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Abstract

The paper presents a new advanced version of the mpC parallel language. The language

was designed specially for programming high-performance parallel computations on heteroge-

neous networks of computers.

The advanced version allows the programmer to define at runtime all the main features of

the underlying parallel algorithm, which have an impact on the application execution perfor-

mance, namely, the total number of participating parallel processes, the total volume of com-

putations to be performed by each of the processes, the total volume of data to be transferred

between each pair of the processes, and how exactly the processes interact during the execution

of the algorithm. Such an abstraction of parallel algorithm is called a network type in mpC.

Given a network type, the programmer can define a network object of this type and de-

scribe in details all the computations and communications to be performed on the network

object. The mpC programming system uses the information extracted from the network-type

definition together with information about the actual performance of the executing network to

map the processes of the parallel program to this network in such a way that leads to its better

execution time.

In addition, the programmer can use a special operator, timeof, which predicts the total

time of the algorithm execution on the underlying hardware without its real execution. That

feature allows the programmer to write such a parallel program that can follow different par-

allel algorithms to solve the same problem, making choice at runtime depending on the par-

ticular executing network and its actual performance.

The paper describes both the language model of parallel algorithm and the model of exe-

cuting parallel environment used by the mpC programming system. It also discusses principles

of the implementation of mapping mpC network objects to the computing network.
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1. Introduction

Heterogeneous networks of computers are the most general and common parallel
architecture. In the most general case, a heterogeneous network includes PCs, work-
stations, multiprocessor servers, clusters of workstations, and even supercomputers.
Unlike traditional homogeneous parallel platforms, the heterogeneous parallel archi-
tecture uses processors running at different speeds. What is even more important, the
processors demonstrate different relative speeds on different code mixtures. Speeds of
data transfer between different processors in heterogeneous networks can also differ
significantly. Communications between processors of the same shared-memory mul-
tiprocessor server will be much faster than communications between processors of
different workstations. It makes programming heterogeneous platforms a challeng-
ing task. Data, computations, and communications should be distributed unevenly
to provide the best execution performance.

To the best of the author�s knowledge, there are a relatively small number of pa-
pers dealing with design and implementation of parallel algorithms on heterogeneous
platforms. Actually, this area of parallel computing is only taking its first steps. The
research already conducted reveals the intrinsic difficulty of designing heterogeneous
algorithms. Even such a simple linear algebra kernel as matrix multiplication turns
out to be surprisingly difficult on heterogeneous platforms [1].

The heterogeneous algorithms are normally implemented using the MPI library
[2]. Code responsible for uneven distribution of data, computations and communica-
tions is a substantial part of the corresponding MPI applications, and, probably,
their most important and complex part. MPI is a well-designed and powerful tool
for programming distributed-memory architectures. The only disadvantage of
MPI is the low level of its parallel primitives. It is tedious and error-prone to write
really complex and reliable MPI applications, like those implementing heterogeneous
algorithms. In fact, MPI is a tool of the assembler level for programming distributed-
memory architectures.

The paper deals with a high-level programming language, mpC, designed to facil-
itate implementation of heterogeneous algorithms. Once a heterogeneous algorithm
has been designed, and the corresponding performance analysis has been carried out,
it can be explicitly specified in a high-level form as a part of the mpC application.
That specification is used to generate some algorithm-specific code, which, in concert
with the mpC run-time library, provides support for the uneven distribution of data,
computations, and communications dictated by the heterogeneous algorithm.

The mpC language [3–5] was designed in 1994. Its first programming system was
implemented in 1996 and made free available via Internet in October 1996 at the ad-
dress http://www.ispras.ru/�mpc. Now version 2.2.0 of the system is available pro-
viding improved functionality and more reliable and portable implementation.
Nonetheless, the underlying programming and architectural models remain quite
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simplified through all the versions. Namely, the primary attention is paid to balanc-
ing processor loads; meanwhile data transfer operations were practically neglected.
At the same time, the slower are communication links, the more critical are both
the good schedule of data transfer operations and the good balance between compu-
tations and communications for the total execution time.

The paper presents a new advanced version of the mpC parallel language allowing
the programmer to define at runtime all the main features of parallel algorithm,
which have an impact on the execution performance of the application on heteroge-
neous platforms, including:

• the total number of participating parallel processes,
• the total volume of computations to be performed by each of the processes,
• the total volume of data to be transferred between each pair of the processes, and
• how exactly the processes interact during the execution of the algorithm.

Such an abstraction of parallel algorithm is called a network type. Given a network
type, the programmer can define a network object of this type and describe in details
all the computations and communications to be performed on the network object.

The mpC programming system uses the information extracted from the definition
of network type together with information about actual performances of processors
and communication links of the executing network to map the processes of the par-
allel program to this network in such a way that achieves its better execution time.

The programmer can also use a special operator, timeof, which predicts the
total time of the algorithm execution on the underlying hardware without its real ex-
ecution. That feature allows the programmer to write such parallel programs that
follow different parallel algorithms to solve the same problem, making choice at run-
time depending on the particular executing network and its actual performance.

The paper describes both the language model of parallel algorithm and the model
of the executing parallel environment used by the mpC programming system. It also
discusses principles of implementation of the mapping of mpC network objects to
the computing network.

The rest of the paper is organized as follows. Section 2 introduces the language
model of parallel algorithm. Section 3 introduces the model of the executing parallel
environment. Section 4 outlines principles of implementation of the mapping of mpC
network objects to the computing network. Section 5 presents some experimental re-
sults. Section 6 surveys related work. Section 7 concludes the paper and outlines fu-
ture research work.

2. Abstraction of parallel algorithm in the mpC language

2.1. Basic model of heterogeneous parallel algorithm

The mpC language is an ANSI C superset designed specially for programming
parallel computations on common networks of diverse computers. The main goal
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of parallel computing is to speed up solving problems on available computer re-
sources. Just this differs parallel computing from distributed computing, the main
goal of which is to make different software components, inherently located on differ-
ent computers, work together. In the case of parallel computing, partition of the
whole program into a number of distributed components located on different com-
puters is just a way to speed up execution of the program not its inherent property.
Therefore, when designing the mpC language, the primary attention was paid to the
means that facilitate development of high efficient and portable programs solving
single problems on common networks of computers.

