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1. INTRODUCTION

To describe uniform computations over arrays, the
so-called vector operations are introduced in many lan-
guages for parallel programming [1, 5, 16, 22]. There
are two kinds of vector operations: element-wise and
reduction operations. An element-wise vector opera-
tion is a simple extension of the corresponding scalar
one and consists in element-wise application of the lat-
ter operation to vector operands. An example of an ele-
ment-wise vector operation is the operation of addition
of arrays. The result of an element-wise operation has
the same dimension as that of the operands.

Reduction vector operations reduce the dimension
of the result compared to that of the operands. An
example of the reduction operation is summation of
elements of a one-dimensional array or rows/columns
of a two-dimensional array.

Vector operations, expressions, and statements, on
the one hand, allow one to more compactly describe
algorithms containing array-based computations. On
the other hand, they give the compiler more informa-
tion about the algorithm structure, which may be used
for generation of a more efficient code. The paper is
devoted to the problem of efficient compilation of vec-
tor statements for architectures with multilevel memory
hierarchy. We suggest and substantiate a scheme of
optimal code generation for C[] statements containing
reduction vector operations. Since the dimension of the
operands of a reduction vector operation is greater than
the dimension of its result, the elements of the latter are
repeatedly used in the computations. Thus, the speed-
up of computation may be achieved through minimiza-
tion of the number of replacements of elements of the
result from a faster memory to a slower memory (e.g.,
from cache to main memory) and, consequently,
through the reduction of the access time to reused data.

Systems of nested loops obtained by direct compila-
tion of vector expressions, as a rule, implement the
access to reused data in a nonoptimal way. The access
to such data can be optimized by means of the so-called
tiling transformation [9, 19, 27, 29, 30]. The essence of
this transformation consists in increasing the nesting
degree of the loop system with simultaneous reduction
of the number of iterations of inner loops. The applica-
tion of tiling to any particular system of nested loops
requires justification of the correctness of this transfor-
mation, i.e., the proof of the fact that the functional
semantics of the program is not changed. For an arbi-
trary system of nested loops, such justification is a non-
trivial problem [9, 29, 30]. It is based on the analysis of
data dependencies in the iteration space of the system
of nested loops [17, 30]. It is shown in the paper (Sec-
tion 4) that there is a class of vector statements in the
C[] language, which are called simple reduction state-
ments, that, being directly translated, result in systems
of nested loops for which the tiling is a correct transfor-
mation.

Another problem discussed in the paper is the
choice of values of the tiling parameters that ensure
maximum speed-up of the program execution. To solve
it, we use the interference model suggested in [19]. In
the framework of that model, an estimate is obtained
for an optimal tile size depending on characteristics of
the target architecture and parameters of the reduction
statement. It is this estimate that is used in the optimiz-
ing compiler of the C[] language for code generation.

The paper is organized as follows. In Section 2, the
notion of reduction expression of the C[] language is
introduced. In Section 3, an algorithm of code genera-
tion for vector expressions in the C[] compiler is
described. The correctness of the tiling transformation
upon compilation of simple reduction statements is
proved in Section 4. In Section 5, a cache interference
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model is described, which is used in Section 6 to derive
formulas for optimum tile size. In Section 7, conditions
are determined under fulfillment of which the use of til-
ing in compilation of reduction statements speeds up
the program execution. Results of experiments demon-
strating the efficiency of the tiling in compilation of
vector expressions of the C[] language are presented in
Section 8. In Section 9, the results of this work are com-
pared with other results in this area.

2. C[] SYNTAX AND REDUCTION EXPRESSIONS

The C[] language [1, 16] is a strict extension of
ANSI C and a subset of mpC language [2, 20]. The
basic new notion introduced in C[] is that of vector. The
vector is defined as an ordered sequence of values of
one arbitrary type. The fundamental distinction of vec-
tor from array is that the elements of the former are not
necessarily located in memory in a regular way, as
array elements are. Elements of a vector may also be
vectors.

Let us introduce the notion of vector 

 

rank

 

. If ele-
ments of a vector are not vectors, the rank of the vector
is assumed to be one. If elements of a vector 

 

v

 

 are vec-
tors of rank 

 

n

 

, the vector rank is assumed to be 

 

n

 

 + 1 and
is denoted as 

 

rank

 

(

 

v

 

). The rank of a vector expression

 

E

 

 is the rank of its vector value and is denoted as

 

rank

 

(

 

E

 

).
The notion of a vector element can be extended to

that of the 

 

vector element of level

 

 

 

i

 

, where 

 

i

 

 is a posi-
tive integer not exceeding the vector rank. Let 

 

v

 

 be a
vector. Elements of the vector 

 

v

 

 of level 1 are vector
elements. Elements of the vector 

 

v

 

 of level 

 

i

 

, where 2 

 

≤

 

i

 

 

 

≤

 

 

 

rank

 

(

 

v

 

), are elements of the elements of the vector

 

v

 

 of level 

 

i

 

 – 1. Elements of the vector 

 

v

 

 of level

 

rank

 

(

 

v

 

) are not vectors and are referred to as 

 

terminal
elements

 

.
The number of elements of a vector 

 

v

 

 is called

 

dimension of the vector

 

