
HMPI: Towards a Message-Passing Library for Heterogeneous Networks of
Computers

Alexey Lastovetsky, Ravi Reddy
Department of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland

E-mail: Alexey.Lastovetsky@ucd.ie, Manumachu.Reddy@ucd.ie

Abstract

The paper presents Heterogeneous MPI (HMPI), an
extension of MPI for programming high-performance
computations on heterogeneous networks of computers.
It allows the application programmer to describe the
performance model of the implemented algorithm. This
model allows for all the main features of the underlying
parallel algorithm, which have an impact on its
execution performance, such as the total number of
parallel processes, the total volume of computations to
be performed by each process, the total volume of data
to be transferred between each pair of the processes,
and how exactly the processes interact during the
execution of the algorithm. Given the description of the
performance model, HMPI creates a group of processes
executing the algorithm faster than any other group of
processes. The most principal extensions to MPI are
presented. Parallel simulation of the interaction of
electric and magnetic fields and parallel matrix
multiplication are used to demonstrate the features of
the library.

1 Introduction

The standard MPI [1] is the main programming tool
used for programming high-performance computations
on homogeneous distributed-memory computer systems
such as supercomputers and clusters of workstations. It
is also normally used to write parallel programs for
heterogeneous networks of computers (HNOCs).
However, it does not address some additional challenges
posed by HNOCs, which are outlined below:

• Heterogeneity of processors. A good parallel
application for HNOCs must distribute
computations unevenly taking into account the
speeds of the processors. The efficiency of the
parallel application also depends on the
accuracy of estimation of the speeds of the
processors of the HNOCs, which is difficult
because the processors may demonstrate
different speeds for different applications due
to differences in the set of instructions, the
number of instruction execution units, the
number of registers, the structure of memory
hierarchy and so on.

• Ad hoc communication network. The common
communication network is normally
heterogeneous. The speed and bandwidth of
communication links between different pairs of
processors may differ significantly. This makes
the problem of optimal distribution of
computations and communications across the
HNOC much more difficult than across a
dedicated cluster of workstations
interconnected with a homogeneous high-
performance communication network. Other
issue is that the common communication
network can use multiple network protocols for
communication between different pairs of
processors. A good parallel application should
be able to use multiple network protocols
between different pairs of processors within the
same application for faster execution of
communication operations.

• Multi-user decentralized computer system.
Unlike dedicated clusters and supercomputers,
HNOCs are not strongly centralized computer
systems. A typical HNOC consists of relatively
autonomous computers, where each one may
be used and administered independently by its
users. The first implication with the multi-user
decentralized nature of HNOCs is the unstable
performance characteristics of processors
during the execution of a parallel program as
the computers may be used for other
computations and communications. The second
implication is the much higher probability of
resource failures in HNOCs compared to
dedicated cluster of workstations, which makes
fault tolerance a desired feature for parallel
applications running on HNOCs.

Thus, there are three main challenges posed by
HNOCs, which are not addressed by the standard MPI
specification.

Firstly, the standard MPI does not provide means
for employment of multiple network protocols between
different pairs of processors for efficient communication
in the same MPI application. A standard implementation
of MPI does not address the challenge either. The only
exception is the use of shared memory and TCP/IP in
MPICH [2]. At the same time, there have been some
research efforts to address this challenge implicitly, via

advanced non-standard implementations of the standard
MPI specification (Nexus [3], Madeleine [4]).

Secondly, the standard MPI does not provide means
for the writing of fault-tolerant parallel applications for
HNOCs. There are some research efforts made recently
to address this challenge such as the fault-tolerant MPI
(FT-MPI) [5]. FT-MPI is a small set of extensions to
MPI and its research implementation, which are aimed
at the writing of message-passing programs that can
survive failures. It offers the application programmer a
range of recovery options other than just returning to
some previous checkpoint.

Thirdly, the standard MPI does not provide
features, which facilitate the writing of parallel
programs that distribute computations and
communications unevenly, taking into account the
speeds of the processors, and the speeds and bandwidths
of communication links. To the best of the authors’
knowledge, there is no research effort made to address
this challenge. This paper presents an effort in this
direction – a small set of extensions to MPI, called
HMPI (Heterogeneous MPI), aimed at efficient parallel
computing on HNOCs, and its research implementation.

We start from presentation of the principal
extensions to MPI. Then we demonstrate the features of
the library with two parallel HMPI applications. The
first application simulates the interaction of electric and
magnetic fields on a three-dimensional object. The
second one multiplies two dense square matrices.
Results of experiments with these applications on a
HNOC are also presented. We conclude the paper by
quick analysis of some alternative approaches to
heterogeneous extension of MPI.

2 Outline of HMPI

The standard MPI specification provides

communicator and group constructors, which allow the
application programmers to create a group of processes
that execute together some parallel computations to
solve a logical unit of a parallel algorithm. The
participating processes in the group are explicitly
chosen from an ordered set of processes. This approach
to the group creation is quite acceptable if the MPI
application runs on homogeneous distributed-memory
computer systems, one process per processor. In this
case, the explicitly created group will execute the
parallel algorithm typically with the same execution
time as any other group with the same number of
processes, because the processors have the same
computing power, and the speed and the bandwidth of
communication links between different pairs of
processors are the same. However on HNOCs, a group
of processes optimally selected by taking into account
the speeds of the processors, and the speeds and the
bandwidths of the communication links between them,
will execute the parallel algorithm faster than any other
group of processes. Selection of processes in such a

group is usually a very difficult task. It requires the
programmers to write a lot of complex code to detect
the actual speeds of the processors and the speeds of the
communication links between them, and then to use this
information to select the optimal set of processes
running on different computers of heterogeneous
network.