A parallel program running on the network of computers is a set of processes in-
teracting (that is, synchronizing their work and transferring data) by means of mes-
sage passing. Source mpC code does not specify how many processes constitute the
parallel program as well as which computer runs one or another process. This is done
by some means external to the language when the program is started up. Source mpC
code only describes which computations are performed by each of the processes con-
stituting the program.

A group of processes executing together some parallel computations to solve a
logical unit of the entire problem reflects in the mpC language in the notion of net-
work. In mpC, network is an abstract mechanism to facilitate managing actual phys-
ical processes of the parallel program (just like the notions of data object and variable
facilitate memory management in programming languages).

In the simplest case, a network is just a set of virtual processors. To code compu-
tations on a given number of parallel processes, the mpC programmer first defines a
network consisting of this number of virtual processors and then describes parallel
computations on this network.

The network definition causes creation of a group of processes representing the
network, so that each virtual processor will be represented by a separate process. De-
scription of computations on the network will cause execution of the corresponding
computations by the processes that represent virtual processors of the network.

An important difference of real processes from virtual processors is that at differ-
ent moments of program execution the same process can represent different virtual
processors of different networks. In other words, the definition of the network causes
mapping of its virtual processors to actual processes of the parallel program, and
such a mapping does not change during lifetime of the network.

The following simple mpC program

#include <mpc.h>
#define N 3

int [*]main() {
net SimpleNet(N) mynet;

[mynet]MPC_Printf(00Hello, world!nn00);
}

defines the network mynet of N virtual processors and then calls the library function
MPC_Printf on the network.
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Execution of the program consists in parallel call of the function MPC_Printf by
those N processes of the program onto which virtual processors of the network my-

net are mapped. This mapping is performed by the mpC programming system at run-
time. Execution of the function MPC_Printf by a process consists in sending the
message ‘‘Hello, world!’’ to the user�s terminal from which the entire parallel pro-
gram has been started up. So, the user will see N messages ‘‘Hello, world!’’ on this
terminal––just one from each involved process.

The [*] specifier before the name main in the definition of the main function says
that the code of the function shall be executed by all processes of the parallel pro-
gram. Functions similar to the function main are called basic functions in mpC. Cor-
rect work of a basic function is possible only if all processes of the parallel program
call it. The mpC compiler controls correctness of basic function calls.

Unlike the function main, the function MPC_Printf does not need to be called in
parallel by all processes of the parallel program in order to work correctly. More-
over, a call to the function in any single process of the parallel program makes sense
and is correct. Such functions are called nodal in mpC. The mpC language allows any
single process of the parallel program to call a nodal function as well as any group of
processes to call the function in parallel.

The following program

#include <mpc.h>
#include <sys/utsname.h>
#define N 3

int [*]main() {
net SimpleNet(N) mynet;

struct utsname [mynet]un;

[mynet]uname(&un);

[mynet]MPC_Printf(00Hello world! I0m onn00%sn00.nn00,
un.nodename);

}

also outputs messages from those processes of the parallel program to which the
virtual processors of the network mynet are mapped. But in addition to ‘‘Hello,
world!’’, each involved process outputs the name of the computer, which executes the
process.

To achieve it, the program defines the variable un distributed over network mynet.
Only a process implementing one of the virtual processors of mynet holds in its mem-
ory a copy of un. Only those processes call the function uname (what is specified with
the construct [mynet] placed before the function name). After this call the member
nodename of each projection of the distributed structure un will contain a pointer
to the name of the computer running the corresponding process.

Lifetime of both the network mynet and the variable un is limited by the block in
which they are defined. When execution of the block ends, all processes of the pro-
gram that have been taken for virtual processors of the network mynet are freed and
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can be used for other networks. Such mpC networks are called automatic. Lifetime of
static networks is only limited by the time of program execution.

The following two programs demonstrate the difference between static and auto-
matic networks. The programs look almost identical. Both consist in cyclic execution
of a block defining a network and executing already familiar computations on the
network. The only but essential difference is that the first program defines an auto-
matic network meanwhile the second one defines a static network.

During execution of the program

#include <mpc.h>
#define Nmin 3

#define Nmax 5

int [*]main() {
repl n;

for(n¼Nmin; n <¼ Nmax; nþþ) {
auto net SimpleNet(n) anet;

[anet]MPC_Printf(00I0m from an automatic network of %d.nn00,
[anet]n);

}
}

at the first loop iteration (n ¼ Nmin ¼ 3) a network of three virtual processors is
created on the entry into the block, and this network is destructed when execution of
the block ends. At the second loop iteration (n ¼ 4) a new network of four virtual
processors is created on the entry into the block, and that network is also destructed
when execution of the block ends. So at the moment of repeated initialisation of the
loop (execution of the expression nþþ), the 4-processor network no longer exists.
Finally, at the last iteration an automatic network of five virtual processors
(n ¼ Nmax ¼ 5) is created on the entry into the block.

Note, that the integer variable n is distributed over all processes constituting
the parallel program. Its definition contains keyword repl (a shortcut of repli-
cated), which informs the compiler that all projections of the value of the vari-
able shall be equal to each other in any expression in the program. Such
distributed variables are called replicated in mpC (correspondingly, the value of a
replicated variable is called a replicated value). Replicated variables and expres-
sions play an important role in mpC. The mpC compiler checks the property to
be replicated declared by the programmer and warns about all possible its viola-
tions.

During execution of the program

#include <mpc.h>
#define Nmin 3

#define Nmax 5

int [*]main() {

1374 A. Lastovetsky / Parallel Computing 28 (2002) 1369–1407



repl n;

for(n¼Nmin; n <¼ Nmax; nþþ) {
static net SimpleNet(n) snet;

[snet]MPC_Printf(00I0m from a static network of %d.nn00,
[snet]n);

}
}

at the first loop iteration a network of three virtual processors is also created on the
entry into the block, but this network is not destructed when execution of the block
ends. It simply becomes invisible. Thus in this case the block is not a region where
the network exists but a region of its visibility. Therefore, at the time of repeated
initialisation of the loop and evaluation of the loop condition the static 3-processor
network is existing but not available (because these points of the program are out of
scope of the network name snet). On next entries into the block at subsequent loop
iterations no new network is created, but the static network, which has been created
on the first entry into the block, becomes visible.

Thus, meanwhile the name anet denotes absolutely different networks at different
loop iterations; the name snet denotes a unique network existing from the first entry
in the block, in which it is defined, until the end of program execution.