 

 

v

 

 and is denoted by 

 

N

 

(

 

v

 

). The
dimension of the 

 

i

 

th element of 

 

v

 

, where 1 

 

≤

 

 

 

i

 

 <

 

rank

 

(

 

v

 

), is referred to as the 

 

i

 

th dimension of the vector

 

v

 

 and is denoted by 

 

N

 

(

 

i

 

, 

 

v

 

). The number of elements of
vector 

 

v

 

 is referred to as its null dimension and is
denoted by 

 

N

 

(0, 

 

v

 

). Thus, 

 

N

 

(

 

v

 

) = 

 

N

 

(0, 

 

v

 

).
In C, an array in arithmetic expressions is trans-

formed to the type “pointer to element type.” In order
to be able to use an array in arithmetic operations as a
unit, C[] provides for a special 

 

grid operation

 

, which
prevents transformation of the array to a pointer.

The grid operation provides an access to array seg-
ments and has the following syntax:

 

e[l : r : s]

 

where 

 

e

 

 is an expression denoting the array and expres-
sions 

 

l

 

, 

 

r

 

, and 

 

s

 

 have integer type and denote, respec-
tively, the left and right boundaries and the grid step.
Note that 

 

e

 

[

 

l

 

 : 

 

r

 

 : 

 

s

 

] denotes the vector consisting of
(

 

r

 

 

 

−

 

 

 

l

 

)/

 

s

 

 + 1 elements, the 

 

i

 

th element of which is 

 

e

 

[

 

l

 

 +

 

i 

 

* 

 

s

 

]. For example, if an array 

 

a

 

 consists of five ele-

ments, then the expression 

 

a

 

[2 : 4 : 2] denotes the vec-
tor of length two, the elements of which are 

 

a

 

[2] and

 

a

 

[4]. By means of the grid operation, one can access
various subsets of elements of not only one-dimen-
sional but also multidimensional arrays.

If the grid step is equal to one, it can be dropped
together with the second colon. The right and left
boundaries can also be omitted. If the left boundary is
dropped, it is assumed to be zero; the dropped right
boundary is assumed to be equal to 

 

N

 

 – 1, where 

 

N

 

 is
the number of elements of the array. Thus, the value of
the expression 

 

a

 

[:] is the vector consisting of all ele-
ments of the array 

 

a

 

.
An expression obtained by application of several

grid operations to an array identifier is referred to as a

 

trivial vector expression

 

.
Semantics of certain arithmetic operations and the

assignment statement in C is extended in C[] in such a
way that their operands and results may be vectors. In
this case, the corresponding operation is applied to ele-
ments. For example, the C[] code of the vector opera-
tion 

 

daxpy

 

 from the package BLAS [6] (finding of the
element-wise sum of an array 

 

a

 

 and an array 

 

b

 

 multi-
plied by 

 

d) looks as follows:
double a[N], b[N], c[N], d;

…

c[:] = a[:] + d *  b[:];

This vector statement is equivalent to the loop
for(i = 0; i < N; i ++)

c[i] = a[i] + d * b[i];

Certain binary operations in C are made to corre-
spond to linear operations in C[], which are referred
to as reduction operations, by the following rule. If
an expression e is an N-element vector, and ω is a
binary operation, then the reduction operation corre-
sponding to ω is denoted as [ω], and the result of its
application to e is defined as follows: [ω]e =
(…((e0ωe1)ωe2)…ωeN), where e0, e1, …, eN are compo-
nents of the vector e. The simplest example of a reduc-
tion operation is the code for calculation of the sum of
matrix rows:

double A[M] [N], a[N];

…

a[:] = [+] A[:] [:];

3. COMPILATION OF VECTOR EXPRESSIONS

An expression containing vector operations is called
vector expression. We distinguish two classes of vec-
tor expressions: element-wise and reduction expres-
sions. A vector expression is called element-wise if it
does not contain reduction operations. An expression of
the form [ω]Ψ, where Ψ is an element-wise expression,
is called reduction expression. For example, a[:] + b[:]
is the element-wise expression, and a[*] (a[:] + b[:]) is
the reduction expression.
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An element-wise statement is a statement of the
form Φ = Ψ; where Φ is a trivial vector expression and
Ψ is an element-wise expression. A reduction state-
ment is a statement of the form Φ = Ψ;, where Φ is a
trivial vector expression and Ψ is a reduction expres-
sion. For example, a[:] = [+]A[:][:]; is a reduction state-
ment.

When evaluating any vector expression, some data
are read from memory or, perhaps, are written to mem-
ory. If a vector expression does not contain assignment
statements and statements with side effects, then the
evaluation of this expression involves only reading of
data from memory.1 

The set of data objects that are read or written when
evaluating a given vector expression Φ is called mem-
ory used by the given expression and is denoted by
µ(Φ).

The vector assignment expression Φ = Ψ will be
referred to as base expression if µ(Φ) ∩ µ(Ψ) = ∅ .
Similarly, the base statement is a statement consisting
of one base vector expression. A base expression is
called simple if expressions Ψ and Φ do not contain
operations with side effects [3]. A statement consisting
of one simple expression is called a simple statement.