The main idea of HMPI is to automate the process
of selection of such a group of processes that executes
the heterogeneous algorithm faster than any other group.
HMPI allows the application programmers to describe a
performance model of their implemented heterogeneous
algorithm. This model allows for all the main features of
the underlying parallel algorithm that have an essential
impact on application execution performance on
HNOCs. These features are:

• The total number of processes executing the
algorithm,

• The total volume of computations to be
performed by each of the processes in the
group during the execution of the algorithm,

• The total volume of data to be transferred
between each pair of processes in the group
during the execution of the algorithm, and

• The order of execution of the computations and
communications by the involved parallel
processes in the group, that is, how exactly the
processes interact during the execution of the
algorithm.

HMPI provides a small and dedicated model
definition language for specifying this performance
model. This language uses most of the features in the
specification of network types of the mpC language
presented in [7]. A compiler compiles the description of
this performance model to generate a set of functions.
The functions make up an algorithm-specific part of the
HMPI runtime system.

Having provided such a description of the
performance model, application programmers can use a
new operation, whose interface is shown below, to
create a group that will execute the heterogeneous
algorithm faster than any other group of processes,

HMPI_Group_create (HMPI_Group* gid,

const HMPI_Model* perf_model,
const void * model_parameters,
int param_count)

where perf_model is a handle that encapsulates all the
features of the performance model in the form of a set of
functions generated by the compiler from the
description of the performance model,
model_parameters are the parameters of the
performance model (see example shown below), and
param_count is the number of parameters of the
performance model. This function returns an HMPI
handle to the group of MPI processes in gid.

In HMPI, groups are not absolutely independent on
each other. Every newly created group has exactly one
process shared with already existing groups. That

process is called a parent of this newly created group,
and is the connecting link, through which results of
computations are passed if the group ceases to exist.
HMPI_Group_create is a collective operation and
must be called by the parent and all the processes, which
are not members of any HMPI group.

During the creation of this group of processes,
HMPI runtime system solves the problem of selection of
the optimal set of processes running on different
computers of the heterogeneous network. The solution
to the problem is based on the following:

• The performance model of the parallel
algorithm in the form of the set of functions
generated by the compiler from the description
of the performance model.

• The model of the executing network of
computers, which reflects the state of this
network just before the execution of the
parallel algorithm.

The algorithms used to solve the problem of
selection of processes are discussed in [7]. The accuracy
of the model of the executing network of computers
depends upon the accuracy of the estimation of the
actual speeds of processors. HMPI provides an
operation to dynamically update the estimation of
processor speeds at runtime. It is especially important if
computers, executing the target program, are used for
other computations as well. In that case, the actual
speeds of processors can dynamically change dependent
on the external computations. The use of this operation,
whose interface is shown below, allows the application
programmers to write parallel programs, sensitive to
such dynamic variation of the workload of the
underlying computer system,

HMPI_Recon (HMPI_Benchmark_function func,
const void* input_p, int num_of_parameters,
void* output_p)

where all the processors execute the benchmark function
func in parallel, and the time elapsed by each of the
processors to execute the code is used to refresh the
estimation of its speed. This is a collective operation
and must be called by all the processes in the group
associated with the predefined communication universe
HMPI_COMM_WORLD of HMPI.
 Another principal operation provided by HMPI
allows application programmers to predict the total time
of execution of the algorithm on the underlying
hardware without its real execution. Its interface is
shown below,

HMPI_Timeof (const HMPI_Model* perf_model,
const void* model_parameters, int param_count)

This function allows the application programmers to
write such a parallel application that can follow

different parallel algorithms to solve the same problem,
making choice at runtime depending on the particular
executing network and its actual performance. This is a
local operation that can be called by any process, which
is a member of the group associated with the predefined
communication universe HMPI_COMM_WORLD of
HMPI.

A typical HMPI application starts with the
initialization of the HMPI runtime system using the
operation

HMPI_Init (int argc, char** argv)

where argc and argv are the same arguments, passed
into the application, as the arguments to main. This
routine must be called before any other HMPI routine
and must be called once. This routine must be called by
all the processes running in the HMPI application.
 After the initialization, application programmers
can call any other HMPI routines. In addition, MPI
users can use normal MPI routines, with the exception
of MPI initialization and finalization, including the
standard group management and communicator
management routines to create and free groups of MPI
processes. However, they must use the predefined
communication universe HMPI_COMM_WORLD of
HMPI instead of MPI_COMM_WORLD of MPI.

The application programmers are recommended to
avoid using groups created with the MPI group
constructor operations, to perform computations and
communications in parallel with HMPI groups, as it
may not result in the best execution performance of the
application. The point is that the HMPI runtime system
is not aware of any group of MPI processes, which is
not created under its control. Therefore, the HMPI
runtime system cannot guarantee that an HMPI group
will execute its parallel algorithm faster than any other
group of MPI processes if some groups of MPI
processes, other than HMPI groups, are active during
the algorithm execution.

The only group constructor operation provided by
HMPI is the creation of the group using
HMPI_Group_create, and the only group destructor
operation provided by HMPI is

HMPI_Group_free (HMPI_Group* gid)

where gid is the HMPI handle to the group of MPI
processes. This is a collective operation and must be
called by all the members of this group. There are no
analogs of other group constructors of MPI such as the
set-like operations on groups and the range operations
on groups in HMPI. This is because:

• Firstly, HMPI does not guarantee that groups
composed using these operations can execute a
logical unit of parallel algorithm faster than
any other group of processes, and

Figure 1. Development process of a HMPI application. To build HMPI applications, an application
programmer describes a performance model using the model definition language, compiles the
performance model description into a set of functions, writes the application using the HMPI
interfaces to create groups of processes to execute the parallel algorithm.

• Secondly, it is relatively straightforward for

application programmers to perform such
group operations by obtaining the groups
associated with the MPI communicator given
by the HMPI_Get_comm operation (see the
interface shown below).

