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Abstract 
The paper presents a performance model of a 

network of heterogeneous computers that takes 
account of the heterogeneity of memory structure 
and other architectural differences. Under this 
model, the speed of each processor is represented 
by a function of the size of the problem whereas 
standard models use single numbers to represent 
the speeds of the processors. We prove that this 
model is more realistic than the standard ones 
when the network includes computers with 
significantly different memory structure. We 
formulate a problem of partitioning of an n-
element set over p heterogeneous processors using 
this advanced performance model and give its 
efficient solution of the complexity O(p2×log2n). 
 

1. Introduction 

 
Networks of heterogeneous computers are a 

promising parallel architecture attracting more and 
more researchers. Unlike traditional homogeneous 
parallel platforms, this heterogeneous parallel 
architecture uses processors running at different 
speeds. This makes programming networks a 
challenging task. Data and computations should be 
distributed unevenly to provide the best execution 
performance. 

A number of algorithms of parallel solution of 
scientific and engineering problems on 
heterogeneous networks have been designed and 
implemented [1-4]. They use different 
performance models of networks of heterogeneous 
computers to distribute computations amongst the 
processors involved in their execution. But all the 
models use a single positive number to represent 

the speed of a processor, and computations are 
distributed amongst the processors such that their 
volume is proportional to this speed of the 
processor. 

The paper presents a more advanced 
performance model of a network of heterogeneous 
computers. Under this model, the speed of each 
processor is represented by a function of the size 
of the problem. We start with motivation behind 
the conception of this model followed by its 
presentation and demonstrate that it is more 
realistic than the standard ones when the network 
includes computers with significantly different 
memory structure. Then we formulate a problem 
of partitioning of an n-element set over p 
heterogeneous processors using this advanced 
performance model and give its efficient solution 
of the complexity O(p2×log2n). 
 

2. Performance model 

 
It is a well known fact that as the size of the 

problem increases, the data elements involved in 
the execution of the application move to lower 
levels of memory hierarchy thus resulting in the 
decrease of absolute speed of execution of the 
application. This is because more machine cycles 
are used to access the data elements at lower levels 
of hierarchy. Despite absolute speed of execution 
of an application being a decreasing function of 
the size of the problem, in many real life 
situations, the relative speeds of the processors 
involved in the execution of the application are a 
constant function of the size of the problem and 
thus can be approximated by a single number.  

This is shown to be the case for a small network 
of two processors running matrix-matrix  



 
Table 1. Specifications of the two computers 

Machine Name cpu MHz Main Memory 
(KB) 

Cache 
(KB) 

Comp1 499 513960 512 

Comp2 440 524288 1024 

 
Table 2. Specifications of the four computers 

Machine Name cpu MHz Main Memory 
(KB) 

Cache (KB) 

Comp1 499 513960 512 

Comp2 440 524288 1024 

Comp3 996 254576 256 

Comp4 499 126176 512 

 
multiplication and Cholesky factorization and 
whose sizes of the levels of memory hierarchy are 
shown in Table 1. The processors demonstrate 
absolute speeds that are decreasing functions of 
the size of the problem as shown in Figure 1 but 
demonstrate approximately the same relative speed 
as shown in Figure 2. One can see that the 
processors have almost the same size at each level 
of their memory hierarchies. However if the 
processors have significantly different sizes at 
each level of their memory hierarchies, they may 
not demonstrate relative speeds, which are 
constant functions of the size of the problem. This 
is shown in Figure 3 for a network of four 
computers. The sizes of the levels of memory 
hierarchy for these computers are shown in Table 
2. As can be seen from Figure 3, each pair of 
processors with significantly different memory 
structure exhibits non-constant relative speeds as 
the size of the problem increases. If we use such 
networks of heterogeneous computers for 
execution of parallel or distributed algorithms, we 
cannot represent their speed by a single number. 
Realistically we must represent the speed by a 
function of the size of the problem. 

In the experiments presented in Figure 3 we 
used straightforward serial algorithms. One may 
argue that this analysis is applicable to distributed 
computing rather than to parallel computing as 
parallel algorithms are normally based on serial 
algorithms much more efficiently using the 
memory hierarchy than the straightforward ones. 
Experiments presented in Figure 4 deal with serial 
algorithms derived from the two-dimensional 
block-cyclic parallel algorithms implemented in 
ScaLAPACK [5]. Indeed in this case relative 
speeds can be approximated by single numbers for 

much wider range of problem size but become far 
away from constants functions for larger problem 
sizes. 