On the first stage of translation, a vector expression
is replaced by an equivalent sequence of base, reduc-
tion or element-wise, vector statements. For example,
the expression a[:] = [+]A[:][:] * [+]B[:] [:] is replaced
by the following sequence of statements:

tmp1 [:] = [+]A[:][:];
tmp2 [:] = [+]B[:][:];
a[:] = tmp1[:] *  tmp2[:];

It often happens that the base statements obtained are
simple.

On the subsequent stages of the translation, for each
base statement, its own system of nested loops is gen-
erated. Consider a base reduction statement of the form

1 Here, we do not take into account possible readings or writings of
any temporary variables being used in the evaluation of a vector
expression, since the memory for them can be allocated in a con-
flict-free way.

E = [o] F;
where F is an element-wise expression of rank n, E is a
vector of rank n – 1, and [o] is a reduction operation. To
calculate this reduction statement, it is required to eval-
uate the expression F, and, then, to apply the reduction
operation [o] to the value obtained. This can be done by
means of the following system of perfectly nested
loops:

for(i1 = 0; i1 < N1; i++) / *  loop 1 * /
  for(i2 = 0; i2 < N2; i2++) / *  loop 2 * /

…
…

  for(in = 0; in < Nn; in++) / *  loop n * /
if(i1 == 0)

E[i2, …, in] = F[i1, i2, …, in];
else

  E[i2, …, in] o= F[i1, i2, …, in];
…

where E[i2, …, in] and F[i1, i2, …, in] are terminal ele-
ments of the vector values of the expressions E and F
with the appropriate indexes and Ni = N(i, F).

Let us illustrate the compilation scheme described
on the example of the reduction statement given in the
end of the previous section. This statement can be cal-
culated by means of the following system of nested
loops:

for(i = 0; i < M; i++) / *  loop 1 * /
for(j = 0; j < N; j++) / *  loop 2 * /

if(i == 0)
a[j] = A[i][j];

else
a[j] += A[i][j];

The data by the reference a[j] are reused in loop 1.
If the number of iterations of loop 2 is large, the data
can be flushed from cache by the moment of the next
reuse. To avoid this, the number of iterations of loop 2
should be limited in order to minimize flushing of the
data by the reference a[j] from cache. To keep the total
number of iterations of loop 2 fixed, an additional loop
c2 is introduced. It is this transformation that is called
tiling:

i

j

Fig. 1. Iteration space.

for(i = 0; i < 4; i++) {
for(j = 0; j < 5; j++) {

/ *  loop body * /
}

}
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for(J = 0; J < N; J += T){ / *  loop c2 * /
for(i = 0; i < M; i++){ / *  loop 1 * /

for(j = J; j < min(J + T, N); j++) / *  loop 2 * /
if(i == 0)

a[j] = A[i][j];
else

a[j] += A[i][j];
}

}

Similarly, in the case of an arbitrary reduction state-
ment, the tiling of loops 2, …, n is used in order to
increase the number of occurrences in the cache of the
data by the reference E[i2, …, in], which is reused in
loop 1.

4. APPLICABILITY OF TILING TO SIMPLE 
REDUCTION STATEMENTS

In this section, we justify correctness of using tiling
in compilation of a simple reduction statement. In Sec-
tion 4.1, a model of iteration space is considered [17,

30], which is usually used for analysis of applicability
of tiling and other transformations of systems of per-
fectly nested loops. In Section 4.2, we demonstrate how
this model can be applied to a system of non-perfectly
nested loops obtained as a result of compilation of a
simple reduction statement.

4.1. Iteration Space and Correctness of Program 
Transformations 

Let a system of n perfectly nested loops of for type
be given:

for(i1 = 0; i1 < N1; i1++)
for(i2 = 0; i2 < N2; i2++)

…
for(in = 0; in < Nn; in++){

/ *  body of the system of nested loops * /
}

The iteration space of the given system of nested
loops is the space Zn. The given system of loops is asso-
ciated with the system of all sets  belonging to Zn

such that 0 ≤ a1 < N1, 0 ≤ a2 < N2, …, 0 ≤ an < Nn. Each
iteration of the given system of loops is made to corre-
spond to a vector from the latter system, the compo-
nents of which coincide with the values of the corre-
sponding indexes. Such a vector is referred to as the
iteration vector of the given iteration. An example of
a system of two nested loops and the iteration space
corresponding to these loops is given in Fig. 1. For the
sake of brevity, we will say “iteration ” rather than
“iteration with the iteration vector .”

The iteration space Zn can be equipped with a lexi-
cographical order s in a standard way. For the space
Z1, it coincides with the conventional order on the set
of integers. Let a lexicographical order be defined for
the space Zi, 1 ≤ i < n. A vector  from Zn is said to be
lexicographically greater than a vector  from Zn,

which is written as  s , if either b1 > a1 or b1 = a1
and (b2, …, bn) s (a2, …, an). It follows from the defi-

nition of the lexicographical order that an iteration  is

performed after an iteration  if and only if  s .