The other additional group management operations
provided by HMPI apart from the group constructor and
destructor are the following group accessors:

• HMPI_Group_rank to get the rank of the
process in the HMPI group, and

• HMPI_Group_size to get the number of
processes in this group.

The initialization of HMPI runtime system is
typically followed by

• Updating of the estimation of the speeds of
processors with HMPI_Recon,

• Finding the optimal values of the parameters of
the parallel algorithm with HMPI_Timeof,

• Creation of a group of processes, which will
perform the parallel algorithm, by using
HMPI_Group_create,

• Execution of the parallel algorithm by the
members of the group. At this point, control is
handed over to MPI. MPI and HMPI are
interconnected by operation

const MPI_Comm* HMPI_Get_comm (

const HMPI_Group* gid),

which returns an MPI communicator with
communication group of MPI processes
defined by gid. This is a local operation not
requiring inter-process communication.
Application programmers can use this
communicator to call the standard MPI
communication routines during the execution
of the parallel algorithm. This communicator
can safely be used in other MPI routines.

• Freeing the HMPI groups with
HMPI_Group_free.

• Finalizing the HMPI runtime system by using
operation

 HMPI_Finalize (int exitcode),

Note, that in general, the architecture of HMPI
summarised in Figure 1 has similarities to the
architectural framework of the CORBA specification
[9].

3 Example of irregular HMPI application

Performance model
in model
definition
language

Model definition
language Compiler

 Performance model
in the form of a
set of functions

HMPI

interfaces

HMPI
application

HMPI runtime system

User’s view

Hidden from the
user

Figure 2. (a) The three dimensional object consists of three subbodies. In each subbody, the electric
field value is represented as a white dot, an E node, and the magnetic field value represented by a
black dot, an H node and (b) A bipartite graph showing dependencies between E and H nodes.

To explain how an application programmer can use
HMPI to write a real-life irregular application, consider
the EM3D application simulating the interaction of
electric and magnetic fields on a three-dimensional
object [11, 12]. The system consists of a few large
subbodies resulting from a decomposition of the three-
dimensional object. The subbodies contain varying
number of E nodes where electric field values are
calculated and H nodes where magnetic fields are
calculated. The changes in the electric field of an E node
are calculated as a linear function of the magnetic field
values of its neighboring H nodes and vice versa. Thus,
the dependencies between E and H nodes form a
bipartite graph. In a bipartite graph, the vertices are
decomposed into two disjoint sets such that no two
vertices within the same set are adjacent. Here the two
disjoint sets are the set of E nodes and the set of H
nodes. The subbodies are so decomposed from the
three-dimensional object that the nodes in each subbody
have few dependencies on the nodes residing in other
subbodies thereby reducing the communications
between a pair of subbodies. A sample decomposition of
a three dimensional object into three subbodies is shown
in Figure 2(a). A simple example of bipartite graph is
shown in Figure 2(b).

The parallel algorithm of this application consists
of a few parallel processes, each of which updates data
characterizing a single sub body. The heterogeneous
algorithm can be summarized as follows:

At each step of the algorithm,

o For each of the E nodes in its sub body, if
any of the neighboring H nodes reside
remotely, each process receives the values
of these nodes from the process owning
them;

o Each process in parallel computes the new
value of the electric field of each of the E
nodes in its sub body;

o For each of the H nodes in its sub body, if
any of the neighboring E nodes reside
remotely, each process receives the values
of these nodes from the process owning
them;

o Each process in parallel computes the new
value of the magnetic field of each of the
H nodes in its sub body;

The most interesting fragments of the MPI version
of this parallel application are shown in Figure 3.

We assume the one-process-per-processor
configuration for this MPI application.

As shown in the MPI program in Figure 3, the
participating parallel processes in the group associated
with the MPI communicator em3dcomm are explicitly
chosen from an ordered set of processes specified by the
group associated with the MPI communicator
MPI_COMM_WORLD. If the MPI application runs
on a homogeneous distributed-memory computer
system, this group will execute the parallel algorithm
with the same execution time as any other MPI group of
processes, just because all processors run at the same
speed, and all communication links transfer data at the
same speed. However, if the MPI program runs on a
HNOC, this group will execute the parallel algorithm
sometimes slower and sometimes faster than other
groups of processes. This is because different processors
of the HNOC will execute the same computations at
different speeds, and different pair of processors will
communicate at different speeds. MPI does not facilitate
creation of a group of processes where the processes are
optimally selected taking into account the speeds of the
processes, and the speeds and the bandwidths of the
communication links between them. It is only a pure
chance if the MPI group of processes executes the
parallel algorithm faster than any other MPI group of
processes on the HNOC.

The HMPI version of this parallel application
involves first describing the performance model of the

(b) (a)

1

2

3

Figure 3. The most principal code of the MPI program implementing the EM3D algorithm.

parallel algorithm. The definition of Em3d shown in
Figure 4 describes the performance model of the
heterogeneous algorithm of this parallel application.

The model describing the algorithm has 4
parameters. Parameter p specifies the number ofabstract
processors executing the algorithm. Parameter k
specifies the number of nodes in a single subbody,
whose data is computed in the benchmark code that is
truly representative of the underlying application.

It is supposed that i-th element of the vector
parameter d gives the number of nodes in the subbody
computed by the i-th abstract processor participating in
the execution of the algorithm.

Parameter dep specifies the number of nodal values
communicated between different pairs of subbodies:
dep[I][J] gives the number of nodal values in the
subbody J that subbody I needs to compute its nodal
values.

The coord declaration introduces one coordinate
variable I ranging from 0 to p-1.