Generally speaking, in mpC one cannot simply define a network but only a net-
work of some type. Type is the most important attribute of network. In particular, it
determines how to access separate virtual processors of the network.

The type specification is a mandatory part of any network definition. Therefore,
any network definition should be preceded by the definition of the corresponding
network type.

In above programs the definition of the network type SimpleNet can be found
among other standard definitions of the mpC language in the header file mpc.h

and is included in these programs with the #include directive. The definition looks
as follows:

nettype SimpleNet(int n) {
coord I¼n;

};

It introduces the name SimpleNet of the network type parameterised with the integer
parameter n. The body of the definition declares the coordinate variable I ranging
from 0 to n � 1. The type SimpleNet is the simplest parameterised network type that
describes networks consisting of n virtual processors well ordered by their positions
on the coordinate line.

The following program

#include <mpc.h>
#define N 5
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int [*]main() {
net SimpleNet(N) mynet;

int [mynet]my_coordinate;
my_coordinate ¼ I coordof mynet;

if(my_coordinate%2¼ ¼0)

[mynet]MPC_Printf(00Hello, even world!nn00);
else
[mynet]MPC_Printf(00Hello, odd world!nn00);

}

demonstrates how execution of differing computations by different virtual processors
can be coded.

The program uses the binary operator coordof with the coordinate variable I and
the network mynet as its left and right operands correspondingly. The result is an
integer value distributed over the network mynet, whose projection to a virtual pro-
cessor will be equal the value of the coordinate I of this virtual processor in that net-
work. After execution of the assignment my_coordinate ¼ I coordof mynet, each
projection of the variable my_coordinate will hold the coordinate of the correspond-
ing virtual processor of the network mynet. As a result, virtual processors with even
coordinates will output ‘‘Hello, even world!’’, meanwhile ones with odd coordinates
will output ‘‘Hello, odd world!’’.

We have discussed that lifetime of an automatic network is limited by the block in
which the network is defined. When execution of the block ends, the network ceases
to exist, and all processes taken for virtual processors of the network are freed and
can be used for other networks. The question is how results of computations on au-
tomatic networks can be saved and used in further computations. Our previous pro-
grams did not raise the problem, because the only result of parallel computations on
networks was output of some messages to the user�s terminal.

Actually, in mpC, networks are not absolutely independent on each other. Every
newly created network has exactly one virtual processor shared with already existing
networks. That virtual processor is called a parent of this newly created network and
is the connecting link, through which results of computations are passed if the net-
work ceases to exist. The parent of a network is always specified by the definition of
the network, explicitly or implicitly.

So far, no network was defined with explicit specification of its parent. The parent
was specified implicitly, and the parent was the so-called virtual host-processor. At
any moment of program execution the existence of only one network can be guar-
anteed, namely, the pre-defined network host consisting of exactly one virtual
processor, which always maps onto the host-process associated with the user�s termi-
nal.

The program

#include <mpc.h>
nettype AnotherSimpleNet(int n) {
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coord I¼n;

parent [0];

};
#define N 3

int [*]main() {
net AnotherSimpleNet(N) [host] mynet;

[mynet]MPC_Printf(00Hello, world!nn00);
}

is completely equivalent to the very first program except that in the definition of the
network the explicit specification of the parent substitutes the implicit one.

One more difference can be found in the definition of the network type. A line ex-
plicitly specifying the coordinate of the parent in networks of the type (the coordi-
nate defaults to zero) is added. Should for some reason we needed that the parent
of the network mynet had not the least but the greatest coordinates, then in the def-
inition of the network type AnotherSimpleNet the specification parent [n � 1] had to
be used instead of parent [0].

The library function MPC_Barrier allows synchronising the work of the virtual
processors of any network. For example, the following program

#include <mpc.h>
#define N 5

int [*]main() {
net SimpleNet(N) mynet;

[mynet]:{
int my_coordinate;
my_coordinate ¼ I coordof mynet;

if(my_coordinate%2¼ ¼0)

MPC_Printf(00Hello, even world!nn00);
([(N)mynet])MPC_Barrier();
if(my_coordinate%2¼ ¼1)

MPC_Printf(00Hello, odd world!nn00);
}

}

makes all messages from virtual processors with odd coordinates come to the user�s
terminal only after messages from virtual processors with even coordinates. Note,
that in this program only the processes implementing the network mynet participate
in the barrier synchronization.

The call of the function MPC_Barrier looks a little bit unusual. Indeed, this func-
tion principally differs from all functions we have met and represents so-called net-
work functions. Unlike basic functions, which are always executed by all processes
of the parallel program, network functions are executed on networks and hence
can be executed in parallel with other network or nodal functions. Unlike nodal
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functions, which can also be executed in parallel by all processes of one or another
network, virtual processors of the network executing a network function can transfer
data, and this makes them a bit similar to basic functions.

The declaration of the function MPC_Barrier is in the header file mpc.h and looks
as follows:

int [net SimpleNet(n) w] MPC_Barrier(void);

Any network function has a special network formal parameter, which represents
the network executing the function. In the declaration of the network function, a
specification of that parameter is in brackets just before the name of the function
and looks like normal network definition. In the case of the function MPC_Barrier,
the specification of the network parameter looks as follows:

net SimpleNet(n) w

In addition to the formal network w executing the function MPC_Barrier, this
declaration introduces the parameter n of this network. Like regular formal param-
eters, this parameter is available in the body of the function as if it was declared with
specifiers repl and const. Since in accordance with the definition of the network type
SimpleNet the parameter n is of the type int, one can say that the parameter n is trea-
ted in the body of the function MPC_Barrier as if it were a regular formal parameter
declared as follows:

repl const int n

All regular formal parameters are considered distributed over the formal network
parameter. Thus the replicated over the network w integer constant parameter n de-
termines the number of virtual processors of the network. If the function MPC_Bar-

rier were not a library one, it could be defined as follows:

int [net SimpleNet(n) w] MPC_Barrier(void) {
int [w:parent] bs[n], [w]b¼1;

bs[]¼b;

b¼bs[];

}

In the body of this function the automatic array bs of n elements (the mpC lan-
guage supports dynamic arrays) is defined. This array is located on the parent of
the network w that is specified with the construct [w:parent] before the name of
the array in its definition. In addition, the variable b distributed over the network
w is also defined there. A couple of statements following the definition implement
a barrier for virtual processors of the network w.
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In the above program, the call to the network function MPC_Barrier passes the
actual network parameter mynet as well as the actual value of the only parameter of
the network type SimpleNet. At the first glance, the latter looks redundant. But it
should be taken into account that networks of any type, not only the SimpleNet

type, can be passed to this function as an actual network parameter. Actually, the
function MPC_Barrier only treats the group of processes, on which it is called, as
a network of the type SimpleNet. In general, the actual network parameter may
be of any type that allows its correct interpretation for various values of the para-
meters of the network type used in the definition of the called network function.
Therefore, the values of the parameters should be explicitly determined in the func-
tion call.