Another interesting output of the experiments is 
that even computers with similar structures of 
memory hierarchy (such as Comp5 and Comp7) 
may demonstrate significantly different relative 
speeds for different sizes of the problem. 
Therefore straightforward extension of the 
standard performance model by adding such 
additional parameters as the number of memory 
levels and the size of each level will not work in 
this case.   

We suggest a realistic performance model of 
networks of heterogeneous computers where each 
processor is represented by its absolute speed as a 
function of problem size. This integrated approach 
takes account of all architectural differences in 
computers having an impact on the performance of 
computers depending on the size of the problem. 
Our choice of the absolute speed is explained by 
the fact that the absolute speed is guaranteed to be 
a decreasing (or at least non-increasing) function 
of problem size, which may not be the case for a 
relative speed. This property of monotony is very 
important in designing efficient partitioning 
algorithms with the advanced performance model. 
 

3. Algorithms of partitioning sets 

 
One of the criteria to partitioning a set of n 

elements over p heterogeneous processors is that 
the number of elements in each partition should be  



Table 3. Specifications of the seven computers 
Machine Name cpu MHz Main Memory 

(KB) 
Cache (KB) 

Comp3 997 254576 256 

Comp5 997 511800 256 

Comp6 997 511800 256 

Comp7 2793 513304 512 

Comp8 1977 1030508 512 

Comp9 2783 7933500 512 

Comp10 499 7143360 512 

 
proportional to the speed of the processor owning 
that partition. When the speed of the processor is 
represented by a single number as in the case of 
standard performance models of heterogeneous 
networks, the algorithm used to perform the 
partitioning is quite straightforward, of complexity 
O(p). 

This problem of partitioning a set becomes non-
trivial when the speeds of the processors are given 
as a non-increasing function of the size of the 
problem. Consider a small network of two 
processors, whose speeds as functions of problem 
size during the execution of the matrix-matrix 
multiplication are shown in Figure 5. If we use 
standard approach, we have to choose a point and 
use the absolute speeds of the processors at that 
point to partition the elements of the set such that 
the number of elements is proportional to the 
speed of the processor. If we choose the speeds 

( )0100 , ss  at points ( )00, sx  and ( )01, sx  to 

partition the elements of the set, the distribution 
obtained will be unacceptable for the size of the 

problem at points ( )10, sy  and ( )11, sy  where 

processors demonstrate different relative speeds 

compared to the relative speeds at points ( )00, sx  

and ( )01, sx . If we choose the speeds ( )1110 , ss  at 

points ( )10, sy  and ( )11, sy  to partition the 

elements of the set, the distribution obtained will 
be unacceptable for the size of the problem at 

points ( )00, sx  and ( )01, sx  where processors 

demonstrate different relative speeds compared to 

the relative speeds at points ( )10, sy  and ( )11, sy . 

In some such cases, the partitioning of the set 
obtained could be the worst possible distribution 
where the number of elements per processor 
obtained could be inversely proportional to the 
speed of the processor. In such cases, it is better to  

 
use an even distribution of equal number of 
elements per processor than the distribution based 
on using such wrong points.  

The algorithms we propose are based on the 
following observation: If a distribution of the 
elements of the set amongst the processors is 
obtained such that the number of elements is 
proportional to the speed of the processor, then the 
points, whose coordinates are number of elements 
and speed, lie on a straight line passing through 
the origin of the coordinate system and 
intersecting the graphs of the processors with 
speed versus the size of the problem in terms of 
the number of elements. This is shown by the 
geometric proportionality in Figure 6. 

Our general approach to finding the optimal 
straight line can be summarized as follows: 

1. We assume that the speed of each processor 
is represented by a non-increasing continuous 
function of the size of the problem. 

2. At each step, we have two lines both 
passing through the origin. The sum of the number 
of elements at the intersection points of the first 
line with the graphs is less than the size of the 
problem, and the sum of the number of elements at 
the intersection points of second line with the 
graphs is greater than the size of the problem. 

3. The region between these two lines is 
divided by a line passing through the origin into 
two smaller regions, the upper region and the 
lower region. If the sum of the number of elements 
at the intersection points of this line with the 
graphs is less than the size of the problem, the 
optimal line lies in the lower region. If this sum is 
greater than the size of the problem, the optimal 
line lies in the upper region. 