If an iteration  accesses a certain memory address

and an iteration  accesses the same address and at
least one of these accesses is data writing, the iterations

 and  are said to be data dependent. According to
the Bernstein condition [7], a transformation of a pro-
gram code is correct if the order of execution of data
dependent iterations is not changed after the transfor-
mation.

The notion of distance vector [29, 30] expresses the
notion of data dependence in geometric terms. If itera-
tions  and  are data dependent and  s , then a

distance vector  =  –  is said to exist for a given
system of nested loops.

4.2. Correctness of Tiling in Compilation of Reduction 
Statements

The applicability of tiling for an arbitrary system of
perfectly nested loops was examined in [29, 30]. To sub-
stantiate that it can be used when compiling reduction
statements, we need two following propositions [30].

Proposition 1 (Wolfe). Loops with numbers from i
through j can be rearranged in an arbitrary order if, for

a

a
a

b

a

b a

b

a b a

a

b

a b

a b b a

d b a
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any distance vector  of the given system of nested

loops, (d1, …, di – 1) s  or dk ≥ 0|i ≤ k ≤ j.

Loops satisfying the assumptions of Proposition 1
are referred to as completely rearrangeable.

Proposition 2 (Wolfe). Tiling of loops with num-
bers from i through j is a correct transformation if and
only if these loops are completely rearrangeable.

Proposition 3. Tiling can be applied to all loops of
a system of nested loops obtained by compilation of
any simple reduction statement.

Proof. Consider a simple reduction statement
E = [o] F;

where F is an element-wise expression of rank n, E is a
trivial vector expression of rank n – 1, and [o] is a
reduction operation.

The system of nested loops implementing this sim-
ple reduction statement has the form presented in Sec-
tion 3.

Since the reduction statement E = [o] F is simple,
the vectors that are values of the expressions E and F do
not intersect in the memory and the expression F[i1, i2,
…, in] does not contain operations of writing into
memory. Therefore, data dependent operations are
those that have identical addresses on their left-hand
sides. This condition is satisfied for the iterations
whose iteration vectors differ from each other only by
first components. Thus, the set of distance vectors for
the considered system of nested loops consists of vec-
tors of the form (k, 0, …, 0), where 1 ≤ k < n.

The assumption of Proposition 1 is fulfilled for the
given system of nested loops. Hence, all loops of the
system are completely rearrangeable, and, by virtue of
Proposition 2, tiling can be applied to them.

5. REUSE MODEL

In this section, we discuss basic notions of optimi-
zation theory for cache operations. Brief description
and classification of cache memory in modern comput-
ers are given in Section 5.1. In Section 5.2, a cache
interference model is described, which is used to find
an optimum tile size.

5.1. Organization of Cache Memory

Most modern computers are equipped with cache
memory. Cache is intended to store local copies of data
from the main memory. Cache and main memory are
exchanged by blocks, which are called cache lines.
Multiple associative organization of cache is consid-
ered to be typical; such organization implies that, for
each block of main memory, there is a limited set of
cache positions where that block can be located. This
set is referred to as a cache set. All cache sets contain
the same number of lines, which is called the cache
associativity degree.

a

0

Cache hit is an access to data that are available in
the cache at the moment. Otherwise, the access is called
cache miss.

When reading data, in the case of a cache miss, a
line is swamped in cache from the main memory. For
writing, there are two strategies: writhe-through and
write-back strategies. In the write-through case, the
data are written both in cache and main memory. In the
write-back case, the data are written in a cache line
only. A modified block is written into main memory
only when it was replaced (if it was not modified, no
writing occurs). If the data to be written are not avail-
able in the cache, then, in the case of the write-back
strategy, the line is swamped in the cache.

The estimate of the average access time ta to mem-
ory in systems with cache is given by [18]

(1)

where th is the average access time in the case of a cache
hit, M is a fraction of misses with respect to the total
number of memory accesses, and tm is a lost time in the
case a cache miss.

5.2. Interference Model

There are a number of different approaches to mod-
eling interference in systems of nested loops [15, 17,
19, 26, 27]. We used the approach described in [19],
since it is designed for the most general case of systems
of nested loops and data layout. In the framework of the
model considered in [19], a number of new estimates
were obtained, and existing estimates were extended to
the case of cache with an arbitrary degree of associativity.

Loop execution involves reuse of data. The reuse is
said to occur in a certain loop if data from one and the
same cache line are used by different iterations of that
loop.

The reuse is classified into two types: temporal and
spatial reuses. Temporal reuse takes place when
exactly the same data are reused. Under spatial reuse,
we mean the situation when different data from one
cache line are used on different iterations of a loop. A
typical example of spatial reuse is sequential reading
(writing) of a data array.

The reuse makes it possible to reduce the number of
cache misses when accessing data by a reference v. For
a quantitative measure of reuse, the reuse factor Rk(v )
is introduced in [19], which shows the potential reduc-
tion in the number of cache misses due to the reuse of
data by reference v  in the loop k. If the data are not
flushed from cache, the ratio of the number of cache
misses to the total number of accesses is equal to
1/Rk(v). These are so-called intrinsic misses, which
always take place; the number of them does not depend
on the way the data are stored, as well as on the struc-
ture of the loop system. In the case of a temporal reuse,
only the first access to data is a miss; therefore, the
reuse factor is N, the number of the loop iterations. In

ta th Mtm,+=
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the case of a spatial reuse, the reuse factor is equal to
the length l of the cache line.

