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Abstract---In this paper, we present an efficient procedure for building a piecewise linear 

function approximation of the speed function of a processor with hierarchical memory structure. 

The procedure tries to minimize the experimental time used for building the speed function 

approximation. We demonstrate the efficiency of our procedure by performing experiments with 

a matrix multiplication application and a Cholesky Factorization application that use memory 

hierarchy efficiently and a matrix multiplication application that uses memory hierarchy 

inefficiently on a local network of heterogeneous computers. 

1. Introduction 

In our previous research [1], we addressed the problem of optimal distribution or scheduling of 

computational tasks on networks of heterogeneous computers when one or more tasks do not fit 

into the main memory of the processors and when relative speeds of processors cannot be 

accurately approximated by constant functions of the problem size. We designed efficient 

algorithms to solve this scheduling problem using a performance model that integrates some of 

the essential features of a heterogeneous network of computers (HNOC) having a major impact 

on the performance, such as the processor heterogeneity, the heterogeneity of memory structure, 

and the effects of paging. Under this model, the speed of each processor is represented by a 

continuous and relatively smooth function of the problem size. This model is application-centric 

in the sense that generally speaking different applications will characterize the speed of the 

processor by different functions. Actually on general-purpose common heterogeneous networks,  
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Figure 1. Using piecewise linear approximation to build speed bands for 2 processors. The circular points are 

experimentally obtained whereas the square points are calculated using heuristics. The speed band for 

processor s1(x) is built from 3 experimentally obtained points (application run on this processor uses memory 

hierarchy inefficiently) whereas the speed band s2(x) (application run on this processor uses memory 

hierarchy efficiently) is built from 4 experimentally obtained points. 

 
an integrated computer will experience constant and stochastic fluctuations in the workload. This 

changing transient load will cause a fluctuation in the speed of the computer in the sense that the 

execution time of the same task of the same size will vary for different runs at different times. 

The natural way to represent the inherent fluctuations in the speed is to use a speed band rather 

than a speed function. The width of the band characterizes the level of fluctuation in the 

performance due to changes in load over time. In our previous research, we did not propose any 

methods to build and maintain the speed band of a processor. 

In this paper, we present an efficient and a practical procedure for building a piecewise linear 

function approximation of the speed band of a processor with hierarchical memory structure. 

This band should be able to represent any speed function of the processor, that is, any speed 

function representing the performance of the processor should fit into the speed band. The 

procedure tries to minimize the experimental time used for building the piecewise linear function 



3 

approximation of the speed band. We do not propose methods to maintain the speed function 

approximation. This is a subject of our future research. 

Sample piece-wise linear function approximations of the speed band of a processor are shown 

in Figure 1. Each of the approximations is built using a set of few experimentally obtained 

points. The more points used to build the approximation, the more accurate the approximation is. 

However it is prohibitively expensive to use large number of points. Hence an optimal set of few 

points needs to be chosen to build an efficient piecewise linear function approximation of the 

speed band. Such an approximation gives the speed of the processor for any problem size with 

certain accuracy within the inherent deviation of the performance of computers typically 

observed in the network.  

The rest of the paper is organized as follows. In section 2, we formulate the problem of 

building a piecewise linear function approximation of a processor and present an efficient and a 

practical procedure to solve the problem. To demonstrate the efficiency of our procedure, we 

perform experiments using a matrix multiplication application and a Cholesky Factorization 

application that use memory hierarchy efficiently and a matrix multiplication application that 

uses memory hierarchy inefficiently on a local network of heterogeneous computers. 

2. Procedure for Building Speed Function Approximation 

This section is organized as follows. We start with the formulation of the speed band 

approximation building problem. This is followed by a section on obtaining the load functions 

characterizing the level of fluctuation in load over time. The third section presents the 

assumptions adopted by our procedure. We then present some operations and relations related to 

the piecewise linear function approximation of the speed band. And finally we explain our 

procedure to build the piecewise linear function approximation. 
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(c)                                                                                      (d) 

Figure 2. (a) Real-life speed band of a processor, (b) Real-life speed band of a processor and a piecewise 

linear function approximation of a processor, (c) The speeds smax(x) and smin(x) representing a cut of the real 

band used to build the piecewise linear approximation, and (d) Piecewise linear approximation built by 

connecting the cuts. 

