimal one to lead to
the same approximate integer-valued solution, will
be an equally satisfactory output of the searching
procedure. A simple stopping criterion for this
iterative procedure can be the absence of points of
the graphs with integer sizes of the problem within
the current region. In this case, any of the two
lines limiting this region can be used as such an
optimal line.

Note that it is the continuity and monotony of
the graphs representing the speed of the processors
that make each step of this procedure possible. The
continuity guarantees that any straight line passing
through the origin will have at least one
intersection point with each of the graphs, and the
monotony guarantees no more than one such an
intersection point.

Let us estimate the cost of one step of this
procedure. At each step we need to find the points
of intersection of p graphs y=s1(x), y=s2(x), ...,
y=sp(x), representing the absolute speeds of the
processors, and the straight line y=c×x passing
through the origin. In other words, at each step we
need to solve p equations of the form c×x =s1(x),
c×x =s2(x), ..., c×x =sp(x). As we need the same
constant number of operations to solve each
equation, the complexity of this part of one step
will be O(p). According to our stopping criterion,
a test for convergence can be reduced to testing p
inequalities of the form li - ui <1, where li and ui
are the size coordinates of the intersection points
of the i-th graph with the lower and upper lines
limiting the region respectively (i=1,2,…,p). This
testing is also of the complexity O(p). Therefore,
the total complexity of one step including the
convergence test will still be O(p).

The simplest particular algorithm based on this
approach bisects the region between the lines by a
line passing through the origin at a slope equal to
half of the sum of the slopes of the two lines as
shown in Figure 7.

 The use of bisection is shown in Figure 8. The
first two lines drawn during step 1 are line1 and
line2. Then line3 is drawn whose slope is half
of the slopes of the lines line1 and line2.
Since the sum of the number of elements at the
intersection points of this line with the graphs is
less than the size of the problem, bisect the lower
half of the region by drawing line4 whose slope
is half of the slopes of the lines line3 and
line2. Since the sum of the number of elements
at the intersection points of this line with the
graphs is greater than the size of the problem,
bisect the upper half of the region by drawing a
line whose slope is half of the slopes of the lines

line3 and line4. This line turns out to be the
optimally sloped line.

In most real-life situations, this algorithm will
demonstrate a very good efficiency. Obviously,
the slope of the optimal line is a decreasing
function of the size of the problem, θopt= θopt(n).
If θopt(n)~n-k , where k=const , then the maximal
number of steps to arrive at the optimal line will
be ~ k×log2n. Correspondingly, the complexity of
the algorithm will be O(p×log2n).

At the same time, in some situations this
algorithm may be quite expensive. For example, if
θopt(n) ~ e-n , then the number of steps to arrive at
the optimal line will be ~n. Correspondingly, the
complexity of the algorithm will be O(p×n).

We modify this algorithm to achieve reasonable
performance in all cases, independent on how the
slope of the optimal line depends on the size of the
problem. To introduce the modified algorithm, let
us re-formulate the problem of finding the optimal
straight line as follows:

1. The space of solutions consists of all
straight lines drawn through the origin and
intersecting the graphs of the processors so that the
size coordinate of at least one intersection point is
integer.

2. We search for a straight line from this
space closest to the optimal solution.

At each step of the basic bisection algorithm, it
is the region between two lines that is reduced, not
the space of solutions. Our modified algorithm
tries to reduce the space of solutions rather than
the region where the solution lies as illustrated in
Figure 9 and Figure 10. At each step of the
algorithm, we find a processor, whose graph s(x)
is intersected by the maximal number of lines from
the current region of the space of solutions limited
by the lower and upper lines. Then we detect a
line, which divides the region into two smaller
regions such that each region contains the same
number of lines from the space of solutions
intersecting this graph. To do it, we just need to
draw a line passing through the origin and the
point ((l-u)/2, s((l-u)/2)), where l and u are the
size coordinates of the intersection points of this
graph with the lower and upper lines limiting the
current region of the space of solutions.

This algorithm guarantees that after p such
bisections the number of solutions in the region is
reduced at least by 50%. This means we need no
more than p×log2n steps to arrive at the sought
line. Correspondingly, the complexity of this
algorithm will be O(p2×log2n).

One can see that the modified bisection
algorithm is not sensitive to the shape of the
graphs of the processors, always demonstrating the
same efficiency. The basic bisection algorithm is
sensitive to their shape. It demonstrates higher
efficiency than the modified one in better cases but
much lower efficiency in worse cases.