The node declaration associates the abstract
processors with this coordinate system to form a linear
processor arrangement. It also describes the absolute
volume of computation to be performed by each of the
processors. As a unit of measurement, the volume of
computation performed by some benchmark code is
used. In this particular case, it is assumed that the
benchmark code computes the nodal values of k nodes
in a single subbody. At each step of the algorithm,
abstract processor PI updates d[I] nodes. As

computations during the updating of one single subbody
mainly falls into the calculation of nodal values, the
volume of computations performed by the abstract
processor PI will be approximately d[I]/k times larger
than the volume of computations performed by the
benchmark code.

The link declaration specifies the volumes of data
to be transferred between the abstract processors at each
step of the algorithm. Abstract processor PI owning
subbody I receives dep[I][L] remote boundary values
from the subbody L owned by processor PL. Thus, the
total volume of data to be transferred from PL to PI will
be equal to dep[I][L]*sizeof(double).

The scheme declaration describes how the abstract
processors interact during the execution of one iteration
of the algorithm:

• Each processor Powner first receives the remote
values required for the calculation of the nodal
values in its subbody. During this
communication operation, 100% of data that
should be sent from each processor Premote
to processor Powner at this step will be sent.
The second nested par statement in the main
for loop of the scheme declaration just
specifies it. The par algorithmic patterns are
used to specify that during the execution of this
communication, data transfer between different
pairs of processors is carried out in parallel.

• Each processor then computes the new values
for each of the nodes in its subbody. The
processor will perform 100% of computations
it should perform during this iteration. The par

 int main(int argc, char **argv) {
 MPI_Comm em3dcomm;
 int i, me, is_executing_algo = MPI_UNDEFINED, E = 0, H = 1;
 int p, niter; /* Inputs to the program */
 struct EM3D_body_t* bodies; /* Inputs to the program */
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);
 if (me >= 0 && me < p) is_executing_algo = 1;
 MPI_Comm_split(MPI_COMM_WORLD, is_executing_algo, 1, &em3dcomm);
 if (is_executing_algo) {
 Initialize_system(p, bodies);
 MPI_Comm_rank(&em3dcomm, &me);
 for (i = 0; i < niter; i++) {
 Gather_remote_H_boundary_values(me, H, p, bodies, &em3dcomm);
 Compute_E_values(me, E, p, bodies);
 Gather_remote_E_boundary_values(me, E, p, bodies, &em3dcomm);
 Compute_H_values(me, H, p, bodies);
 }
 MPI_Comm_free(&em3dcomm);
 }
 MPI_Finalize();
 }

Figure 4. Specification of the performance model of the em3d algorithm in the HMPI’s performance
definition language.

algorithmic patterns are used here to specify
that all abstract processors perform their
computations in parallel.

Note that the above performance model describes
only one iteration of the algorithm. This approximation
is accurate enough because at any iteration each
processor performs the same volume of computations,
and the same volume of data is transferred between each
pair of processors.

The most interesting fragments of the rest code of
the HMPI parallel application are shown in Figure 5.

In the example shown in figure 5, the HMPI
runtime system is initialized using operation
HMPI_Init. Then, operation HMPI_Recon updates the
estimation of performances of processors using the
serial EM3D program computing nodal values for a
single subbody. The computations performed by each
processor mainly fall into the execution of calls to
function Serial_em3d.

This is followed by the creation of a group of
processes using operation HMPI_Group_create. The
members of this group then perform the computations
and communications of the heterogeneous parallel
algorithm using standard MPI means. This is followed
by freeing the group using operation
HMPI_Group_free, and by finalizing the HMPI
runtime system using operation HMPI_Finalize.

On HNOCs, the running time of the HMPI program
shown above will always be less than the running time
of the corresponding MPI program. This is because an
HMPI group of processes will always execute the
parallel algorithm faster than any other group of
processes including the groups of processes created
using MPI means. The processes participating in the
HMPI group are chosen optimally taking into account
all the main features of the underlying parallel
algorithm, which have an impact on the application

execution performance. The application programmer
describes all the main features of the parallel algorithm
using the performance model Em3d, which are

• The total number of participating processes p,
• The total volume of computations to be

performed by each of the processes as specified
in node declaration. The volume of
computations is mainly the computation of
field values of nodes in a sub-body thus
depending on the number of nodes within a
sub-body,

• The total volume of data to be transferred
between each pair of processes as specified by
the link declaration. The volume of data
transferred equals the number of bytes of
remote boundary values communicated
between the sub-bodies, and

• How exactly the processes interact during the
execution of the algorithm as specified by the
scheme declaration. Informally this looks like
the description of the algorithm describing the
interaction between the processes during the
execution of the algorithm.

During the creation of the group of processes, the
HMPI runtime system uses the information from the
performance model to solve the problem of selection of
the optimal set of processes running on different
computers of heterogeneous network.

It can also be seen from the MPI and HMPI
programs described in this section that there is
essentially no change in code of the parallel algorithm
executed by the members of the group of processes
participating in the parallel program. The main
difference lies only in the creation of a group of
processes.

 algorithm Em3d(int p, int k, int d[p], int dep[p][p]) {
 coord I=p;
 node {I>=0: bench*(d[I]/k);};
 link (L=p) {
 I>=0 && I!=L && (dep[I][L] > 0) :
 length*(dep[I][L]*sizeof(double)) [L]->[I];
 };
 parent[0];
 scheme {
 int current, owner, remote;
 par (owner = 0; owner < p; owner++)
 par (remote = 0; remote < p; remote++)
 if ((owner != remote) && (dep[owner][remote] > 0))
 100%%[remote]->[owner];
 par (current = 0; current < p; current++) 100%%[current];
 };

Figure 5. The most principal code of the HMPI program implementing the algorithm of EM3D.

4 Example of regular HMPI application

An irregular problem is characterized by some

inherent coarse-grained or large-grained structure
implying quite deterministic decomposition of the
whole program into a set of processes running in
parallel and interacting via message passing. As rule,
there are essential differences in volumes of
computations and communications to perform by
different processes. The EM3D problem is an example
of irregular problem.