2.1 Problem Formulation  

For a given application in a real-life situation, the performance demonstrated by the processor is 

characterized by a speed band representing the speed function of the processor with the width of 

the band characterizing the level of fluctuation in the speed due to changes in load over time. 

This is shown in Figure 2(a).  

The problem is to find experimentally an approximation of the speed band of the processor 

that can represent the speed band with sufficient accuracy and at the same time spend minimum 

experimental time to build the approximation. One such approximation is a piecewise linear  
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Figure 3. The non-empty intersectional area of piecewise linear function approximation with the real-life 

speed band is a simply connected surface. 

 

function approximation which accurately represents the real-life speed band with a finite number 

of points. This is shown in Figure 2(b). 

The piecewise linear function approximation of the speed band of the processor is built using 

a set of experimentally obtained points for different problem sizes.To obtain an experimental 

point for a problem size x (we define the size of the problem to be the amount of data stored and 

processed by the application), we execute the application for this problem size. We measure the 

ideal execution time tideal and not the real time of execution. We define tideal as the time it would 

require to solve the problem on a completely idle processor. For example on UNIX platforms, 

this information can be obtained by using the time utility or the getrusage() system call. The 

ideal speed of execution sideal is then equal to the volume of computations divided by tideal. We 

assume we have the load functions of historical load data lmax(t) and lmin(t), which are the 

maximum and minimum load averages observed over increasing time periods. The load average 

is the number of active processes running on the processor at any time. We make a prediction of 

the maximum and minimum average load, lmax,predicted(x) and lmin,predicted(x) respectively, that 
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would occur during the execution of the application for the problem size x. The creation of the 

functions lmax(t) and lmin(t) and predicting the load averages are explained in detail in the next 

section. Using sideal and the load averages predicted, we calculate smax(x) and smin(x) for a 

problem size x: 

)()()()( min,max xSxlxSxS idealpredictedideal ×−=  

)()()()( max,min xSxlxSxS idealpredictedideal ×−=  

The experimental point is then given by a vertical line connecting the points (x, smax(x)) and 

(x, smin(x)). We call this vertical line the “cut” of the real band. This is illustrated in Figure 2(c). 

The difference between the speeds smax(x) and smin(x) represents the level of fluctuation in the 

speed due to changes in load during the execution of the problem size x. The piecewise linear 

approximation is obtained by connecting these experimental points as shown in Figure 2(d). So 

the problem of building the piecewise linear function approximation is to find a set of such 

experimental points that can represent the speed band with sufficient accuracy and at the same 

time spend minimum experimental time to build the piecewise linear function approximation.  

Mathematically the problem of building piecewise linear function approximation can be 

formulated as follows: 

Definition 1. Piecewise Linear Function Approximation Building Problem 

PLFABP(lmin(t),lmax(t)): Given the functions lmin(t) and lmax(t) (lmin(t) and lmax(t) are functions of 

time, characterizing the level of fluctuation in load), obtain a set of n experimental points 

representing the piecewise linear function approximation of the speed band of a processor, each 

point representing a cut given by (xi,smax(xi)) and (xi,smin(xi)) where xi is the size of the problem 

and smax(xi) and smin(xi) are speeds calculated based on the functions lmin(t) and lmax(t) and ideal 

speed sideal at point i, such that: 
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•  The non-empty intersectional area of piecewise linear function approximation with the 

real-life speed band is a simply connected surface (A surface is said to be connected if a 

path can be drawn from every point contained within its boundaries to every other point. A 

topological space is simply connected if it is path connected and it has no holes. This is 

illustrated in Figure 3), and  

•  the sum ∑
=

n

1i
it  of the times is minimal where ti is the experimental time used to obtain 

point i.  