In addition to intrinsic misses, there are interfer-
ence misses, which appear due to the fact that other
data are read or written between two reuses. Let a ref-

erence v  be reused in a loop k. Let (v) be the frac-
tion of interference misses in the total number of cache
hits. The authors of the work [19] suggest the estimate
of the fraction of cache misses in the total number of
accesses in the loop k

(2)

and the probabilistic model for finding the rate of inter-
ference misses. In accordance with that model, for the
cache with the associativity equal to one, we have

(3)

where V is the set of references in the loop body and Ik(u,
v) is the probability of the interference of the data by the
reference u with the reused data by the reference v.

The work [19] does not give an estimate of the num-
ber of interference misses for the cache with an arbi-
trary degree of associativity and only describes an
approach to finding this number. In accordance with
this approach, a cache miss takes place when, between
two reuses of certain data, the number of accesses to the
cache set containing these data is greater than or equal
to the degree of cache associativity A. The generalized
estimate (3) is given by

Here, Ik( , …, , v) is the probability that the data

addressed by the references , …, , v, where all
indexes i1, …, iA are different, occur in the same cache
set.

In what follows, we consider in detail the case of the
cache with the degree of associativity equal to one. The
case of a cache with an arbitrary associativity is treated
in a similar way but involves much more cumbersome
calculations. Therefore, we present only a final formula
for this case.

If self-interference of data by a reference v  can be
neglected, then Ik(v, v) = 0. If references u and v  are
different, then it is assumed that Ik(u, v) = Fk(u) [19],
where Fk(u) is the ratio of the amount of data run
through by the reference u for one iteration of the loop
k to the total cache size. Then, the rate of the interfer-
ence misses can be evaluated as

M̃k

Mk v( ) 1
Rk v( )
---------------

Rk v( ) 1–
Rk v( )

------------------------M̃k v( )+=

M̃k v( ) 1 1 Ik u v,( )–( ),
u V∈
∏–=

M̃k v( ) 1 1 Ik ui1
… uiA

v, , ,( )–( ).
ui1

… uiA
V∈, ,

∏–=

ui1
uiA

ui1
uiA

M̃k v( ) 1 1 Fk u( )–( ).
u V v{ }–∈

∏–=

From the practical standpoint, it is sufficient to use
approximate estimates obtained by dropping terms of
the second and higher order of smallness; i.e., if α ! 1
and β ! 1, then (1 + α)β = β + αβ . β.

Suppose that Fk(u) are small for all u. Then, drop-
ping the terms containing products of at least two quan-
tities Fk(u), we get the simpler equation for the rate of
the interference misses

(4)

Similarly, simplifying Eq. (2), we get

In the case of temporal reuse, we have

(5)

where N is the number of iterations in the loop in which
the reuse takes place.

In the case of spatial reuse, the fraction of misses is
given by

(6)

where l is the cache line length.
The total fraction of misses in a loop k for a variable

v  may be viewed as the probability that the data by the
reference v  do not occur in the cache if they are reused
only in the loop k. Let the variable v  be reused in two
loops k1 and k2. Assuming that replacements of the vari-
able v  in different loops are independent events, we get
the following formula for the probability that the data
are missing in the cache:

(7)

In the general case, the data by a certain reference
can be reused in several loops. Formulas (5)–(7) allow
us to calculate the total fraction of misses when the data
are reused in one or two loops.

The total miss rate M(v ) is related to the average
times of reading ρ(v) and writing ν(v) data by the ref-
erence v  by Eq. (1). The average read time is calculated
by the equation

(8)

where τ0 is the time of reading data from the cache to
the register and τ1 is the time of reading a cache line
from memory to the cache.

For write-through caches, the average write time
does not depend on whether the data are in the cache.
Thus, in (1), tm = 0, and we have

(9)

M̃k v( ) Fk u( ).
u V v{ }–∈

∑=

Mk v( ) 1
Rk v( )
---------------=

+ 1 1
R v( )
-------------– 

  M̃k v( ) . 
1

Rk v( )
--------------- M̃k v( ).+

Mk v( ) 1/N M̃k v( ),+=

Mk v( ) 1/l M̃k v( ),+=

Mk1k2
v( ) Mk1

v( ) Mk2
v( ).⋅=

ρ v( ) τ0 M v( )τ1,+=

ν v( ) µ0 µ1,+=
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where µ0 is the time of writing a data unit from the reg-
ister to the cache and µ1 is the time of writing cache line
to memory.

In the case of write-back caches, the average time of
writing data to memory is calculated by the formula

(10)

6. CHOICE OF OPTIMUM TILING PARAMETERS
In this section, we derive a formula for calculation

of optimum tiling parameters for a simple reduction
statement. In Section 6.1, we consider simple reduction
statements of rank two and cache with degree of asso-
ciativity equal to one. Then, in Section 6.2, the formula
obtained is generalized to the case of simple reduction
statements of arbitrary rank. In Section 6.3, we show
how to take the degree of cache associativity into
account when it is not equal to one.