So far either all processes of the parallel program or all virtual processors of some
network took part in data transfer, and the data transfer itself mainly consisted in
either broadcasting some value to all participating processes or gathering values
from all participating processes on one of them.

The basic means of the mpC language for describing complicated data transfer are
subnetworks. Any subset of the virtual processors of the network can make up a sub-
network of this network. In the following program

#include <string.h>
#include <mpc.h>
#include <sys/utsname.h>

nettype Mesh(int m, int n) {
coord I¼m, J¼n;

parent [0,0];

};
#define MAXLEN 256

int [*]main() {
net Mesh(2,3) [host]mynet;
[mynet]:{
struct utsname un;

char me[MAXLEN], neighbour[MAXLEN];

subnet [mynet:I¼ ¼0]row0, [mynet:I¼ ¼1]row1;

uname(&un);

strcpy(me, un.nodename);

[row0]neighbour[] ¼ [row1]me[];

[row1]neighbour[] ¼ [row0]me[];

MPC_Printf(00I’m (%d, %d) from n00%sn00nn00
00My neighbour (%d, %d) is on n00%sn00.nnnn00,
I coordof mynet, J coordof mynet, me

(I coordof mynetþ1 )%2, J coordof mynet,

neighbour);

}
}
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each virtual processor of the network mynet of type Mesh(2,3) outputs to the user�s
terminal not only the name of the computer hosting this virtual processor but also
the name of the computer hosting the closest virtual processor from the neigh-
bouring row. To do it, the program defines two subnetworks row0 and row1 of the
network mynet. The subnetwork row0 consists of all virtual processors of the net-
work mynet whose coordinate I is equal to zero, that is, corresponds to the zero row
of the network mynet. This fact is specified with the construct [mynet:I¼ ¼ 0] before
the name of the subnetwork in its definition.

Similarly, the subnetwork row1 corresponds to the first row of the network mynet.
In general, logical expressions describing virtual processors of subnetworks can be
quite complex and allow specifying very sophisticated subnetworks. For example,
the expression I < J && J%2 ¼¼ 0 specifies the virtual processors of the network
over the main diagonal in even columns.

Execution of assignment [row0]neighbour[]¼ [row1]me[] consists in parallel trans-
ferring the corresponding projection of the distributed array me from each j-th vir-
tual processor of the row row1 to the each j-th virtual processor of the row row0

followed by its assignment to the corresponding projection of the array neighbour.
Similarly, execution of the assignment [row1]neighbour[]¼ [row0]me[] consists in

parallel transferring the content of the corresponding projection of the distributed
array me from each j-th virtual processor of the row row0 to the each j-th virtual pro-
cessor of the row row1 followed by its assignment to the corresponding projection of
the array neighbour.

As a result, a projection of the distributed array neighbour on the virtual processor
(0,j) contains the name of the computer hosting the virtual processor (1,j), and a pro-
jection of this array on the virtual processor (1,j) contains the name of the computer
hosting the virtual processor (0,j).

The row subnetworks might be defined implicitly, i.e., the subnet definition might
be omitted, and the assignments might look as follows:

[mynet:I¼ ¼0]neighbour[] ¼ [mynet:I¼ ¼1]me[];

[mynet:I¼ ¼1]neighbour[] ¼ [mynet:I¼ ¼0]me[];

In this particular case, the usage of implicitly defined subnetworks is justified
because it simplifies the program code without loss of program efficiency or function-
ality. But there exist situations when you cannot avoid explicit definition of subnet-
works. For example, network functions cannot be called on implicitly defined
subnetworks.

We have discussed that definition of a network causes mapping virtual processors
of the network to actual processes of the parallel program, and this mapping is con-
stant during the lifetime of this network. But we have not discussed how the
programming system performs that mapping and how the programmer can manage
it.

We have emphasized that the main goal of parallel computing is to speed up solv-
ing problems. Therefore it is natural that minimization of the running time of the
parallel program is the main target while mapping virtual processors of the network
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to actual processes. While performing the mapping, the programming system bases,
on the one hand, on information about configuration and performance of compo-
nents of the parallel computer system executing the program, and on the other hand,
on information about relative volumes of computations that will be performed by
different virtual processors of the defined network.

We have not specified volumes of computations in our programs yet. Therefore,
the programming system considered all virtual processors of the network to perform
the same volumes of computations. Proceeding from this assumption, it tried to map
virtual processors to keep the total number of virtual processors mapped to an actual
processor approximately proportional to its performance (naturally taking into ac-
count the maximum number of virtual processors that could be hosted by one or an-
other real processor). Such mapping ensures all processes representing virtual
processors of the network to execute computations approximately at the same speed.
Therefore, if volumes of computations performed by different virtual processors be-
tween points of synchronisation or data transfer are approximately the same, the
parallel program as a whole will be balanced in the sense, that the processes will
not wait for each other at those points of the program.

Such mapping appeared acceptable in all our programs, because, indeed, compu-
tations performed by different processors of the network were approximately the
same and, in addition, of a very small volume. But in case of essential differences
in volumes of computations performed by different virtual processors it can lead
to very low speed of program execution. The reason is that in that case execution
of computations by different processes at the same speed leads to the situation when
processes performing smaller volumes of computation will wait at synchronisation
points and points of data transfer for processes performing computations of the big-
ger volume. In this case, the mapping that ensures speeds of processes to be propor-
tional to volumes of performed computations would lead to a more balanced and
faster parallel program.

The mpC language provides means for specification of relative volumes of com-
putations performed by different virtual processors of one or another network.
The mpC programming system uses this information to map virtual processors of
the network to processes of the parallel program in such a way that ensures each vir-
tual processor to perform computations at the speed proportional to the volume of
the computations.