We provide an efficient and a practical procedure to build a piecewise linear function 

approximation of the speed function of a processor. 

 

2.2 Load Functions 

 
There are a number of experimental methods that can be used to obtain the functions lmin(t) and 

lmax(t) (characterizing the level of fluctuation in load over time) input to our procedure for 

building the piecewise linear function approximation. 

One of the methods is to use the metric of Load Average. Load Average measures the number 

of active processes at any time. High load averages usually means that the system is being used 

heavily and the response time is correspondingly slow. The operating system maintains three 

figures for averages over one, five and fifteen minute periods. There are alternative metrics 

available through many utilities on various platforms such as vmstat (UNIX), top (UNIX), 

perfmon (Windows) or through performance probes and they may be combined to more 

accurately represent utilization of a system under a variety of conditions [2]. For this paper we 

will use the load average metric only. 
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(c)                                          

Figure 4. (a) lmax(t) and lmin(t) are generated from the load history. (b) A plot of points in matrix A. (c) lmax(t) 

and lmin(t), the maximum and minimum loads calculated from the matrix of load averages A. 

 

The load average data is represented by two piecewise linear functions: lmax(t) and lmin(t). The 

functions describe load averaged over increasing periods of time up to a limit w as shown in 

Figure 4(c). This limit should be at most the running time of the largest foreseeable problem, 

which is the problem size where the speed of the processor can be assumed to be zero (this is 

given by problem size b discussed in section 2.5). For execution of a problem with a running 

time greater than this limit, the values of the load functions at w may be extended to infinity. The 

functions are built from load averages observed every ∆  time units. One, five or fifteen minutes 

are convenient values for ∆  as statistics for these time periods are provided by the operating  
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Figure 5. Intersection of load and running time functions (Formula 3). 

 

system (using a system call getloadavg()). Alternate values of ∆  would require additional 

monitoring of the load average and translation into ∆  time unit load average.  

The amount of load observations used in the calculation of lmax(t) and lmin(t) is given by h, the 

history. A sliding window with a length of w passes over the h most recent observations. At each 

position of the window a set of load averages is created from the observations inside the window. 

If ∆  were one minute, a one minute average would be given by the first observation in the 

window, a two minute average would be the average of the first and second observations in the 

window, and so on. While the window is positioned completely within the history, a total of w 

load averages would be created in each set, the load averages having periods of ∆ , 2∆ , … w∆  

time units. The window can move a total of w times, but after the (h – w)-th time, its end will 

slide outside of the history. The sets of averages created at these positions will not range as far as 

w∆  but they are still useful. From all of these sets of averages, maximum and minimum load 
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averages for each time period ∆ , 2∆ , … w ∆  are extracted and used to create the functions lmax(t) 

and lmin(t). 

More formally, if we have a sequence of observed loads: l1,l2,...,lh , then the matrix A of load 

averages created from observations is defined as follows: 

h<j+i and ...1;...1 allfor  ,   where
.
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The elements marked as ×  in the matrix A are not evaluated as the calculations would operate on 

observations taken beyond lh. lmax(t) and lmin(t), are then defined by the maximum and minimum 

calculated j-th load averages respectively, i.e. the maximum or minimum value of a row j in the 

matrix (see Figure 4). Points are connected in sequence by straight-line segments to give a 

continuous piecewise function. The points are given by:  

lmax j( )=
i=1

h

max aij( )

lmin j( )=
i=1

h

min aij( )
 (2) 

Initial generation of the array has been implemented with a complexity of h × w( )2
. Maintaining 

the functions lmax(t) and lmin(t) after a new observation is made has a complexity of 2w . ∆ , h, 

and w may be adjusted to ensure the generation and maintenance of the functions is not an 

intensive task. 