6.1. Optimum Tile Size for a Simple Reduction 
Statement of Rank Two When Degree of Cache 

Associativity is Equal to One

First, consider the case of a reduction statement of
rank two; i.e., E = [o] F;, where rank(F) = 2. Suppose
also that the degree of cache associativity is one. The
system of nested loops for calculation of this simple
reduction statement is as follows:

for(i = 0; i < N1; i++) / *  loop 1 * /

for(j = 0; j < N2; j++) / *  loop 2 * /

if(i == 0)

E[j] = F[i, j];

else

E[j] o= F[i, j];

…

Applying tiling to loop 2, we get

for(J = 0; J < N2; J += T)
for(i = 0; i < N1; i++) / *  loop 1 * /

for(j = 0; j < min(J + T, N2); j++) / *  loop 2 * /
if(i == 0)

E[j] = F[i ,j];
else

E[j] o= F[i, j];
…

Since, by the definition of reduction statement, E is
a trivial vector expression, the expression E[j] has the
form s[j], where s is a scalar expression of the array or
pointer type. We denote it by s0[j].

The vector element-wise expression F contains at
least one trivial vector expression of rank two because
rank(F) = 2. Let F contain m trivial expressions or rank
two. Then, F[i, j] contains exactly m subexpressions of
the form s[i][j], where s is a scalar expression of the
array or pointer type. We denote these expressions as
s1 [i][ j], …, sm[i][ j]. In addition to those references,
F[i, j] may contain references of the form s[i] corre-
sponding to trivial vector subexpressions of rank one of
the expression F.

In the example discussed in Section 3, s0[j] has the
form a[j], m = 1, and s1[i][j] has the form A[i][j].

The access time to references from expressions E
and F not containing the index j does not depend on the
tiling parameters. The probability that they are replaced
between two reuses is small, and, in accordance with
(8), the time of reading data by those references is
assumed to be equal to τ0.

The tile size T affects only the read time for refer-
ences s0[j], s1[i][j], …, sm[i][j], which are spatially
reused in loop 2. Besides, the reference s0[j] is tempo-
rally reused in loop 1.

Since the references s0[j], s1[i][j], …, sm[i][j], are
spatially reused in the innermost loop, the data are not

flushed from the cache, except for the first iteration of
that loop. The probability of such an event is 1/T; hence,

(s0[j]) = (s1[i][j]) = … = (sm[i][j]) = 1/T in
view of (6), we get M2(s0[j]) = M2(s1[i][j]) = … =
M2(sm[i][j]) = 1/l + 1/T.

The references s1[i][j], …, sm[i][j] are reused (spa-
tially) only in loop 2. Therefore, the total fraction of
misses for these references is equal to the fraction of
misses in loop 2:

(11)

The reference s0[j] is temporally reused in loop 1.
For any reference u from the set s1[i][j], …, sm[i][j], the
relation F1(u) = T/Cs holds, where Cs is the cache size.
For all other references, F1(u) = 1/Cs, and the interfer-
ence with such references can be neglected. Thus, in

accordance with (4), (s0[ j]) = m . By virtue of

Eq. (5), M1(s0[j]) = 1/N1 + m . The data by the refer-

ence s0[j] are reused in loops 1 and 2. In accordance
with (7), the total fraction of misses is calculated as

ν v( ) µ0 M v( )µ1.+=

M̃2 M̃2 M̃2

M s1 i[ ] j[ ]( ) … M sm i[ ] j[ ]( ) 1/l 1/T .+= = =

M̃1
T
Cs

-----

T
Cs

-----

M s0 j[ ]( ) M1 s0 j[ ]( )M2 s0 j[ ]( )=
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(12)

Using Eqs. (8) and (11), we find that, for the refer-
ences s1[i][j], …, sm[i][j], the average read times satisfy
the equation ρ(s1[i][j]) = … = ρ(sm[i][j]) = τ0 + τ1/l +
τ1/T. The total average time spent for reading data by
these references for one loop iteration is given by t1 =

(sk[i][j]) = mτ0 + m  + m .

The data addressed by the reference s0[j] are, first,
read and, then, written in the same loop iteration.
Therefore, by the moment of writing the data, they are
already available in the cache. According to Eqs. (9)
and (10), the average time of write access ν(s0) for this
reference is µ0 for the write-back cache and mu0 + µ1
for the write-through cache. In view of (8) and (12), the
time of read access for the reference s0[j] is calculated

as ρ(s0[j]) = τ0 + m τ1 + m τ1 + τ1  + τ1 .

The optimum value of T is that for which the expres-
sion ν(s0[j]) + ρ(s0[j]) + t1 takes its minimum value. By
separating the part depending on T in this expression,
the problem reduces to that of minimizing the function

Φ(T) = m  + = mτ1  + . The lat-

ter function takes its minimum value when T is given by

(13)

6.2. Optimum Tile Size for a Simple Reduction 
Statement of Arbitrary Rank

Consider the case of a simple reduction statement
E = [o] F;, where rank(F) = n. The system of perfectly
nested loops for this reduction statement is given in
Section 3.