The following program

. . .
typedef struct {double length;

double width;

double height;

double mass;} rail;

nettype HeteroNet(int n, double v[n]) {
coord I¼n;

node {I >¼ 0: v[I];};
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parent[0];
};

double MassOfRail(double l, double w, double h, double delta)

{
double m, x, y, z;

for(m¼0., x¼0.; x<l; x+¼delta)

for(y¼0.; y<w; y+¼delta)

for(z¼0.; z<h; z+¼delta)

m+¼Density(x,y,z);

return m*delta*delta*delta;

}

int [*] main(int [host]argc, char **[host]argv) {
repl N¼[host]atoi(argv[1]);
static rail [host]s[[host]N];
repl double volumes[N];

int [host] i;

repl j;

[host]InitializeSteelHedgehog(s, [host]N);
for(j¼0; j<N; j++)

volumes[j]¼s[j].length*s[j].width*s[j].height;

recon MassOfRail(0.2, 0.04, 0.05, 0.005);

{
net HeteroNet(N, volumes) mynet;

[mynet]:

{
rail r;

r ¼ s[];

r.mass ¼ MassOfRail(r.length, r.width, r.height, DELTA);

[host]printf(00The total weight is %g kgnn00,
[host]((r.mass)[+]));

}
}

}

introduces those means.
The program defines the network type HeteroNet parameterised with two param-

eters. The integer scalar parameter n determines the number of virtual processors of
the corresponding network. The vector parameter v consists of n elements of the type
double and is used just for specification of relative volumes of computations per-
formed by different virtual processors.
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The definition of the network type HeteroNet contains the declaration nodefI >¼
0 : v½I�g saying that for any I >¼ 0 the relative volume of computations performed
by the virtual processor with coordinate I is equal to v[I].

This program calculates the mass of a metallic construction welded from N het-
erogeneous rails. For parallel computation of the total mass of the metallic ‘‘hedge-
hog’’, it defines the network mynet consisting of N virtual processors each calculating
the mass of one of those rails. The calculation is performed by numerical 3-
dimensional integration of the density function Density with a constant integration
step.

Obviously, the volume of computations to calculate the mass of a rail is propor-
tional to the volume of the rail. Therefore, the replicated array volumes, the i-th
element of which just contains the volume of the i-th rail, is used as the second actual
parameter of the network type HeteroNet in the definition of the network mynet.
Thus, the program specifies that the volume of computations performed by the
i-th virtual processor of the network mynet is proportional to the volume of the rail,
the mass of which the virtual processor computes.

The mapping of virtual processors to computers is based on information about
the performance of the computers. The relative performance of computers, that is,
the relative speed of executing computations, very substantially depends on which
exactly computations are executed. Often, a computer showing the best performance
when executing one program appears the slowest when executing another program.
This is clearly seen when one analyses the published results of measurement of the
performance of different computers using a pretty wide range of special testing pro-
gram packages.

By default, the mpC programming system uses the estimation of performances
once obtained as a result of execution of a special parallel program during initializa-
tion of the system on the particular network of computers. That estimation is very
rough and can differ significantly from the real performance demonstrated by the
computers while executing code substantially differing from the code of this special
test program. Therefore, the mpC language provides a special statement, recon,
which allows the programmer to change the default performance estimation by tun-
ing it to the computations, which will be really executed.

In the above program this statement is executed right before definition of the net-
work mynet. Execution of the statement is that all physical processors running the
program execute in parallel the code provided by the statement (in our case it is a
call of the function MassOfRail with actual parameters 20.0, 4.0, 5.0 and 0.5), and
the time elapsed by each of the real processors to execute the code is used to refresh
the estimation of its performance.

The main part of the total volume of computations performed by each virtual
processor of the network mynet just falls into execution of calls to the function
MassOfRail. Therefore, while creating the network mynet, the programming system
bases on the estimation of performances of real processors that is very close to their
actual performance shown while executing the program.

It is very important that the recon statement allows updating the estimation of
processor performances dynamically, at runtime, just before using the estimation
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by the programming system. It is especially important if computers, executing
the mpC program, are used for other computations as well. In that case, the real
performance of processors can dynamically change dependent on the external
computations. The use of the recon statement allows writing parallel programs
sensitive to such dynamic variation of the workload of the underlying computer
system. In those programs, computations are distributed over real processors in ac-
cordance to their actual performances at the moment of execution of the computa-
tions.

An interesting issue is the choice of the total number of processes constituting a
running mpC application. How many processes should be allocated to each partici-
pating computer when the user starts up the application? Obviously, the more pro-
cesses you have, the better load balancing can be achieved. On the other hand, more
processes consume more resources and cause more inter-process communications,
which can significantly increase the total overhead. Some basic rules to make choice
are the following. First of all, the number of processes running on each individual
computer should not be less than the number of processors of this computer just
to be able to exploit all available processor resources. As to the upper bound, the
number is limited by the underlying operating system and/or the underlying MPI im-
plementation. For example, LAM MPI version 5.2 installed under Solaris 2.3 does
not allow more than 15 MPI processes running on an individual workstation. If
an mpC application does not define a significant amount of static data, then all pro-
cesses, which are not selected for virtual processors of some abstract network defined
in the application, are very light-weighted and do not consume too much resources
such as processor cycles or memory. In this case, the only overhead is additional
communications with such processes, which include initialisation of the underlying
MPI platform and the mpC specific communications during execution of the appli-
cation. The latter mainly fall into the creation of network. The time elapsed by this
operation does not grow rapidly with the growth of the total number of processes.
For example, the use of six processes instead of one process per workstation on a
network of nine uniprocessor workstations only caused 30% increase of this time.
This is because the operation includes some relatively significant calculations, and
the amount of the calculations is more sensitive to the number of computers than
to the number of processes running on each of the computers. At the same time,
due to their design some applications just do not need more than one process per
processor. An example of such an application is the matrix multiplication from
the next section.

2.2. Advanced model of parallel algorithm

The abstraction of heterogeneous parallel algorithm, used in the presented above
basic version of the mpC language, is simple enough. In fact, the implemented par-
allel algorithm is characterised by two main attributes––the number of processes to
perform the algorithm and the relative volume of computations to be executed by
each of the processes. This model does not take into account another two features
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having essential impact on execution performance of parallel algorithms on hetero-
geneous networks.

The first one is interprocess communication. In fact, the basic model implicitly as-
sumes that the time of communication is neglectably small compared to the time of
computation. At the same time, the lower is the performance of the communication
links and the bigger is the volume of transferred data, the further from the truth is
that assumption and the more critical are both the good schedule of data transfer
operations and the good balance between computations and communications for
the total execution time.