When building the speed functions Smin(x) and Smax(x), we execute the application for a 

problem size x. We then measure the ideal time of execution tideal. We define tideal as the time it 

would require to solve the problem on a completely idle processor. On UNIX platforms it is 

possible to measure the number of CPU seconds a process has used during the total time of its 
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execution. This information is provided by the time utility or by the getrusage() system call. We 

assume that the number of CPU seconds a process has used is equivalent to time it would take to 

complete execution on a completely idle processor: tideal. We can then estimate the time of 

execution for the problem running under any load l with the following function: 

( ) idealt
l

lt ×
−

=
1

1
 (3) 

This formula assumes that the system is uniprocessor, that no jobs are scheduled if the load is 

one or greater and that the task we are scheduling is to run as a nice’d process (nice is an 

operating system call that allows a process to change its priority), only using idle CPU cycles. 

These limitations fit the target of execution on non-dedicated platforms. If a job is introduced 

onto a system with a load of, for example, 0.1, the system has a 90% idle CPU, then the formula 

predicts that the job will take 1/0.9 times longer than the optimal time of execution: tideal.  

In order to calculate the speed functions Smin(x) and Smax(x), we need to find the points where 

the function of performance degradation due to load (Formula 3) intersects with the history of 

maximal and minimal load lmax(t) and lmin(t) as shown in Figure 5. For a problem size x, the 

intersection points give the maximum and minimum predicted loads lmax,predicted(x) and 

lmin,predicted(x). Using these loads, the speeds Smin(x) and Smax(x) for a problem size x are 

calculated as: 

)()()()( min,max xSxlxSxS idealpredictedideal ×−=                    (4) 

)()()()( max,min xSxlxSxS idealpredictedideal ×−=                    (5) 

where )(xSideal  is equal to the volume of computations involved in solving the problem size x 

divided by the ideal time of execution tideal.  

2.3 Assumptions 
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Figure 6. Permissible shapes of the graphs representing the real-life speed bands of two processors. 
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 (a)                                                                                      (b) 

Figure 7. (a) Shape of real-life speed function of processor for applications that use memory hierarchy 

efficiently, (b) Shape of real-life speed function of processor for applications that use memory hierarchy 

inefficiently.  

 

We make some assumptions on the real-life speed band of a processor. Firstly, there are some 

shape requirements.  

(a) We assume that the upper and lower curves of the speed band are continuous functions of 

the size of the problem. 

(b) The permissible shapes of the real-life speed band are: 
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•  The upper curve and the lower curve are both a non-increasing function of the size of 

the problem for all problem sizes (as shown by s1(x) in Figure 6). 

•  The upper curve and the lower curve are both a non-decreasing function of the size of 

the problem followed by a non-increasing function of the size of the problem (as 

shown by s2(x) in Figure 6).  

(c) A straight line intersects the upper curve of the real-life speed band in no more than one 

point between its endpoints and the lower curve of the real-life speed band in no more than 

one point between its endpoints as shown for applications that use memory hierarchy 

efficiently in Figure 7(a) and for applications that use memory hierarchy inefficiently as 

shown in Figure 7(b).  

(d) We assume that the width of the real-life speed band, representing the level of fluctuations 

in speed due to changes in load over time, decreases as the problem size increases. 

These assumptions are justified by experiments conducted with a range of applications 

differently using memory hierarchy presented in [3].  

Secondly, we do not take into account the effects on the performance of the processor caused 

by several users running heavy computational tasks simultaneously. We suppose only one user 

running heavy computational tasks and multiple users performing routine computations and 

communications, which are not heavy like email clients, browsers, audio applications, text 

editors etc. 

2.4 Definitions 

 
Before we present our procedure to build a piecewise linear function approximation of the speed 

band of a processor, we present some operations and relations on cuts that we use to describe the 
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procedure. The piecewise linear function approximation of the speed band of the processor is 

built by connecting these cuts. 

1. We use Ix at problem size x to represent the interval (smin(x),smax(x)). Ix is the projection 

of the cut Cx connecting the points (x,smin(x)) and (x,smax(x)) on the y-axis. 