In the given case, the elements of the vector E are
reused in loop 1. To avoid flushing of elements of the
vector E between reuses, the tiling transformation is
applied to loops 2, …, n. As a result, the loop system
takes the form

for(I2 = 0; I2 < N2; I2 += T2) / *  loop c2 * /
…
…

for(In = 0; In < Nn; In += Tn) / *  loop cn * /
for(i1 = 0; i1 < N1; i++) / *  loop 1 * /

for(i2 = I2; i2 < min(I2 + T2, N2); i2++) / *  loop 2 * /
…
…
for(in = In; in < min(In + Tn, Nn); in++) / *  loop n * /

if(i1 == 0)
E[i2, …, in] = F[i1, i2, …, in];

else
E[i2, …, in] o= F[i1, i2, …, in];

…

In this case, the tile size is a product of the tiling
parameters:

(14)

The calculations presented in Section 6.1 remain
true in the case under consideration; i.e., the optimum
value of T is calculated by formula (13).

Given that the optimum tile size T0 is found, the
parameters T2, …, Tn are chosen from condition (14).
In order to maximize the reuse, the tiling parameters
should satisfy the following condition: if Ti < Ni, then
Tj = Nj for i < j ≤ n and Tj = 1 for 2 ≤ j < i.

Based on this condition and Eq. (14), we arrive at
the following scheme of finding optimum tiling param-

eters. First, the optimum tile size T0 is found by means
of (13); then, the parameters Tn, …, T2 are calculated
by the equation

(15)

6.3. Taking Associativity into Account

Let the degree of cache associativity A be greater
than one. As in [19], we assume that a cache miss
occurs when, between moments of reuse, there were
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not less than A accesses to the set containing reused
data.

It follows from this assumption that, if the number
m of vectors of rank n on the right-hand side of the
reduction statement is less than the associativity, the
flushing of data takes place only if the total amount of
data accessed between the reuses exceeds the cache
size. In this case, the optimum tile size is given by

(16)

It can be shown that, if m ≥ A, the optimum tile size
is given by

(17)

Here,  denotes the number of combinations

of m – 1 elements A – 1 at a time.

7. APPLICATION OF TILING

Tiling can be used in compilation of any simple
reduction statement. If the total amount of vectors in
the reduction statement exceeds the amount of free
memory, tiling does not result in any gain in perfor-
mance, since most time is spent for paging.

Results of experiments show that the use of tiling in
this case may even increase the run time of an applica-
tion. This is explained by the fact that the page contain-
ing elements of the vectors in a certain iteration of
loops c2, …, cn can be flushed by the next iteration of
these loops if the number of pages accessed between
the iterations is large.

Hence, the use of tiling is advisable in the case
where the total amount of vectors in the reduction state-
ment is less than the amount of memory available. The
amount of memory Fs allocated to a process by the
operating system is always less than the amount of
physical memory available in the system. This quantity
depends on the size of the resident code of the kernel
and on the workload of the system by other processes.
All these factors are difficult to take into account and to
quantitatively measure. In the code generation for
reduction statements, the following estimate is used:

Fs = , where Ms is the amount of memory installed.

In the majority of cases, this estimate is good enough
for practical purposes.

For certain problem dimensions, it may happen that
T0 ≤ . In this case, there is no need to use til-
ing in the generation of the loop system since no actial
tiling takes place and the additional loops may worsen
the performance.

T0 Cs/ m 1+( ).=

T0

lCs
A

AA m 1–

A 1– 
 

-------------------------

 
 
 
 
  1

A 1+
-------------

.=

m 1–

A 1– 
 

Ms

2
------

Ni2 i n≤ ≤∏

Thus, in compilation of a simple reduction state-
ment, tiling is advisable under the fulfillment of the fol-
lowing conditions: (i) if the total amount of vectors in
the reduction statement is less than the amount of free
memory, which can be expressed in the form of the
predicate P1 = (m + 1)  < 0.5Ms, and (ii) if

the predicate P2 = T0 >  is true. In accor-
dance with the above, the C[] compiler generates a con-
ditional code of the form

if (P1 && P2) {
/ *
loop system with tiling

* /
}
else {
/ *
loop system without tiling

* /
}

8. RESULTS OF EXPERIMENTS
In Section 8.1, results of experiments are presented

demonstrating that the tile size calculated by the formu-
las suggested is close to the optimal one. In Section 8.2,
results of experiments are given that demonstrate the
efficiency of using tiling on the example of multiplica-
tion of a matrix by a vector.

8.1. Estimation of Correctness of Formulas
for Calculation of Tile Size

For the sake of estimation, we used the reduction
statement a[] = [+] A[];. By the definition of the reduc-
tion operation, rank(A[]) = rank(a[]) + 1. We consid-
ered the cases where rank(A[]) = 2 and rank(A[]) = 3 for
platforms with different degree of cache associativity.
Table presents values of three quantities: tu is the time
of execution of a system of loops without tiling; ta is
that with tiling, with the tiling parameters being calcu-
lated by the formulas suggested; and to is the execution
time for the case of optimally chosen parameters.

The results of the experiments demonstrate that the
tiling parameters calculated by the formulas suggested
are close to optimal ones for different degrees of cache
associativity and that the use of tiling in the given case
considerably speeds up the computation.