An ideal bisection algorithm would be of the
complexity O(p×log2n) reducing at each step the
space of solutions by 50% and being insensitive to
the shape of the graphs of the processors. The
design of such an algorithm is still a challenge. At
the same time, we have designed a number of
algorithms whose worst-case complexity is
O(p2×log2n) but the best-case complexity is
O(p×log2n). We do not present the algorithms in
the paper because of the restrictions on the length.

4. Experimental results

A small heterogeneous local network of 4

different Solaris and Linux workstations shown in
Table 2 is used in the experiments. The network is
based on 100 Mbit Ethernet with a switch enabling
parallel communications between the computers.

There are two sets of experiments used to
demonstrate the efficiency of the model. The first
set is based on the parallel algorithm of matrix-
matrix multiplication of two dense matrices using
horizontal striped partitioning shown in Figures
14(a) and 14(b) and the second set is based on the
parallel algorithm of matrix factorization of a
dense matrix using horizontal striped partitioning
shown in Figure 16. The matrices are horizontally
sliced such that the number of slices is
proportional to the speed of the processor.

The speed function for a processor is built using
a set of 21 experimentally obtained points. We use
piece-wise linear function approximation
illustrated in Figure 12 to build the speed function.
Such approximation of the speed function is
compliant with the requirements of the model,
which are that the speeds be non-increasing
continuous functions of problem size. We detect
the two lines, between which the solution lies, as
shown in Figure 13. The absolute speed of the
processor in number of floating point operations
per second is calculated using the formula

executionoftime

nnnMF

executionoftime

nscomputatioofvolume
speedAbs

 .

×××=

=

where n is the size of the matrix. MF is 2 for

Matrix Multiplication and 3
1 for Cholesky

Factorization.
In each set of experiments, the speedups of the

parallel application obtained by using the new
flexible model are shown over the parallel
applications using the standard model, which uses
the speeds of the processors obtained by running
the corresponding serial application. The size of
the problem used to obtain the speed of each
processor is the same on each processor. The
experimental results show that the parallel
applications using the advanced model
demonstrate good speedup over parallel
applications using the standard model. At a first
glance, it may look strange that there is no
problem size where the standard model
demonstrates the same speed as the advanced
model. Actually in heterogeneous environment,
the distribution given by the standard model
cannot in principle be better than the distribution
given by the advanced model. This is because the
speeds used in the standard model are obtained
based on the fact that all the processors get the
same number of elements and hence solve
problems of the same size as in a homogeneous
environment. Whatever problem size is used, it
will give wrong estimation of distribution for at
least one processor.

Figure 15 shows the speedup of the matrix-
matrix multiplication executed on this network
using the advanced model over the matrix-matrix
multiplication using the standard model that
determines the speed of the processor based on the
multiplication of two dense 100×100 matrices and
two dense 3000×3000 matrices. As can be seen
from the figure, the advanced model performs
better than the standard model for a network of
heterogeneous computers that demonstrates
relative speeds that are non-constant functions of
the size of the problem.

Figure 17 shows the speedup of the matrix
factorization executed on this network using the
advanced model over the matrix factorization
using the standard model that determines the speed
of the processor based on the matrix factorization
of a dense 500×500 matrix and a dense 7000×7000

matrix. As can be seen from the figure, the
advanced model performs better than the standard
model for a network of heterogeneous computers
that demonstrates relative speeds that are non-
constant functions of the size of the problem.

5. Conclusions

In this paper, we address the problem of

optimal data partitioning in heterogeneous
environments when relative speeds of processors
cannot be accurately approximated by constant
functions of the problem size. We have proposed
an advanced performance model of a network of
heterogeneous computers and designed efficient
algorithms of data partitioning with this model.
We do not take account of communication cost.
This is out of scope of this paper. The problems of
efficient building and maintaining of our model
are also out of scope of the paper.

References

[1] P. Crandall and M.Quinn, “Block Data
Decomposition for Data-Parallel Programming on a
Heterogeneous Workstation Network”, Proceedings of
the Second International Symposium on High
Performance Distributed Computing, pp.42-49, 1993.

[2] P. Crandall and M. Quinn, “Problem Decomposition
for Non-Uniformity and Processor Heterogeneity”,
Journal of the Brazilian Computer Society , vol. 2, no. 1,
pp. 13-23. July 1995.

[3] A.Kalinov and A.Lastovetsky, “Heterogeneous

Distribution of Computations Solving Linear Algebra
Problems on Networks of Heterogeneous Computers”,
Journal of Parallel and Distributed Computing, 61(4),
pp.520-535, 2001.