2. Ix≤Iy if and only if smax(x)≤smax(y) and smin(x)≤smin(y).  

3. Ix∩Iy represents intersection between the intervals (smin(x),smax(x)) and (smin(y),smax(y)). If 

Ix∩Iy=Ø where Ø represents an empty set with no elements, then the intervals are 

disjoint. If Ix∩Iy=Iy, then the interval (smin(x),smax(x)) contains the interval 

(smin(y),smax(y)), that is, smax(x)≥smax(y) and smin(x)≤smin(y). 

4. Ix=Iy if and only if Ix≤Iy and Iy≤Ix. 

2.5 Speed Function Approximation Building Procedure 

 
Procedure Geometric Bisection Building Procedure GBBP(lmax(t), lmin(t)). The procedure to 

build the piecewise linear function approximation of the speed band of a processor consists of 

the following steps and is illustrated in Figure 8: 

1. We select an interval [a,b] of problem sizes where a is some small size and b is the 

problem size large enough to make the speed of the processor practically zero. In most 

cases, a is the problem size that can fit into the top level of memory hierarchy of the 

computer (L1 cache) and b is the problem size that is obtained based on the maximum 

amount of memory that can be allocated on heap. To calculate the problem size b, we run 

a modified version of the application, which includes only the code that allocates memory 

on heap. For example consider a matrix-matrix multiplication application of two dense 

square matrices A and B of size n×n to calculate resulting matrix C of size n×n, the 

modified version of the application would just contain the allocation and de-allocation of  
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Figure 8. (a) to (l) Illustration of the procedure to obtain the piecewise linear function approximation of the 

speed band for a processor. Circular points are experimentally obtained points. Square points are points of 

intersection that are calculated but not experimentally obtained. White circular points are experimentally 

obtained and that fall in the current approximation of the speed band. (m) The final piecewise linear function 

approximation of the speed band of a processor for an application that utilizes memory hierarchy efficiently. 

(n) The final piecewise linear function approximation of the speed band of a processor for an application that 

utilizes memory hierarchy inefficiently. 

 

matrices A, B, and C on heap. This modified version is then run until the application fails  

due to exhaustion of heap memory, the problem size at this point gives b. It should be 

noted that finding the problem size b by running the modified version should take just 

few seconds.  

We obtain experimentally the speeds of the processor at point a given by smax(a) and 

smin(a) and we set the absolute speed of the processor at point b to 0. Our initial 

approximation of the speed band is a speed band connecting cuts Ca and Cb. This is 

illustrated in Figure 8(a). 

2. We experiment with problem sizes a and 2a. If I2a≤Ia or I2a∩Ia=I2a, we replace the current 

approximation of the trapezoidal speed band with two trapezoidal connected bands, the 
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first one connecting the cuts Ca and C2a and the second one connecting the cuts C2a and 

Cb. We then consider the interval [2a,b] and apply step 3 of our procedure to this interval. 

The speed band in this interval connecting the cuts at problem sizes 2a and b is input to 

step 3 of the procedure. We set xleft to 2a and xright to b. 

If Ia≤I2a, we recursively apply this step until I(k+1)×a≤Ika or I(k+1)×a≤Ika=I(k+1)×a. We 

replace the current approximation of the speed band in the interval [k×a,b] with two 

connected bands, the first one connecting the cuts Cka and C(k+1)×a and the second one 

connecting the cuts C(k+1)×a and Cb. We then consider the interval [(k+1)×a,b] and apply 

the step 3 of our procedure to this interval. The speed band in this interval connecting the 

cuts C(k+1)×a and Cb is input to step 3 of the procedure. We set xleft to (k+1)×a and xright to 

b. This is illustrated in Figure 8(b). 

It should be noted that the time taken to obtain the cuts at problem sizes {a, 2a, 

3a,…,(k+1)×a} is relatively small (usually milliseconds to seconds) compared to that for 

larger problem sizes (usually minutes to hours). 