4. In general, the exact optimal line intersects 
the graphs in points with non-integer sizes of the 
problem. This line is only used to obtain an 
approximate integer-valued solution. Therefore, 
the finding of any other straight line, which is 



close enough to the exact optimal one to lead to 
the same approximate integer-valued solution, will 
be an equally satisfactory output of the searching 
procedure. A simple stopping criterion for this 
iterative procedure can be the absence of points of 
the graphs with integer sizes of the problem within 
the current region. In this case, any of the two 
lines limiting this region can be used as such an 
optimal line. 

Note that it is the continuity and monotony of 
the graphs representing the speed of the processors 
that make each step of this procedure possible. The 
continuity guarantees that any straight line passing 
through the origin will have at least one 
intersection point with each of the graphs, and the 
monotony guarantees no more than one such an 
intersection point. 

Let us estimate the cost of one step of this 
procedure. At each step we need to find the points 
of intersection of p graphs y=s1(x), y=s2(x), ..., 
y=sp(x), representing the absolute speeds of the 
processors, and the straight line y=c×x passing 
through the origin. In other words, at each step we 
need to solve p equations of the form c×x =s1(x), 
c×x =s2(x), ..., c×x =sp(x). As we need the same 
constant number of operations to solve each 
equation, the complexity of this part of one step 
will be O(p). According to our stopping criterion, 
a test for convergence can be reduced to testing p 
inequalities of the form li - ui <1, where li and ui 
are the size coordinates of the intersection points 
of the i-th graph with the lower and upper lines 
limiting the region respectively (i=1,2,…,p). This 
testing is also of the complexity O(p). Therefore, 
the total complexity of one step including the 
convergence test will still be O(p). 

The simplest particular algorithm based on this 
approach bisects the region between the lines by a 
line passing through the origin at a slope equal to 
half of the sum of the slopes of the two lines as 
shown in Figure 7. 

 The use of bisection is shown in Figure 8. The 
first two lines drawn during step 1 are line1 and 
line2. Then line3 is drawn whose slope is half 
of the slopes of the lines line1 and line2. 
Since the sum of the number of elements at the 
intersection points of this line with the graphs is 
less than the size of the problem, bisect the lower 
half of the region by drawing  line4 whose slope 
is half of the slopes of the lines line3 and 
line2. Since the sum of the number of elements 
at the intersection points of this line with the 
graphs is greater than the size of the problem, 
bisect the upper half of the region by drawing a 
line whose slope is half of the slopes of the lines 

line3 and line4. This line turns out to be the 
optimally sloped line. 

In most real-life situations, this algorithm will 
demonstrate a very good efficiency. Obviously, 
the slope of the optimal line is a decreasing 
function of the size of the problem, θopt= θopt(n). 
If θopt(n)~n-k , where k=const , then the maximal 
number of steps to arrive at the optimal line will 
be ~ k×log2n. Correspondingly, the complexity of 
the algorithm will be O(p×log2n).  

At the same time, in some situations this 
algorithm may be quite expensive. For example, if 
θopt(n) ~ e-n , then the number of steps to arrive at 
the optimal line will be ~n. Correspondingly, the 
complexity of the algorithm will be O(p×n). 

We modify this algorithm to achieve reasonable 
performance in all cases, independent on how the 
slope of the optimal line depends on the size of the 
problem. To introduce the modified algorithm, let 
us re-formulate the problem of finding the optimal 
straight line as follows: 

1. The space of solutions consists of all 
straight lines drawn through the origin and 
intersecting the graphs of the processors so that the 
size coordinate of at least one intersection point is 
integer. 

2.  We search for a straight line from this 
space closest to the optimal solution. 

At each step of the basic bisection algorithm, it 
is the region between two lines that is reduced, not 
the space of solutions. Our modified algorithm 
tries to reduce the space of solutions rather than 
the region where the solution lies as illustrated in 
Figure 9 and Figure 10. At each step of the 
algorithm, we find a processor, whose graph s(x) 
is intersected by the maximal number of lines from 
the current region of the space of solutions limited 
by the lower and upper lines. Then we detect a 
line, which divides the region into two smaller 
regions such that each region contains the same 
number of lines from the space of solutions 
intersecting this graph. To do it, we just need to 
draw a line passing through the origin and the 
point ((l-u)/2, s((l-u)/2)), where l and u are the 
size coordinates of the intersection points of this 
graph with the lower and upper lines limiting the 
current region of the space of solutions. 

This algorithm guarantees that after p such 
bisections the number of solutions in the region is 
reduced at least by 50%. This means we need no 
more than p×log2n steps to arrive at the sought 
line. Correspondingly, the complexity of this 
algorithm will be O(p2×log2n).  