[4] O.Beaumont, V.Boudet, F.Rastello, and Y.Robert,
“Matrix Multiplication on Heterogeneous Platforms”,
IEEE Transactions on Parallel and Distributed Systems,
12(10), pp.1033-1051, 2001.

[5] L.Blackford, J.Choi, A.Cleary, J.Demmel, I.Dhillon,
J.Dongarra, S.Hammarling, G.Henry, A.Petitet,
K.Stanley, D.Walker, and R.Whaley, “ScaLAPACK: A
Portable Linear Algebra Library for Distributed
Memory Computers – Design Issues and Performance”,
Proceedings of Supercomputing’96, 1996.

BIOGRAPHIES

Alexey Lastovetsky received the PhD degree
from the Moscow Aviation Institute in 1986, and
the Doctor of Science degree from the Russian
Academy of Sciences in 1997. He is currently a
lecturer in the Computer Science Department at
University College Dublin, National University of
Ireland. His main research interests are parallel
and distributed programming languages and
systems for heterogeneous environments. He is a
member of IEEE Computer Society.

Ravi Reddy is currently a PhD student in the
Computer Science Department at University
College Dublin, National University of Ireland.
His main research interests are design of
algorithms and tools for parallel and distributed
computing systems.

Matrix-Matrix Multiplication

1
10

100
1000

10000
100000

0 2E+07 4E+07 6E+07 8E+07

Size of the problem

A
b

so
lu

te
 S

p
ee

d

C o m p1
C o m p2

Cholesky Factorization

0

2500

5000

7500

10000

12500

15000

17500

20000

0 10000000 20000000 30000000 40000000 50000000

Size of the problem

A
b

so
lu

te
 s

p
ee

d

Comp1
Comp2

Figure 1. (a) Absolute speeds of the computers shown in Table 1 against the size of the
problem in Matrix-Matrix multiplication. (b) Absolute speeds of the computers shown in
Table 1 against the size of the problem in Cholesky Factorization.

Matrix-Matrix Multiplication

0

1

2

3

4

0E+00 5E+06 1E+07 2E+07 2E+07 3E+07 3E+07

Size of the problem

R
el

at
iv

e
sp

ee
d

Comp1/Comp2

Cholesky Factorization

0
0.2
0.4
0.6
0.8

1
1.2

0E+00 5E+07 1E+08 2E+08 2E+08

Size of the problem

R
el

at
iv

e
sp

ee
d

Comp1/Comp2

Figure 2. (a) Relative speeds of the computers shown in Table 1 against the size of the
problem in Matrix-Matrix multiplication. (b) Relative speeds of the computers shown in
Table 1 against the size of the problem in Cholesky Factorization.

Matrix-Matrix Multiplication

0

0.5

1

1.5

2

2.5

3

3.5

0E+00 2E+07 4E+07 6E+07 8E+07

Size of the problem

R
el

at
iv

e
sp

ee
d Comp4/Comp2

Comp3/Comp1
Comp4/Comp1

Cholesky Factorization

0

0.5

1

1.5

2

2.5

0 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 7E+07

Size of the problem

R
el

at
iv

e
sp

ee
d

Comp3/(Comp1, Comp2)
Comp4/(Comp1, Comp2)

�
�

Figure 3. (a) Relative speeds of the computers shown in Table 2 against the size of the
problem in Matrix-Matrix multiplication . (b) Relative speeds of the computers shown in
Table 2 against the size of the problem in Cholesky Factorization.

(a) (b)

(a) (b)

Matrix-Matrix Multiplication

0
2 0 0 0

4 0 0 0
6 0 0 0
8 0 0 0

10 0 0 0
12 0 0 0

1E+0 7 2 E+0 7 2 E+0 7 3 E+0 7 3 E+0 7 4 E+0 7 4 E+0 7

Size of the problem

A
b

so
lu

te
 S

p
ee

d Comp3
Comp5

Matrix-Matrix Multiplication

0

50 0 0

10 0 0 0

150 0 0

2 0 0 0 0

2 50 0 0

2 E+0 7 4 E+0 7 6 E+0 7 8 E+0 7 1E+0 8

Size of the problem

A
b

so
lu

te
 S

p
ee

d Comp7
Comp6

Figure 4. Absolute speeds of the computers shown in Table 3 against the size of the
problem in serial Matrix-Matrix multiplication derived from two-dimensional block-cyclic
parallel Matrix-Matrix multiplication used in ScaLAPACK. (a) Comp3/Comp5 (b)
Comp7/Comp6.