3. We bisect this interval [xleft,xright] into sub-intervals [xleft,xb1
] and [xb1

,xright] of equal 

length. We obtain experimentally the cut Cxb1
 at problem size xb1

. We also calculate the 

cut of intersection of the line x=xb1 
with the current approximation of the speed band 

connecting the cuts Cx
left

 and Cx
right

. The cut of intersection is given by C'xb1
. 

a. If Ix
left
∩Ixb1

≠Ø, we replace the current approximation of the speed band with two 

connected bands, the first one connecting the cuts Cx
left

 and Cxb1 
and the second 

one connecting the cuts Cxb1
 and Cx

right
. This is illustrated in Figure 8(c). We stop 

building the approximation of the speed band in the interval [xleft,xb1
] and 

recursively apply step 3 for the interval [xb1
,xright]. We set xleft to xb1

. 
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b. If Ix
left
∩Ixb1

=Ø and Ix
right
∩Ixb1

≠Ø, we replace the current approximation of the 

speed band with two connected bands, the first one connecting the cuts Cx
left

 and 

Cxb1 
and the second one connecting the cuts Cxb1

 and Cx
right

. This is illustrated in 

Figure 8(d). We stop building the approximation of the speed band in the interval 

[xb1
,xright] and recursively apply step 3 for the interval [xleft,xb1

]. We set xright to 

xb1
. 

c. If Ix
left
∩Ixb1

=Ø and Ix
right
∩Ixb1

=Ø and Ixb1
∩I'xb1

≠Ø, then we have two scenarios 

illustrated in Figures 9(e) and 9(f) where experimental point at the first point of 

bisection falls in the current approximation of the speed band just by accident.  

Consider the interval [xleft,xb1
]. This interval is bisected at the point xb2

. We 

obtain experimentally the cut Cxb2 
at problem size xb2

. We also calculate the cut of 

intersection C'xb2 
of the line x=xb2 

with the current approximation of the speed 

band. If Ixb2
∩I'xb2

≠Ø, we stop building the approximation of the speed function in 

the interval [xleft,xb1
] and we replace the current approximation of the trapezoidal 

speed band in the interval [xleft,xb1
] with two connected bands, the first one 

connecting the cuts Cx
left

 and Cxb2 
and the second one connecting the points Cxb1

 

and Cxb2
. Since we have obtained the cut at problem size xb2

 experimentally, we 

use it in our approximation. This is chosen as our final piece of our piece-wise 

linear function approximation in the interval [xleft,xb1
]. If Ixb2

∩I'xb2
=Ø, the 

intervals [xleft,xb2
] and [xb2

,xb1
] are recursively bisected using step 3. Figure 8(g) 

illustrates the procedure.  
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Consider the interval [xb1
,xright]. This interval is recursively bisected using step 

3. We set xleft to xb1
. Figure 8(h) illustrates the procedure.  

d. If Ix
left
∩Ixb1

=Ø and Ix
right
∩Ixb1

=Ø and Ixb1
≤I'xb1 

and Ixb1
∩I'xb1

=Ø, we replace the 

current approximation of the speed band with two connected bands, the first one 

connecting the cuts Cx
left

 and Cxb1 
and the second one connecting the cuts Cxb1

 

and Cx
right

. This is illustrated in Figure 8(i). The intervals [xleft,xb1
] and [xb1

,xright] 

are recursively bisected using step 3. Figure 8(j) illustrates the procedure. 

e. If Ix
left
∩Ixb1

=Ø and Ix
right
∩Ixb1

=Ø and I'xb1
≤Ixb1 

and Ixb1
∩I'xb1

=Ø, we replace the 

current approximation of the speed band with two connected bands, the first one 

connecting the cuts Cx
left

 and Cxb1 
and the second one connecting the cuts Cxb1

 

and Cx
right

. This is illustrated in Figure 8(k). The interval [xleft,xb1
] and [xb1

,xright] 

are recursively bisected using step 3. Figure 8(l) illustrates the procedure.  

4. The stopping criterion of the procedure is satisfied when we don’t have any sub-interval 

to divide. 