One can see that the modified bisection 
algorithm is not sensitive to the shape of the 
graphs of the processors, always demonstrating the 
same efficiency. The basic bisection algorithm is 
sensitive to their shape. It demonstrates higher 
efficiency than the modified one in better cases but 
much lower efficiency in worse cases. 

An ideal bisection algorithm would be of the 
complexity O(p×log2n) reducing at each step the 
space of solutions by 50% and being insensitive to 
the shape of the graphs of the processors. The 
design of such an algorithm is still a challenge. At 
the same time, we have designed a number of 
algorithms whose worst-case complexity is 
O(p2×log2n) but the best-case complexity is 
O(p×log2n). We do not present the algorithms in 
the paper because of the restrictions on the length. 
 

4. Experimental results 

 
A small heterogeneous local network of 4 

different Solaris and Linux workstations shown in 
Table 2 is used in the experiments. The network is 
based on 100 Mbit Ethernet with a switch enabling 
parallel communications between the computers.  

There are two sets of experiments used to 
demonstrate the efficiency of the model. The first 
set is based on the parallel algorithm of matrix-
matrix multiplication of two dense matrices using 
horizontal striped partitioning shown in Figures 
14(a) and 14(b) and the second set is based on the 
parallel algorithm of matrix factorization of a 
dense matrix using horizontal striped partitioning 
shown in Figure 16. The matrices are horizontally 
sliced such that the number of slices is 
proportional to the speed of the processor.  

The speed function for a processor is built using 
a set of 21 experimentally obtained points. We use 
piece-wise linear function approximation 
illustrated in Figure 12 to build the speed function. 
Such approximation of the speed function is 
compliant with the requirements of the model, 
which are that the speeds be non-increasing 
continuous functions of problem size. We detect 
the two lines, between which the solution lies, as 
shown in Figure 13. The absolute speed of the 
processor in number of floating point operations 
per second is calculated using the formula  
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where n is the size of the matrix. MF is 2 for 

Matrix Multiplication and 3
1  for Cholesky 

Factorization.  
In each set of experiments, the speedups of the 

parallel application obtained by using the new 
flexible model are shown over the parallel 
applications using the standard model, which uses 
the speeds of the processors obtained by running 
the corresponding serial application. The size of 
the problem used to obtain the speed of each 
processor is the same on each processor. The 
experimental results show that the parallel 
applications using the advanced model 
demonstrate good speedup over parallel 
applications using the standard model. At a first 
glance, it may look strange that there is no 
problem size where the standard model 
demonstrates the same speed as the advanced 
model. Actually in heterogeneous environment, 
the distribution given by the standard model 
cannot in principle be better than the distribution 
given by the advanced model. This is because the 
speeds used in the standard model are obtained 
based on the fact that all the processors get the 
same number of elements and hence solve 
problems of the same size as in a homogeneous 
environment. Whatever problem size is used, it 
will give wrong estimation of distribution for at 
least one processor.  

Figure 15 shows the speedup of the matrix-
matrix multiplication executed on this network 
using the advanced model over the matrix-matrix 
multiplication using the standard model that 
determines the speed of the processor based on the 
multiplication of two dense 100×100 matrices and 
two dense 3000×3000 matrices. As can be seen 
from the figure, the advanced model performs 
better than the standard model for a network of 
heterogeneous computers that demonstrates 
relative speeds that are non-constant functions of 
the size of the problem. 

Figure 17 shows the speedup of the matrix 
factorization executed on this network using the 
advanced model over the matrix factorization 
using the standard model that determines the speed 
of the processor based on the matrix factorization 
of a dense 500×500 matrix and a dense 7000×7000 



matrix. As can be seen from the figure, the 
advanced model performs better than the standard 
model for a network of heterogeneous computers 
that demonstrates relative speeds that are non-
constant functions of the size of the problem. 
 