Unlike an irregular problem, for a regular problem
decomposition of the whole program into a large set of
small equivalent programs, running in parallel and
interacting via message passing, is the most natural one.

Multiplication of dense matrices is an example of a
regular problem. The main idea of efficient solving a
regular problem is to reduce it to such an irregular
problem, the structure of which is determined by the
irregularity of underlying hardware rather than the
irregularity of the problem itself.

Consider the problem of parallel matrix
multiplication (MM) on HNOCs. The algorithm of
execution of the matrix operation C=A×B on a HNOC is
obtained by modification of the ScaLAPACK [8] 2D
block-cyclic MM algorithm. The modification is that the
heterogeneous 2D block-cyclic data distribution of [6] is
used instead of the standard homogeneous data
distribution. Thus, the heterogeneous algorithm of
multiplication of two dense square (n×r)×(n×r)
matrices A and B on an m×m grid of heterogeneous
processors can be summarised as follows:

 int main(int argc, char **argv) {
 MPI_Comm em3dcomm;
 int i, me, k, E = 0, H = 1;
 HMPI_Group gid;
 void* model_params;
 int param_count;
 int p, niter; /* Inputs to the program */
 struct EM3D_body_t* bodies; /* Inputs to the program */
 HMPI_Init(argc, argv);
 if (HMPI_Is_member(HMPI_COMM_WORLD_GROUP)) {
 int output_p;
 Body recon_body;
 // Construct recon parameters that are
 // representative of the application
 ...
 HMPI_Recon(&Serial_em3d, &recon_body, 1, &output_p);
 }
 if (HMPI_Is_host())
 HMPI_Pack_model_parameters(p, k, d, dep,
 model_params, ¶m_count);
 if (HMPI_Is_host() || HMPI_Is_free())
 HMPI_Group_create(&gid, &HMPI_Model_Em3d,
 model_params, param_count);
 if (HMPI_Is_member(&gid)) {
 em3dcomm = *(MPI_Comm*)HMPI_Get_comm(&gid);
 Initialize_system(p, bodies);
 MPI_Comm_rank(&em3dcomm, &me);
 for (i = 0; i < niter; i++) {
 Gather_remote_H_boundary_values(me, H, p, bodies, &em3dcomm);
 Compute_E_values(me, E, p, bodies);
 Gather_remote_E_boundary_values(me, E, p, bodies, &em3dcomm);
 Compute_H_values(me, H, p, bodies);
 }
 }
 if (HMPI_Is_member(&gid)) HMPI_Group_free(&gid);
 HMPI_Finalize(0);
 }

• Each element in A, B, and C is a square r×r

block and the unit of computation is the
updating of one block, i.e., a matrix
multiplication of size r. Each matrix is
partitioned into generalized blocks of the same
size (l×r)×(l×r), where nlm ≤≤ . The
generalized blocks are identically partitioned
into p2 rectangles, each being assigned to a
different processor. The area of each rectangle
is proportional to the speed of the processor
that stores the rectangle. The partitioning of a
generalized block is performed as follows:

o Each element in the generalized block
is a square rr × block of matrix
elements. The generalized block is a

ll × square of rr × blocks.

o First, the ll × square is partitioned
into m vertical slices, so that the area
of the j-th slice is proportional to

∑
=

m

i
ijs

1

. It is supposed that blocks of

the j-th slice will be assigned to
processors of the j-th column in the

mm× processor grid. Thus, at this
step, we balance the load between
processor columns in the mm×
processor grid, so that each processor
column will store a vertical slice
whose area is proportional to the total
speed of its processors.

o Then, each vertical slice is partitioned
independently into m horizontal
slices, so that the area of the i-th
horizontal slice in the j-th vertical
slice is proportional to sij. It is
supposed that blocks of the i-th
horizontal slice in the j-th vertical
slice will be assigned to processor Pij.
Thus, at this step, we balance the load
of processors within each processor
column independently.

• At each step k,
o Each r×r block aik of the pivot column

of matrix A is sent horizontally from
the processor, which stores this block,
to m-1 processors (see Figure 6);

o Each r×r block bkj of the pivot row of
matrix B is sent vertically from the
processor, which stores this block, to
m-1 processors (see Figure 6);

• Each processor updates its rectangle in the C
matrix with one block from the pivot row and
one block from the pivot column.

The definition of ParallelAxB given in Figure 7

describes the performance model of this heterogeneous
algorithm.

The network type ParallelAxB describing the
algorithm has 6 parameters. Parameter m specifies the
number of abstract processors along the row and along
the column of the processor grid executing the
algorithm. Parameter r specifies the size of a square
block of matrix elements, the updating of which is the
unit of computation of the algorithm. Parameter n is the
size of square matrices A, B, and C measured in rr ×
blocks. Parameter l is the size of a generalised block
also measured in rr × block.

Vector parameter w specifies the widths of the
rectangles of a generalised block assigned to different
abstract processors of the mm× grid. The width of the
rectangle assigned to processor PIJ is given by element
w[J] of the parameter. All widths are measured in

rr × blocks.
Parameter h specifies the heights of rectangle areas

of a generalised block of matrix A, which are
horizontally communicated between different pairs of
abstract processors. Let RIJ and RKL be the rectangles of
a generalised block of matrix A assigned to processors
PIJ and PKL respectively. Then, h[I][J][K][L] gives the
height of the rectangle area of RIJ, which is required by
processor PKL to perform its computations. All heights
are measured in rr × blocks.

Note that h[I][J][I][J] specifies the height of RIJ,
and h[I][J][K][L] will be always equal to
h[K][L][I][J].

The coord declaration introduces 2 coordinate
variables, I and J, both ranging from 0 to m-1.