3. Experimental Results 

 
We consider a Linux workstation and a Solaris workstation, which are integrated into local 

departmental network in the experiments. The specifications of the computer are shown in Table 

1. The amount of memory, which is the difference between the total main memory and available 

main memory shown in the tables, is used by the operating system processes and few other user 

application processes that perform routine computations and communications such as email 

clients, browsers, text editors, audio applications etc. These processes use a constant percentage 

of CPU. 
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Table 1. Specifications of two processors. 
Matrix-matrix 
multiplication 

(dgemm) 
& 

Inefficient 
Matrix-matrix 
multiplication  

Cholesky 
Factorization 

(dpotrf) 

Processor Architecture Cpu 
MHz 

Total Main 
Memory 
(kBytes) 

Available 
Main 

Memory 
(kBytes) 

Cache 
(kBytes) 

Size of 
matrix 

(na) 

Size of 
matrix 

(nb) 

Size of 
matrix 

(na) 

Size of 
matrix 

(nb) 

X1 

Linux 
2.6.8-1.521smp 

Intel(R) 
XEON(TM) 

1977 1033908 460368 512 100 13000 100 19500 

X2 
SunOS 5.9 

UltraSPARC-Iii 
440 524288 401408 2048 100 7000 100 13000 

 
Table 2. Speedup of GBBP procedure over naïve procedure. 

Matrix-matrix 
multiplication 

(ATLAS) 

Cholesky Factorization 
(ATLAS) 

Inefficient Matrix-matrix 
multiplication 

 

Processor 

Speedup (Number of points 
taken to build using GBBP) 

Speedup (Number of points 
taken to build using GBBP) 

Speedup (Number of points 
taken to build using GBBP) 

X1 8.5(7) 6.5(19) 5.9(5) 
X2 5.7(10) 15(8) 5.7(5) 

 

There are three applications used to demonstrate the efficiency of our procedure to build the 

piecewise linear function approximation of the speed band of a processor. The first application is 

Cholesky Factorization of a dense square matrix employing the LAPACK [4] routine dpotrf. 

The second application is matrix-matrix multiplication of two dense matrices using memory 

hierarchy inefficiently. The third application is based on matrix-matrix multiplication of two 

dense matrices employing the level-3 BLAS routine dgemm [5] supplied by Automatically 

Tuned Linear Algebra Software (ATLAS) [6]. 

Figures 9(a) to 9(f) show the real-life speed function and the piecewise linear function 

approximation of the speed band of the processors X1 and X2 for the matrix multiplication and 

Cholesky Factorization applications. The real-life speed function for a processor is built using a 

set of experimentally obtained points (x,s) . To obtain an experimental point for a problem size x, 

we execute the application for the problem size at that point. The absolute speed of the processor  
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(d)                                                              (e)                                                    (f) 

Figure 9. Piecewise linear approximation of the speed band against the real-life speed function. Circular 

points are experimentally obtained points. Square points are calculated but not experimentally obtained. (a) 

Cholesky Factorization using ATLAS on X1. (b) Cholesky Factorization using ATLAS on X2. (c) Matrix-

matrix multiplication using memory hierarchy inefficiently on X1. (d) Matrix-matrix multiplication using 

memory hierarchy inefficiently on X2. (e) Matrix-matrix multiplication using ATLAS on X1. (f) Matrix-

matrix multiplication using ATLAS on X2. 

 

s for this problem size is obtained by dividing the total volume of computations by the real 

execution time (and not the ideal execution time).  

Table 2 shows the speedup of Geometric Bisection Building Procedure (GBBP) over a naïve 

procedure. The naïve procedure divides the interval [a,b] of problem sizes equally into n points. 

The application is executed for each of the problem sizes {(a),(a+(b-a)/n),(a+2×(b-a)/n),…,(b)} 

to obtain the experimental points to build the piecewise linear function approximation of the  
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(c)                                                                                      (d) 

Figure 10. (a) Load functions for X1. (b) Load functions for X2. (c) Load functions for a departmental server 

running loads at all times. (d) Load functions generated with average periods beyond one hour. 

 
speed band. In our experiments, we have used 20 points. The speedup calculated is equal to the 

ratio of the experimental time taken to build the piecewise linear function approximation of the 

speed band using the naïve procedure over the experimental time taken to build the piecewise 

linear function approximation of the speed band.  