The second neglected feature is the order of execution of the computations (and
communications) by the involved parallel processes. The basic model implicitly as-
sumes that all computations performed by different processes are executed strictly
in parallel. That assumption is satisfactory only for a restricted class of parallel al-
gorithms. In most parallel algorithms, there are data dependencies between compu-
tations performed by different processes. On the other hand, many parallel
algorithms try to overlap computations and communications. Therefore, often the
use of the default simplified structure of the executed parallel algorithm leads to
the mapping far away from the optimal one. The most obvious example is an algo-
rithm with completely serialised computations being performed by different pro-
cesses. The optimal mapping should always assign all the participating processes
to the most powerful processor. At the same time, the use of the basic simplified
model often leads to the mapping that involves all available processors.

To introduce the new advanced model of parallel algorithm, let us consider two
typical mpC applications. The first one simulates the evolution of groups of bodies
under the influence of Newtonian gravitational attraction. Since the magnitude of
interaction between bodies falls off rapidly with distance, a single equivalent body
may approximate the effect of a large group of bodies. This allows paralleling the
problem, and the parallel application will use a few parallel processes, each of which
will update data characterizing a single group of bodies. Each process holds attri-
butes of all the bodies constituting the corresponding group as well as masses and
centers of gravity of other groups. The attributes characterizing a body include its
position, velocity and mass. The application will implement the following parallel al-
gorithm:

Initialisation of galaxy on host-process

Scattering groups of bodies over processes

Parallel computing masses of groups

Sharing the masses among processes

while (1){
Visualization of galaxy by host-process

Parallel computing centers of gravity

Sharing the centers among processes

Parallel updating groups

Gathering groups on host-process

}
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It is assumed that each iteration of the main loop calculates new coordinates of all
bodies in some fixed interval of time.

The core of the mpC application, implementing the above algorithm, is the fol-
lowing description of this algorithm describing those features that influence its run-
ning time:

nettype Galaxy(m, k, n[m]) {
coord I¼m;

node {I>¼0:bench*((n[I]/k)*(n[I]/k)); };
link {I>0:length*(n[I]* sizeof(Body)) [I]->[0]; };
parent [0];

scheme{
int i;

par (i¼0; i<m; i++) 100%%[i];

par (i¼1; i<m; i++) 100%%[i]->[0] ;
};

};

Informally, it looks like a description of an abstract network of computers, which
executes the algorithm, complemented by a description of the workload of each in-
volved element of this abstract network and a description of the scenario of interac-
tion between these elements during execution of the algorithm. From the mpC
language�s point of view, that description defines a parameterised type of abstract
networks or a network type definition.

The first line of the above network type definition introduces the name Galaxy of
the network type and a list of parameters––integer scalar parameters m and k and
vector parameter n of m integers. Next line declares the coordinate system to which
abstract processors will be related. It introduces coordinate variable I ranging from 0
to m � 1.

Next line associates virtual processors with this coordinate system and describes
the (absolute) volume of computations to be performed by each of the processors.
As a unit of measurement, the volume of computations performed by some bench-
mark code is used. In this particular case, it is assumed that the benchmark code
computes a single group of k bodies. It is also assumed that i-th element of vector
parameter n is just equal to the number of bodies in the group computed by the
i-th virtual processor. The number of operations to compute one group is propor-
tional to the number of bodies in the group squared. Therefore, the volume of com-
putations to be performed by the I-th virtual processor is ðn½I�=kÞ2 times bigger than
the volume of computations performed by the benchmark code. This line just says it.

Next line specifies volumes of data in bytes to be transferred between the virtual
processors during execution of the algorithm. It simply says that i-th virtual proces-
sor (i ¼ 1; . . .) will send attributes of all its bodies to the host-processor where they
should be visualized. Note that this definition describes just one iteration of the main
loop of the algorithm what is quite good approximation because practically all com-
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putations and communications concentrate in this loop. Therefore, the total time of
the execution of this algorithm is approximately equal to the running time of one it-
eration multiplied by the total number of iterations.

Finally, the scheme block describes how exactly virtual processors interact during
execution of the algorithm. It says that first all the virtual processors perform in par-
allel 100 per cent of computations that should be performed, and then all the proces-
sors, except the host processor, send in parallel 100 per cent of data that should be
sent to the host-processor.

The most principal fragments of the rest code of this mpC application are:

void [*] main(int [host]argc, char **[host]argv)
{

. . .
TestGroup[]¼(*AllGroups[0])[];
recon Update_group(TestGroup, TestGroupSize);

{
net Galaxy(NofG, TestGroupSize, NofB) g;

. . .
}

}

The recon statement uses a call of the function Update_Group with actual param-
eters TestGroup and TestGroupSize to update the estimation of the performance of
the physical processors executing the application. The main part of the total volume
of computations performed by each virtual processor just falls into execution of calls
to the function Update_Group. Therefore, the obtained estimation of performances
of the real processors will be very close to their actual performances shown while ex-
ecuting this program.

Next line defines the abstract network g of the type Galaxy with the actual para-
meters NofG––the actual number of groups of bodies, TestGroupSize––the size of
the test group of bodies used in the benchmark code, and NofB––an array of NofG

elements containing actual numbers of bodies in the groups. The rest computations
and communication will be performed on this network.

The mpC programming system maps virtual processors of the abstract network g

to real parallel processes constituting the running parallel program. While perform-
ing the mapping, the programming system uses, on the one hand, the information
about configuration and performance of physical processors and communication
links of the network of computers executing the program, and on the other hand,
the above information about the parallel algorithm to be performed by the defined
abstract network. The programming system does the mapping at runtime and tries to
minimise the total running time of the parallel program.

Next example is an application multiplying matrix A and the transposition of ma-
trix B, i.e., implementing matrix operation C ¼ A � BT, where A, B are dense square
n � n matrices. This application implements a heterogeneous 1D clone of the parallel
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algorithm used in ScaLAPACK for matrix multiplication, which can be summarized
as follows:

• Each element in C is a square r � r block and the unit of computation is the com-
putation of one block, i.e., a multiplication of r � n and n � r matrices. For the
sake of simplicity, we assume that n is a multiple of r.

• The A, B, and C matrices are identically partitioned into p horizontal slices, where
p is the number of processors. There is one-to-one mapping between these slices
and the processors. Each processor is responsible for computing its C slice.