The node declaration associates the abstract
processors with this coordinate system to form a

mm× grid. It also describes the absolute volume of
computation to be performed by each of the processors.
As a unit of measure, the volume of computation
performed by the code multiplying two rr × matrices
is used. At each step of the algorithm, abstract processor

PIJ updates gIJIJ nhw ××)(rr × blocks, where

IJIJ hw , are the width and height of the rectangle of a

generalised block assigned to processor PIJ , and gn is

the total number of generalised blocks. As computations
during the updating of one rr × block mainly fall into
the multiplication of two rr × blocks, the volume of
computations performed by the processor PIJ at each
step of the algorithm will be approximately will be

approximately gIJIJ nhw ××)(times larger than the

volume of computations performed to multiply two

rr × matrices. As IJw is given by w[J], IJh is given

by h[I][J][I][J], gn is given by (n/l)*(n/l), and the total

number of steps of the algorithm is given by n, the total
volume of computation performed by abstract processor
PIJ will be w[J]*h[I][J][I][J]*(n/l)*(n/l)*n times bigger
than the volume of computation performed by the code
multiplying two rr × matrices.

 The link declaration specifies the volumes of
data to be transferred between the abstract processors

A ka•

•kb

B

Figure 6. One step of the algorithm of parallel matrix-matrix multiplication based on heterogeneous
two-dimensional block distribution of matrices A, B, and C. First, each rr × block of the pivot
column ka• of matrix A (shown shaded dark grey) is broadcast horizontally, and each rr × block of

the pivot row •kb of matrix B (shown shaded dark grey) is broadcast vertically.

during the execution of the algorithm. The first
statement in this declaration describes communications
related to matrix A. Obviously, abstract processors from
the same column of the processor grid do not send each
other elements of matrix A. Abstract processor PIJ will
send elements of matrix A to processor PKL only if its
rectangle RIJ in a generalised block has horizontal
neighbours of the rectangle RKL assigned to processor
PKL. In that case, processor PIJ will send all such
neighbours to processor PKL. Thus, in total processor PIJ

will send gIJKL nN × rr × blocks of matrix A to

processor PKL, where IJKLN is the number of horizontal

neighbours of rectangle RKL in rectangle RIJ, and gn is

the total number generalised blocks. As IJKLN is given

by w[J]* h[I][J][K][L], gn is given by (n/l)*(n/l), and

the volume of data in one rr × block is given by
(r*r)*sizeof(double), the total volume of data
transferred from processor PIJ to processor PKL will be
given by
w[J]*h[I][J][K][L]*(n/l)*(n/l)*(r*r)*sizeof(double).

The second statement in the link declaration
describes communications related to matrix B.
Obviously, only abstract processors from the same
column of the processor grid send each other elements
of matrix B. In particular, processor PIJ will send all its

rr × blocks of matrix B to all other processors from
column J of the processor grid. The total number of

rr × blocks of matrix B assigned to processor PIJ is
given by w[J]*h[I][J][I][J]*(n/l)*(n/l).

The scheme declaration describes n successive
steps of the algorithm. At each step k,

• a row of rr × blocks of matrix B is
communicated vertically. For each pair of
abstract processors PIJ and PKJ involved in this
communication, PIJ sends a part of this row to
PKJ. The number of rr × blocks transferred

from PIJ to PKJ will be gIJ nw × , where

gn is the number of generalised blocks

along the row of rr × blocks. The total
number of rr × blocks of matrix B, which
processor PIJ sends to processor PKJ, is

gIJIJ nhw ××)(. Therefore,

100
1

100
)(

×
×

=×
××

×

gIJgIJIJ

gIJ

nhnhw

nw

percent of data that should be in total sent from
processor PIJ to processor PKJ will be sent at
the step. The first nested par statement in the
main for loop of the scheme declaration just
specifies it. The par algorithmic patterns are
used to specify that during the execution of this
communication, data transfer between different
pairs of processors is carried out in parallel.

• A column of rr × blocks of matrix A is
communicated horizontally. If processors PIJ
and PKL are involved in this communication so
that PIJ sends a part of this column to PKL, then
the number of rr × blocks transferred from

PIJ to PKL will be gIJKL nH × , where IJKLH

is the height of the rectangle area in a
generalised block, which is communicated

Figure 7. Specification of the performance model of the algorithm of parallel matrix multiplication
based on heterogeneous two-dimensional block-cyclic distribution of matrices in the HMPI’s
performance definition language.

typedef struct {int I; int J;} Processor;
algorithm ParallelAxB(int m, int r, int n, int l, int w[m],
 int h[m][m][m][m])
{
 coord I=m, J=m;
 node {I>=0 && J>=0: bench*(w[J]*(h[I][J][I][J])*(n/l)*(n/l)*n);};
 link (K=m, L=m)
 {
 I>=0 && J>=0 && I!=K :
 length*(w[I]*(h[I][J][I][J])*(n/l)*(n/l)*(r*r)*sizeof(double))
 [I, J] -> [K, J];
 I>=0 && J>=0 && J!=L && ((h[I][J][K][L])>0) :
 length*(w[J]*(h[I][J][K][L])*(n/l)*(n/l)*(r*r)*sizeof(double))
 [I, J] -> [K, L];
 };
 parent[0,0];
 scheme
 {
 int k;
 Processor Root, Receiver, Current;
 for(k = 0; k < n; k++)
 {
 int Acolumn = k%l, Arow;
 int Brow = k%l, Bcolumn;
 par(Arow = 0; Arow <l;)
 {
 GetProcessor(Arow, Acolumn, m, h, w, &Root);
 par(Receiver.I = 0; Receiver.I < m; Receiver.I++)
 par(Receiver.J = 0; Receiver.J < m; Receiver.J++)
 if((Root.I != Receiver.I || Root.J != Receiver.J) &&
 Root.J != Receiver.J)
 if((h[Root.I][Root.J][Receiver.I][Receiver.J]) > 0)
 (100/(w[Root.J]*(n/l)))%%
 [Root.I, Root.J] -> [Receiver.I, Receiver.J];
 Arow += h[Root.I][Root.J][Root.I][Root.J];
 }
 par(Bcolumn = 0; Bcolumn < l;)
 {
 GetProcessor(Brow, Bcolumn, m, h, w, &Root);
 par(Receiver.I = 0; Receiver.I < m; Receiver.I++)
 if(Root.I != Receiver.I)
 (100/((h[Root.I][Root.J][Root.I][Root.J])*(n/l))) %%
 [Root.I, Root.J] -> [Receiver.I, Root.J];
 Bcolumn += w[Root.J];
 }
 par(Current.I = 0; Current.I < m; Current.I++)
 par(Current.J = 0; Current.J < m; Current.J++)
 (100/n) %% [Current.I, Current.J];
 }
 };
};