Matrix-Matrix Multiplication

0
5 0 0 0

10 0 0 0
15 0 0 0

2 0 0 0 0
2 5 0 0 0

3 0 0 0 0

1E+0 7 2 E+0 7 3 E+0 7 4 E+0 7 5 E+0 7 6 E+0 7 7 E+0 7

Size of the problem

A
b

so
lu

te
 S

p
ee

d

Comp7
Comp5

Matrix-Matrix Multiplication

0

50 0 0

10 0 0 0

150 0 0

2 0 0 0 0

2 E+0 7 4 E+0 7 6 E+0 7 8 E+0 7

Size of the problem

A
b

so
lu

te
 S

p
ee

d Comp7
Comp9

(c) (d)

Figure 4. Absolute speeds of the computers shown in Table 3 against the size of the
problem in serial Matrix-Matrix multiplication derived from two-dimensional block-cyclic
parallel Matrix-Matrix multiplication used in ScaLAPACK. (c) Comp7/Comp5 (d)
Comp7/Comp9

Matrix-Matrix Multiplication

0

1

2

3

4

5

1E+07 2E+07 3E+07 4E+07 5E+07 6E+07

Size of the problem

R
el

at
iv

e
S

p
ee

d

Comp7/Comp5
Comp7/Comp6
Comp3/Comp5
Comp7/Comp9

(e)

Figure 4. (e) Relative speeds of the computers shown in Table 3 against the size of the
problem in serial Matrix-Matrix multiplication derived from two-dimensional block-cyclic
parallel Matrix-Matrix multiplication used in ScaLAPACK.

(a) (b)

Cholesky Factorization

0

100000

200000

300000

400000

500000

600000

0 2E+08 4E+08 6E+08 8E+08 1E+09 1.2E+09

Size of the problem

A
b

so
lu

te
 s

p
ee

d
Comp7
Comp10
Comp8
Comp6
Comp3

(f)

Figure 4. (f) Absolute speeds of the computers shown in Table 3 against the size of the
problem in serial Cholesky Factorization derived from two-dimensional block-cyclic
parallel Matrix-Matrix multiplication used in ScaLAPACK.

Cholesky Factorization

0

0.5

1

1.5

2

2.5

3

3.5

0E+00 1E+08 2E+08 3E+08 4E+08 5E+08

Size of the problem

R
el

at
iv

e
sp

ee
d

Comp7/Comp10
Comp8/Comp10
Comp6/Comp10
Comp3/Comp10
Comp7/Comp3
Comp6/Comp3

(g)

Figure 4. (g) Relative speeds of the computers shown in Table 3 against the size of the
problem in serial Cholesky Factorization derived from two-dimensional block-cyclic
parallel Matrix-Matrix multiplication used in ScaLAPACK.

Matrix-Matrix Multiplication

0

500

1000

1500

2000

2500

0E+00 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 7E+07

Size of the problem

A
b

so
lu

te
 s

p
ee

d

),(00sx

),(01sx

),(10sy

),(11sy

Figure 5. A small network of two processors whose speeds are shown against the size of
the problem.

Figure 6. Optimal solution showing the geometric proportionality of the number of
elements to the speed of the processor.

0

100

200

300

400

500

600

700

800

900

0 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 7E+07

Size of the problem

A
b

so
lu

te
 s

p
ee

d

)(1 xs

)(2 xs

)(3 xs

)(4 xs

1x 2x 3x
4x

)14 (xs)(23 xs

)(42 xs

4

42

3

31

2

23

1

14)()()()(

x

xs

x

xs

x

xs

x

xs ===

)(31 xs

Figure 7. Determination of the slope of the line equal to half of the slopes of the initial and
final lines.

Figure 8. Use of bisection of the range to narrow down to the optimal solution satisfying
the criterion that the number of elements should be proportional to the speed of the
processor. n is the size of the problem.

0
100
200
300
400
500
600
700
800
900

0E+00 2E+02 4E+02 6E+02 8E+02 1E+03

Size of the problem

A
b

so
lu

te
 s

p
ee

d
initial line

final line

1θ

2θ

line with half of
the slopes of the
initial line and
final line

()
2

21 θθ +

Upper half

Lower half

0

100

200

300

400

500

600

700

800

900

0 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 7E+07

Size of the problem

A
b

so
lu

te
 s

p
ee

d

)(1 xs

)(2 xs

)(3 xs

)(4 xs

line 1

line 2

line 3:

line 4:

1x 2x 3x 4x
nxxxx <+++ 4321

nxxxx >+++ 4321

nxxxx =+++ 4321

Optimally sloped
line

0
100
200
300
400
500
600
700
800
900

0E+00 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 7E+07
Size of the problem

A
b

so
lu

te
 s

p
ee

d
)(1 xs

)(2 xs X
()2
X()4

X

X = Space of solutions

Optimally
sloped line

Figure 9. Bisection of the space of solutions in the modified algorithm.