• At each step, a row of blocks (the pivot row) of matrix B, representing a column
of blocks of matrix BT, is communicated (broadcast) vertically; and all processors
compute the corresponding column of blocks of matrix C in parallel.

• Because all C blocks require the same amount of arithmetic operations, each pro-
cessor executes an amount of work proportional to the number of blocks that are
allocated to it, hence, proportional to the area of its slice. Therefore, to balance
the load of the processors, the area of the slice mapped to each processor is pro-
portional to its speed.

• Communication overheads may exceed gains due to parallel execution of compu-
tations. Therefore, there exists some optimal number of available processors to
perform the matrix multiplication. The algorithm involves in computations this
optimal number of processors.

The following definition of the network type ParallelAxBT

nettype ParallelAxB(int p, int n, int r, int t, int d[p]) {
coord I¼p;
node {I>¼0: bench*(d[I]*n/r/t); };
link (J¼p) {
I!¼J: length*(d[J]*n*sizeof(double)) [J]->[I];

};
parent [0];

scheme {
int i, j, PivotProcessor¼0, PivotRow¼0;

for(i¼0; i<n/r; i++, PivotRow+¼r)

{
if(PivotRow>¼d[PivotProcessor])

{
PivotProcessor++;

PivotRow¼0;

}
for(j¼0; j<p; j++)

if(j!¼PivotProcessor)

(100.*r/d[PivotProcessor])%%[PivotProcessor]->[j];
par (j¼0; j<p; j++)

(100.*r/n)%%[j];
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}
};

};

just describes the algorithm. It is assumed that the test code, used for estimation of
the speed of actual processors, multiplies r � n and n � t matrices, where t is small
enough compared to n and supposed to be a multiple of r. It is also assumed that i-th
element of vector parameter d is just the number of rows in the C slice mapped to the
i-th virtual processor of the abstract network performing the algorithm. Corre-
spondingly, the node declaration specifies that the volume of computations to be
performed by the i-th virtual processor is d½i� * n=r=t times bigger than the volume of
computations performed by the test code.

The link declaration specifies that each virtual processor will send its B slice to all
other virtual processors. The communication pattern described by this declaration,
and known as star, is static. It is the same for all network objects of the Parallel-

AxBT type. In general, the mpC language allows dynamic communication patterns.
There are many ways to describe dynamic patterns in mpC. For example, the follow-
ing network type definition

nettype DynPattern(int p, int pattern) {
coord I¼p;

node { I>¼0: bench*I; };
link {
pattern¼ ¼STAR: length*(I*sizeof(double)) [0]->[I];
pattern¼ ¼RING: length*(I*sizeof(double)) [I]->[(I+1)/
p];

};
};

describes the star or ring communication topology dependent on parameter pattern.
The scheme declaration specifies n=r successive steps of the algorithm. At each

step, the virtual processor PivotProcessor, which holds the pivot row, sends it to each
of the rest virtual processors thus executing r=d½PivotProcessor�  100 per cent of
total data transfer through the corresponding communication link. Then, all virtual
processors compute the corresponding column of blocks of matrix C in parallel, each
thus executing r=n  100 per cent of the total volume of computation to be per-
formed by the processor.

The most interesting fragments of the rest code of this mpC application are:

. . .
recon SerialAxBT(a, b, c, r, n, t);

. . .
[host]:
{
int j;

A. Lastovetsky / Parallel Computing 28 (2002) 1369–1407 1389



struct {int p; double time;} min;
double time;

for(j¼1; j<¼p; j++) {
Partition(j, powers, d, n, r);

time¼timeof(net ParallelAxBT(j, n, r, t, d) w);

if(time<min.time) {
min.p¼j;

min.time¼time;

}
}
p¼min.p;

}
. . .
Partition (p, powers, d, n, r);

{
net ParallelAxBT(p, n, r, t, d) w;

repl [w]N, [w]i;

int [w]myN;

N¼[w]n;

myN¼([w]d)[I coordof w];

[w]:

{
double A[myN/r][r][N], BT[myN/r][r][N],

C[myN/r][r][N], Brow[r][N];

repl PivotProcessor, RelPivotRow, AbsPivotRow;

. . .
for(AbsPivotRow¼0, RelPivotRow¼0, PivotProcessor¼0;

AbsPivotRow < N;

RelPivotRow+ ¼ r, AbsPivotRow+ ¼ r)

{
if(RelPivotRow >¼ d[PivotProcessor]) {

PivotProcessor++;

RelPivotRow¼0;

}
Brow[]¼[w:I¼ ¼PivotProcessor]BT[RelPivotRow/r][];

for(i¼0; i<myN/r; i++)

SerialAxBT(A[i][0],Brow[0],C[j][0]+AbsPivotRow,r,

N,r);

}
}

}

The recon statement updates the estimation of performances of actual processors
using serial multiplication of test r � n and n � t matrices with function SerialAxBT.
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The computations performed by each virtual processor mainly fall into the execution
of calls to SerialAxBT.

Next block, executed by the virtual host-processor, calculates the optimal number
of actual processors to be involved in the parallel matrix multiplication. In case
of relatively slow communications, the speedup due to parallelization of computa-
tions may not compensate the time elapsed by data transfer. Therefore, there exists
some optimal number of available processors to perform the parallel algorithm. The
timeof operator just estimates the running time of the algorithm described by its
operand––some particular network type, without its real execution. After execution
of the block, the value of variable p will be equal to this optimal number.

The definition of the network w causes mapping the virtual processors of this ab-
stract network to the actual processors of the underlying network of computers in
such a way that minimizes the execution time.

The block, following the definition of the network w and executed by this net-
work, just implements the algorithm of parallel matrix multiplication, the main fea-
tures of which have been specified in the definition of the network type
ParallelAxBT.

The scheme declarations in the above two examples are relatively simple. They
just reflect the relative simplicity of the underlying parallel algorithms. In general,
the mpC language allows the programmer to describe quite sophisticated heteroge-
neous parallel algorithms by means of wide use of parameters, locally declared vari-
ables, expressions and statements.