Figure 8. The most principal code of the HMPI program implementing the algorithm of parallel
matrix multiplication based on heterogeneous two-dimensional block-cyclic distribution of
matrices.

int m, l;
int main(int argc, char** argv) {

int optimal_generalised_block_size;
typedef struct {double *a; double *b; double *c; int r;}
 Recon_params;

 HMPI_Group gid;
 void *model_params;
 int param_count = 4+m+(m*m*m*m);
 double *a, *b, *c;

 HMPI_Init(argc, argv);

if (HMPI_Is_member(HMPI_COMM_WORLD_GROUP)) {
 int output_p;
 Recon_params recon_params;
 Initialize(a, b, c, r, &recon_params);
 HMPI_Recon(&rMxM, &recon_params, 1, &output_p);
}
if (HMPI_Is_host()) {
 int bsize;
 double time, min_time=DBL_MAX;
 for (bsize = m; bsize < n; bsize++) {
 time = HMPI_Timeof(&HMPI_Model_ParallelAxB,
 model_params, param_count);
 if (time < min_time) {
 optimal_generalised_block_size = bsize;
 min_time = time;
 }
 }

 }
 …
 l = optimal_generalised_block_size;
 if (HMPI_Is_host() || HMPI_Is_free())
 HMPI_Group_create(&gid, &HMPI_Model_ParallelAxB,
 model_params, param_count);
 if (HMPI_Is_member(&gid)) {
 …
 MPI_Comm* grid_comm = (MPI_Comm*)HMPI_Get_comm(&gid);
 …
 // computations and communications are performed here
 // using standard MPI routines.
 //
 …
 }
 if (HMPI_Is_member(&gid)) HMPI_Group_free(&gid);
 HMPI_Finalize(0);
}

0

50

100

150

200

250

300

350

400

450

500

0 20000 40000 60000

Total number of nodes

P
ar

al
le

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
) MPI

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20000 40000 60000

Problem size

S
p

ee
d

u
p

Figure 9. (a) Comparison of execution times of EM3D algorithm between HMPI and MPI. (b) The
speedup of EM3D algorithm obtained using HMPI over MPI.

from PIJ to PKL, and gn is the number of

generalised blocks along the column of rr ×
blocks. The total number of rr × blocks of
matrix A, which processor PIJ sends to processor

PKL, is gIJKL nN × . Therefore,

100
1

100
)(

100

×
×

=

×
××

×
=×

×

×

gIJ

gIJIJKL

gIJKL

gIJKL

gIJKL

nw

nwH

nH

nN

nH

percent of data that should be in total sent from
processor PIJ to processor PKL will be sent at the
step. The second nested par statement in the main
for loop of the scheme declaration specifies this
fact. Again, we use the par algorithmic patterns
in this specification to stress that during the
execution of this communication, data transfer
between different pairs of processors is carried
out in parallel.

Each abstract processor updates each its rr × block
of matrix C with one block from the pivot column and one

block from the pivot row, so that each block ijc

(, {1, , }i j n∈ K) of matrix C will be updated,

kjikijij bacc ×+= . The processor performs the same

volume of computation at each step of the algorithm.
Therefore, at each of n steps of the algorithm the

processor will perform
100

n
 percent of the volume of

computations it performs during the execution of the
algorithm. The third nested par statement in the main for
loop of the scheme declaration just says it. The par
algorithmic patterns are used here to specify that all
abstract processors perform their computations in parallel.

Function GetProcessor is used in the scheme
declaration to iterate over abstract processors that store the
pivot row and the pivot column of rr × blocks. It returns
in its last parameter the grid coordinates of the abstract
processor storing the rr × block, whose coordinates in a
generalised block of a matrix are specified by its first two
parameters.

The most interesting fragments of the rest code of the
HMPI parallel application are shown in Figure 8.

In the example shown above, HMPI runtime system
is initialised using operation HMPI_Init. Then, operation
HMPI_Recon updates the estimation of performances of
processors using the serial multiplication of test matrices
of size r×r. The computations performed by each
processor mainly fall into the execution of calls to
function rMxM.

The next block of code, executed by the host-
processor, uses operation HMPI_Timeof predicting the
total time of execution of the parallel algorithm. This
operation is used to calculate the optimal generalized
block size, one of the parameters of the heterogeneous
parallel algorithm.

This is followed by the creation of a group of
processes using operation HMPI_Group_create. The
members of this group then perform the computations and
communications of the heterogeneous parallel algorithm
using standard MPI means. This is followed by freeing the
group using operation HMPI_Group_free and the
finalization of HMPI runtime system using operation
HMPI_Finalize.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500

Problem size

P
ar

al
le

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

l = 6
l = 7
l = 8
l = 9

MPI

Figure 10. Comparison of execution times of MM algorithm between HMPI and MPI for different values
of generalised block size.