5. Conclusions 

 
In this paper, we address the problem of 

optimal data partitioning in heterogeneous 
environments when relative speeds of processors 
cannot be accurately approximated by constant 
functions of the problem size. We have proposed 
an advanced performance model of a network of 
heterogeneous computers and designed efficient 
algorithms of data partitioning with this model. 
We do not take account of communication cost. 
This is out of scope of this paper. The problems of 
efficient building and maintaining of our model 
are also out of scope of the paper.  
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Figure 1. (a) Absolute speeds of the computers shown in Table 1 against the size of the 
problem in Matrix-Matrix multiplication. (b) Absolute speeds of the computers shown in 
Table 1 against the size of the problem in Cholesky Factorization. 
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Figure 2. (a) Relative speeds of the computers shown in Table 1 against the size of the 
problem in Matrix-Matrix multiplication. (b) Relative speeds of the computers shown in 
Table 1 against the size of the problem in Cholesky Factorization. 
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Figure 3. (a) Relative speeds of the computers shown in Table 2 against the size of the 
problem in Matrix-Matrix multiplication . (b) Relative speeds of the computers shown in 
Table 2 against the size of the problem in Cholesky Factorization. 
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Figure 4. Absolute speeds of the computers shown in Table 3 against the size of the 
problem in serial Matrix-Matrix multiplication derived from two-dimensional block-cyclic 
parallel Matrix-Matrix multiplication used in ScaLAPACK. (a) Comp3/Comp5 (b) 
Comp7/Comp6. 
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(c)                                                                                       (d) 

 
Figure 4. Absolute speeds of the computers shown in Table 3 against the size of the 
problem in serial Matrix-Matrix multiplication derived from two-dimensional block-cyclic 
parallel Matrix-Matrix multiplication used in ScaLAPACK. (c) Comp7/Comp5 (d) 
Comp7/Comp9 
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Figure 4. (e) Relative speeds of the computers shown in Table 3 against the size of the 
problem in serial Matrix-Matrix multiplication derived from two-dimensional block-cyclic 
parallel Matrix-Matrix multiplication used in ScaLAPACK. 
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Figure 4. (f) Absolute speeds of the computers shown in Table 3 against the size of the 
problem in serial Cholesky Factorization derived from two-dimensional block-cyclic 
parallel Matrix-Matrix multiplication used in ScaLAPACK. 
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Figure 4. (g) Relative speeds of the computers shown in Table 3 against the size of the 
problem in serial Cholesky Factorization derived from two-dimensional block-cyclic 
parallel Matrix-Matrix multiplication used in ScaLAPACK. 
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Figure 5. A small network of two processors whose speeds are shown against the size of 
the problem. 
 

 
Figure 6. Optimal solution showing the geometric proportionality of the number of 
elements to the speed of the processor.  
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Figure 7. Determination of the slope of the line equal to half of the slopes of the initial and 
final lines. 
 

 
Figure 8. Use of bisection of the range to narrow down to the optimal solution satisfying 
the criterion that the number of elements should be proportional to the speed of the 
processor. n is the size of the problem. 
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Figure 9. Bisection of the space of solutions in the modified algorithm. 
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Figure 10. Modification of the algorithm shown in figure 7 where the bisection results in 
efficient solution. n is the size of the problem.  
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Figure 11. Schematic proof of the complexity of the modified algorithm. The total number 
of bisections are plog2n. At each step of bisection, p intersection points are obtained 
giving a total complexity of O(p2log2n). 
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Figure 12. Using piece-wise linear approximation to build speed functions for 2 
processors. The speed functions are built from 3 experimentally obtained points. 
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Figure 13. Two cases where line1 and line2, between which the solution lies, are detected. 
 
 
 
 
 
 
 
 
 
 
Figure 14(a). Matrix operation C=A×B with matrices A, B, and C unevenly partitioned in one 
dimension. The slices mapped onto a single processor are shaded in black. 
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Figure 14(b). One step of parallel multiplication of matrices A and B. The pivot row of 
blocks of matrix B (shown slashed) is first broadcast to all processors. The each 
processor computes, in parallel with the others, its part of the corresponding column of 
blocks of the resulting matrix C.  

, 

A B C = A×B 
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Figure 15. Results obtained using the network of heterogeneous computers shown in 
Table 2. Comparison of speedups of MM algorithm using horizontal striped partitioning of 
matrices. 
 

L 0 L 0

a 11 l11

A 21 L 21

A 22 A 22

 

Figure 16. One step of the Cholesky factorization algorithm: the column panel 





=

21

11

L

l
L is 

computed and the trailing submatrix 22A is updated. 
 

Cholesky Factorization

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

1.45
1.5

1.55

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

Size of the matrix

S
p

ee
d

u
p

Speedup over parallel Cholesky factorization using speeds 
obtained from MM factorization of  a 7000*7000 matrix.

Speedup over parallel Cholesky 
factorization using speeds obtained from 
MM factorization of  a 500*500 matrix.

 
 
Figure 17. Results obtained using the network of heterogeneous computers shown in 
Table 2. Comparison of speedups of Cholesky Factorization using horizontal striped 
partitioning of matrices. 