We measured the accuracy of the load average functions lmax(t) and lmin(t) by counting how 

often a future load was found to be within the bounds of the curves and by measuring the area 

between the curves. A very wide band will encompass almost all future loads but the prediction 

of maximum and minimum load will be poor. We fixed w, the window size, and varied h to 

examine how the hit ratio and area of the band changed. X1, a machine operating as a desktop 

with constant minor fluctuations in load, shows that a 60 minute window size gives good 
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accuracy with 4 hours of historical data. X2 is used for running intensive jobs with relative 

infrequency. Figures 10(a) and 10(b) shows a sample of the load functions for processors X1-X2. 

Figure 10(c) shows a load function for a departmental server with loads running at all times. 

4. Discussion and Future Work 

In this paper, we presented an efficient and a practical procedure to build a speed function 

approximation of a processor. We demonstrated the efficiency of our procedure by performing 

experiments with a matrix multiplication application and a Cholesky Factorization application 

that use memory hierarchy efficiently and a matrix multiplication application that uses memory 

hierarchy inefficiently on a local network of heterogeneous computers.  

Most real-life speed bands shown by applications running on variety of operating systems 

satisfy the requirements of the GBBP procedure outlined in Section 2.3. However for some 

operating systems, the shape of the real-life speed band has a plateau in the region of paging as 

shown in Figure 9(f), which fails the requirement (c) of the GBBP procedure. This figure shows 

the real-life speed function and the piecewise linear function approximation of the speed band of 

an UltraSparc processor X2 for a matrix multiplication application using ATLAS. In this case, 

due to just one plateau in the region of paging, GBBP procedure manages to build piecewise 

linear function approximation. However it is inefficient since it takes two additional 

experimental points at problem sizes 5000 and 6500 in the region 4000-7000. In general, GBBP 

procedure fails to build an efficient piecewise linear function approximation for such shapes. We 

aim to extend our procedure to build piecewise linear function approximation efficiently for such 

shapes. 

During the building of the piecewise linear function approximation using the GBBP 

procedure, we consider the cut of the real-life speed band experimentally obtained for a problem 
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size is accurate enough if there is a non-empty intersectional area with cut of the current 

approximation of the speed band. That is if Ix∩Iy≠Φ where Ix and Iy represent the intervals 

(smin(x),smax(x)) and (smin(y),smax(y)) of reflections of cuts Cx and Cy on y-axis respectively. The 

procedure thus uses implicitly the notion of distance between the intervals to represent accuracy 

of the building procedure. This notion of distance between the intervals can be included in the 

parameter list to the GBBP procedure without any modifications to the procedure.  

Further consideration should be put into choosing the maximum and minimum loads to 

represent a particular n minute load average. If the averages have a distribution that fits some 

curve then the maximum and minimum limits of the load functions could be set to encompass a 

certain percentage of this curve. This would result in a narrower pair of load curves and could 

give a more accurate representation of the band. 

The general shape of lmax(t) and lmin(t) showed that for problems executing for very long time 

frames, beyond one hour to one day (shown in Figure 10(d)), the deviation between predicted 

maximum and minimum performance is very low. For example, at 4 hours the deviation is less 

than 1.6%. Variation in load average is very small at these time scales on all our machines, 

despite their differing roles. This would indicate that the importance of the band lies in 

scheduling jobs that run for lesser periods of time. The window size, w, could be dynamically 

assigned so that the final pair of maximum and minimum load averages represents a variation in 

performance of some user-defined percentage, and after this point the band could be considered a 

constant function. 

We understand the importance of the problem of efficient maintenance of the speed function 

approximation of the speed band. This problem is the subject of our current research. We aim to 

design efficient algorithms of data partitioning on heterogeneous networks of computers where 
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the speed of a processor is represented by a speed band, the width of the band characterizing 

fluctuations in speed due to changes in load over time. 
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