10

510

1010

1510

2010

2510

3010

3510

4010

550 1050 1550 2050 2550

Problem size

P
ar

al
le

l e
xe

cu
ti

o
n

 t
im

e(
se

c) M PI

HM PI

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000

Problem size

S
p

ee
d

u
p

Figure 11. (a) Comparison of execution times of MM algorithm between HMPI and MPI. (b) The speedup
of MM algorithm obtained using HMPI over MPI.

5 Experiments with HMPI

This section presents some results of experiments

with the HMPI applications presented in Sections 3 and 4.
A small heterogeneous local network of 9 different

Solaris and Linux workstations is used in the experiments

for the EM3D algorithm. The speeds of the workstations
demonstrated on the core computation of this algorithm,
are 46, 46, 46, 46, 46, 46, 176, 106, and 9. Note that the
figures give the average speeds measured at runtime
during the experiments. The network is based on 100 Mbit
Ethernet with a switch enabling parallel communications
between the computers.

Figure 9(a) shows the comparison of the execution
times of the HMPI application and the standard MPI

application executing EM3D algorithm. The experimental
results are obtained by averaging the execution times over
a number of experiments. One can see that the HMPI
application is almost 1.5 times faster than the standard
MPI one. Figure 9(b) demonstrates the speedup of the
HMPI program over the MPI one.

All results are obtained for r = l = 9, which have
appeared optimal. Figure 10 shows results for different
values of generalised block sizes for the value of r = 8.

A small heterogeneous local network of 9 different
Solaris and Linux workstations is used in the experiments
for the MM algorithm. The speeds of the workstations
demonstrated on the core computation of this algorithm,
are 46, 46, 46, 46, 46, 46, 46, 106, and 9. Note that the
figures give the average speeds measured at runtime
during the experiments. The network is based on 100 Mbit
Ethernet with a switch enabling parallel communications
between the computers.

Figure 11(a) shows the comparison of the execution
times of the HMPI application and the standard MPI
application using homogeneous 2D block-cyclic data
distribution. The experimental results are obtained by
averaging the execution times over a number of
experiments. One can see that the HMPI application is
almost 3 times faster than the standard MPI one. Figure
11(b) demonstrates the speedup of the HMPI program
over the MPI one.

6 Conclusion

We consider the HMPI as a step towards a future

standard message-passing library for heterogeneous
networks of computers. This library is viewed as such an
extension of the standard MPI that combines the features
of multi-protocol communication, fault tolerance, and the
advanced support for efficient heterogeneous parallel
computing, separately provided by the Nexus MPI, the
FT-MPI, and the HMPI.

References

[1] Jack Dongarra, Steven Huss-Lederman, Steve Otto, Marc
Snir, and David Walker. MPI: The Complete Reference. The
MIT Press, 1996.
[2] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-
performance, portable implementation of the MPI message
passing interface standard”, Parallel Computing 22(6), pp.789-
828, 1996.
[3] I. Foster, J.Geisler, C. Kesselman, and S. Tuecke, “Managing
Multiple Communication Methods in High-Performance
Networked Computing Systems”, Journal on Parallel and
Distributed Computing 40(1), pp.35-48, 1997.

[4] O.Aumage, L.Bouge, and R.Namyst, “A Portable and
Adaptative Multi-Protocol Communication Library for
Multithreaded Runtime Systems”, Proc. 4th Workshop on
runtime systems for Parallel Programming (RTSPP ’00), Lect.
Notes in Comp. Science 1800, pp.1136-1143, Cancun, Mexico,
2000.
[5] G. E. Fagg, A.Bukovsky, and J. Dongarra, “HARNESS and
Fault Tolerant MPI”, Parallel Computing 27(11), pp.1479-1495,
2001.
[6] A. Kalinov and A. Lastovetsky, “Heterogeneous Distribution
of Computations
Solving Linear Algebra Problems on Networks of
Heterogeneous Computers”,
Journal of Parallel and Distributed Computing 64(4), pp.520-
535, 2001.
[7] A.Lastovetsky, “Adaptive Parallel Computing on
Heterogeneous Networks with mpC”, Parallel Computing
28(10), 1369-1407, 2002.
[8] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov,
A. Petitet, K. Stanley, D. Walker, and R.C. Whaley,
“ScaLAPACK: A Portable Linear Algebra Library for
Distributed Memory Computers---Design Issues and
Performance,” Computer Physics Comm., vol. 97. pp. 1-15,
1996.
[9] Object Management Group. The Common Object Request
Broker: Architecture and Specification. Revision 2.3. 1998.
[10] N.Mirenkov, A.Vazhenin, R.Yoshioka, T.Ebihara,
T.Hirotomi, and T.Mirenkova, “Self-Explanatory Components:
A New Programming Paradigm”, International Journal of
Software Engineering and Knowledge Engineering 11(1), 5-36,
2001.
[11] K. Yelick, C. Wen, S. Chakrabarti, E. Deprit, J. A. Jones, A.
Krishnamurthy, "Portable Parallel Irregular Applications,"
Workshop on Parallel Symbolic Languages and Systems,
Lecture Notes in Computer Science, 1995.
[12] D. E. Culler, A. Dusseau, S. C. Goldstein, A.
Krishnamurthy, S. Lumetta, T. von Eicken, K. Yelick, "Parallel
Programming in Split-C," Proceedings of Supercomputing '93,
Portland, Oregon, November 1993, pp. 262-273.

BIOGRAPHIES

Alexey Lastovetsky received the PhD degree from the
Moscow Aviation Institute in 1986, and the Doctor of
Science degree from the Russian Academy of Sciences in
1997. He is currently a lecturer in the Computer Science
Department at University College Dublin, National
University of Ireland. His main research interests are
parallel and distributed programming languages and
systems for heterogeneous environments.

Ravi Reddy is currently a PhD student in the Computer
Science Department at University College Dublin,
National University of Ireland. His main research interests
are design of algorithms and tools for parallel and
distributed computing systems.