0

100

200

300

400

500

600

700

800

900

0 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 7E+07

Size of the problem

A
b

so
lu

te
 s

p
ee

d

)(1 xs

)(2 xs

)(3 xs

line 1

line 2

line 3: nxxx <++ 321

First bisection Second bisection

line 4:
nxxx >++ 321

Final bisection
Optimally sloped line

nxxx =++ 321

Figure 10. Modification of the algorithm shown in figure 7 where the bisection results in
efficient solution. n is the size of the problem.

0

100

200

300

400

500

600

700

800

900

0 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 7E+07

Size of the problem

A
b

so
lu

te
 s

p
ee

d
)(1 xs

)(2 xs

line 1

line 2

First bisection

Second bisection
Optimally sloped line

�

)(xs p

nxxx p =+++ �21

p
p nnn n solutions ofnumber Total 21 ≅×××= �









≤≤×××=

2
 , ,

2
 bisection secondAfter 2

1
1

1
222

1

1
2 p

pp

n
nnnn

n
n �

�� , , ,
2

 bisection first After 22
1

11
1

2
1

1
1 nnnn

n
nn

p ≤≤×××=

�

() npn p
22 log log bisections ofnumber Total ==

Figure 11. Schematic proof of the complexity of the modified algorithm. The total number
of bisections are plog2n. At each step of bisection, p intersection points are obtained
giving a total complexity of O(p2log2n).

0

50000

100000

150000

200000

250000

300000

0E+00 1E+06 2E+06 3E+06 4E+06 5E+06 6E+06 7E+06 8E+06

Size of the problem

A
b

so
lu

te
 s

p
ee

d

)(1 xs

)(2 xs

Minimum problem size

Maximum problem
size

Figure 12. Using piece-wise linear approximation to build speed functions for 2
processors. The speed functions are built from 3 experimentally obtained points.

0

200

400

600

800

1000

0E+00 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 7E+07

Size of the problem

A
b

so
lu

te
 s

p
ee

d

)(1 xs
)(2 xs
)(3 xs

Size of the problem = N
line 1

line 2
)(4 xs 





=

p

N
x

0

200

400

600

800

1000

0E+00 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 7E+07

Size of the problem

A
b

so
lu

te
 s

p
ee

d

)(1 xs
)(2 xs

)(3 xs

Size of the problem = N

line 1

line 2

)(4 xs







=

p

N
x

Nx =

Figure 13. Two cases where line1 and line2, between which the solution lies, are detected.

Figure 14(a). Matrix operation C=A×B with matrices A, B, and C unevenly partitioned in one
dimension. The slices mapped onto a single processor are shaded in black.

, =>

A B C

Figure 14(b). One step of parallel multiplication of matrices A and B. The pivot row of
blocks of matrix B (shown slashed) is first broadcast to all processors. The each
processor computes, in parallel with the others, its part of the corresponding column of
blocks of the resulting matrix C.

,

A B C = A×B

Matrix-Matrix multiplication

0.75

1

1.25

1.5

1.75

2

2.25

2.5

1000 2000 3000 4000 5000 6000 7000 8000 9000

Size of the matrix

S
p

ee
d

u
p

Speedup over parallel MM multiplication using speeds obtained
from serial MM multiplication of 3000*3000 matrices.

Speedup over parallel MM multiplication
using speeds obtained from serial MM
multiplication of 100*100 matrices.

Figure 15. Results obtained using the network of heterogeneous computers shown in
Table 2. Comparison of speedups of MM algorithm using horizontal striped partitioning of
matrices.

L 0 L 0

a 11 l11

A 21 L 21

A 22 A 22

Figure 16. One step of the Cholesky factorization algorithm: the column panel 





=

21

11

L

l
L is

computed and the trailing submatrix 22A is updated.

Cholesky Factorization

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

1.45
1.5

1.55

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

Size of the matrix

S
p

ee
d

u
p

Speedup over parallel Cholesky factorization using speeds
obtained from MM factorization of a 7000*7000 matrix.

Speedup over parallel Cholesky
factorization using speeds obtained from
MM factorization of a 500*500 matrix.

Figure 17. Results obtained using the network of heterogeneous computers shown in
Table 2. Comparison of speedups of Cholesky Factorization using horizontal striped
partitioning of matrices.