8.2. Multiplication of Matrix by Vector

To estimate the quality of codes generated by the
C[] compiler, we consider the operation of multiplica-
tion of a matrix by a vector, which is often met in prac-
tice. In C[], it is implemented as follows:

double alp;
double a[n][m], x[n], y[m];
/ *  implementation in C[] * /

Ni1 i n≤ ≤∏
Ni2 i n≤ ≤∏
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y[] = alp *  [+] (a[] *  x[]) + bet *  y[];

The code obtained was compared with the imple-
mentation of this operation by means of the function
dgemv from BLAS library [6]. Two different platforms
were used: relatively old SPARC5 with memory 32Mb
and cache 8Kb and modern high-performance
HPJ2240 with memory 1Gb and cache 2Mb. On the
former platform, we could use only freeware: compil-
ers gcc and g77 from C and FORTRAN, respectively,
and a freely distributed version of BLAS available at
http://www.netlib.org. On the second platform, we
could use vendor software as well: a compiler from
FORTRAN, which was used for compilation of the
freely distributed version of BLAS, and the vendor ver-
sion of BLAS. For compilation of the C code generated
by the C[] compiler, we used gcc in both cases. The run
times for the C[] code without tiling, C[] code with til-
ing and the parameters being chosen in accordance

with the formulas suggested, free version of BLAS, and
vendor version of BLAS (on HPJ2240) were compared.
The dimensions n and m were chosen such that n × m =
const.

Figures 2 and 3 show the results for SPARC5 and
HPJ2240, respectively. As can be seen, in all cases, the
use of tiling with the appropriately chosen parameters
reduced the run time of the C[] code. On SPARC5 plat-
form, the C[] code with tiling is more efficient than the
free BLAS in the majority of cases. On HPJ2240, the
picture is somewhat different: the C[] code with tiling
is more efficient than the free BLAS only for suffi-
ciently large m. Of course, the vendor version of BLAS
was the most efficient. The run time of the C[] code was
about twice as much as that of the vendor BLAS, which
is not bad taking into account that the former is written
in a universal programming language, whereas the lat-
ter is a library subroutine specially optimized for the
platform.

9. COMPARISON WITH OTHER RELATED 
WORKS

Problems of code generation for vector expressions
in vector programming languages are discussed in
many works [8, 11–14, 21, 23–25, 28]. Most attention
in those works is given to traditional optimizing trans-
formations, such as loop fusion, array contraction,
removal of dead variables, optimization of index
expressions, and the like. Some works [11, 12, 23] sug-
gest using interprocessor parallelism of target architec-
ture to speed up computation of element-wise vector
expressions.

In a number of works [12, 13, 21, 25], problems of
optimal use of memory structure of target architecture
when generating codes for vector expressions are dis-
cussed. Two aspects of memory optimization are con-
sidered: reduction of total amount of vectors taking part
in the computation and increase of the degree of spatial

Execution time for the statement a[] = [+] A[]; tu is the execution time without tiling; ta is the execution time with tiling the
parameters of which are calculated by the formulas suggested; and to is the execution time with tiling with optimum values
of the parameters

Platform  Cache Associativity Dimension tu ta to

SPARC 5 8 Kb 1 1000 × 1000 0.380 0.273 0.273

1500 × 1500 0.830 0.630 0.610

100 × 100 × 100 0.387 0.333 0.307

100 × 1000 × 10 0.417 0.337 0.337

100 × 10 × 1000 0.387 0.327 0.303

SPARC 20 16 Kb 4 1000 × 1000 0.225 0.215 0.210

1500 × 1500 0.540 0.482 0.460

100 × 20 × 1000 0.570 0.410 0.410

100 × 200 × 100 0.570 0.420 0.413

100 × 2000 × 10 0.597 0.440 0.430
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Time, s
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Fig. 2. Run time (in seconds) for SPARC5, m × n = 106.
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reuse. Note that the latter is achieved either by means
of loop unrolling or by permutation of loops obtained
by compiling vector expressions.

We do not know works where the use of tiling is dis-
cussed for increasing the degree of data reuse in vector
expressions. Traditionally, vector expressions are
directly translated into a system of nested loops, which
are further optimized by applying various optimizing
transformations, including tiling. In so doing, however,
important information about the structure of the vector
expression is lost, which, in many cases, makes it
impossible to use tiling without additional cumbersome
analysis, which considerably slows down compilation.
The use of this information in the C[] compiler allows
one to use tiling without additional cumbersome analy-
sis and with optimum tile size when generating codes
for most vector expressions.

10. CONCLUSION

In the paper, all problems related to the use of tiling
in compilation of reduction statements of the C[] lan-
guage have been discussed. The class of simple reduc-
tion statements has been distinguished for which the
use of tiling transformation is proven to be correct, and
the scheme of transformation of a wide class of reduc-
tion statements to a sequence of simple ones has been
described. Based on a model of cache interference, for-
mulas for accurate calculation of tiling parameters for
simple reduction statements have been obtained. It has
been shown that the code for reduction statements gen-
erated by the C[] compiler is comparable with (and,
often, even better than) subroutines specially designed
for the purpose discussed.
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