2.3. Brief discussion of the mpC programming language

This section briefly discusses some important topics regarding the mpC language,
which are not presented in details in this paper but should be addressed. The first
topic is the kind of applications the mpC language is suited for. It is most suitable
for parallel solution of irregular problems, such as galaxy simulation, on both homo-
geneous and heterogeneous distributed-memory computer systems. It is also suitable
for solution of regular problems, like dense liner algebra problems, in heterogeneous
environments. Two approaches to solving regular problems on heterogeneous clus-
ters with mpC are presented in [18]. The first approach is the irregularization of
problem in accordance with irregularity of the executing hardware. The second
one is the distribution of a relatively large number of homogeneous parallel pro-
cesses over the heterogeneous cluster in accordance with the performance of its ele-
ments. The mpC language provided natural implementation in the portable form of
both the approaches.

The mpC language is designed with common networks of computers as a target
parallel architecture in mind. In such networks, the performance of communication
links and processors are rarely balanced for high performance computing. Normally,
the ratio of the speed of data transfer and the speed of processors is significantly low-
er than that of specialised parallel computer systems. In addition, the perfor-
mance characteristics of common networks are normally not stable and can vary
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significantly due to many independent users having access to their resources. The
reasons make very difficult (if possible at all) a portable and efficient implementation
of parallel algorithms with fine and sophisticated structure of communications or
communications prevailing over computations on common networks of computers.
Therefore, the mpC language is mainly suitable for programming parallel algorithms
with relatively simple and coarse-grained structure of communications as well as
computations prevailing over communications.

The mechanism of nodal and especially network functions supports task parallel-
ism. Different nodal and network functions can be called in parallel each having dif-
ferent control flow. Network functions enable modular parallel programming in
mpC. One programmer can implement some parallel algorithm in the form of
network function, and other programmers can safely use such a program unit in par-
allel with other computations in their applications without any knowledge of its
code.

Another interesting topic is applications where different parallel algorithms are
coupled. There are many possible ways of programming such applications in
mpC. If the two algorithms are loosely coupled, two different network objects of dif-
ferent type executing the algorithms in parallel can be defined (the mpC language al-
lows many different network objects to exist in parallel). The mpC programming
system will try to map the algorithms in such a way to ensure the best execution time
of the whole application. Alternatively, two different network objects of different
type executing the algorithms serially can be defined (especially, in case of strong
data dependency). In the latter case, the first network object should be destructed be-
fore the second one is created to make all resources available when mapping each
of the algorithms on the underlying hardware. If the two algorithms are tightly cou-
pled, they can be described in the framework of the same network type and executed
on the same network object.

The next important topic is data redistribution when utilizing different automatic
network objects. Currently it is mainly possible by gathering and scattering via the
parent what is not efficient. Other possible ways such as the use of static data objects
and their explicit redistribution are not very natural and easy to use. The problem of
efficient and natural data redistribution when utilizing different automatic network
objects will be addressed in the future work on the mpC language.

3. Model of heterogeneous network of computers

The basic model of the executing heterogeneous network of computers did not take
into account communication links between computers and considered the network as
a set of heterogeneous multiprocessors. Each computer was characterised by two attri-
butes––the time of execution of a (serial) benchmark code on the computer and the
number of physical processors. The first attribute was a function of time, b(t), and could
vary even during the execution of the same mpC application (if the application used the
recon statement). The second was a constant, n, and determined how many non-inter-
acting parallel processes could run on the computer without loss of performance.
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The new advanced model is more sophisticated and takes into account material
nature of communication links and their heterogeneity. The model considers the ex-
ecuting heterogeneous network as a multilevel hierarchy of interconnected sets of
heterogeneous multiprocessors. The hierarchy reflects the heterogeneity of commu-
nication links and can be represented in the form of attributed tree.

Each node of the tree represents a homogeneous communication space of the het-
erogeneous network. The first attribute associated with an internal node is the set of
computers, which is just a union of sets of computers associated with its children.

The second is the speed of data transfer between two computers from different sets
associated with its children. This attribute characterizes point-to-point communica-
tion at this communication layer and is a function of size of the transferred data
block, sðdÞ. Note, that sð0Þ is not zero and equal to startup time of point-to-point
communication at this layer.

The third attribute specifies if the communication layer allows parallel point-
to-point communications between different pairs of computers without loss of data
transfer speed, or the layer serializes all communications. This attribute can have
two values––Serial and Parallel. A pure Ethernet network is serial. At the same time,
the use of switches can make it parallel.

The next group of attributes is only applicable to a parallel communication layer.
It characterizes collective communication operations such as broadcast, scatter,
gather, and reduction. The point is that a collective communication operation cannot
be considered as a set of independent point-to-point communications. It normally
has some special process, called root, which is involved in more communications
than other participating processes. The level of parallelism of each of the collective
communication operations depends on its implementation and is reflected in the
model by means of the corresponding attribute. For example, the attribute fb char-
acterizes the level of parallelism of the broadcast operation. It is supposed that the
execution time t of this operation can be calculated as follows

t ¼ fb  tp þ ð1� fbÞ  ts

where ts is the time of purely serial execution of the operation, and tp is the time of
ideally parallel execution of this operation (0 <¼ fb <¼ 1).

Each terminal node of this tree represents a single (homogeneous) multiprocessor
computer. In addition to the attributes inherited from the basic model, such a node is
also characterised by the attributes of the communication layer provided by the com-
puter.

Fig. 1 depicts the model for a local network of five computers, named A, B, C, D
and E. Computer A is a distributed-memory 8-processor computer, D is a shared-
memory 2-processor server. Computers B, C and E are uniprocessor workstations.
The local network consists of two segments with A, B and C belonging to the first
segment. Computers D and E belong to the second segment.

The speed of transfer of a data block of k bytes from a process running on com-
puter C to a process running on computer D is estimated by s0ðkÞ, meanwhile the
speed of transfer of the same data block from a process running on computer C
to a process running on computer A is estimated by s1ðkÞ.
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The level of parallelism of a broadcast involving processes running on computers
B, C and E is fb0, meanwhile that of a broadcast involving processes running on com-
puter A is fbA.

The communication model presented is simple and rough enough. It is used at
runtime by the mpC programming system to predict the execution time of the imple-
mented parallel algorithm. It uses a small number of integral attributes presenting
some average characteristics rather then detailed and fine-structured description.

The main reason of this simplicity is that the target architecture for the mpC
language is common networks of computers, which normally are multi-user environ-
ment of irregular structure with not very stable characteristics. Therefore, fine-
grained communication effects can hardly be reliably predicted for that architecture.

Secondly, the mpC language is aimed at programming applications, in which
computations prevail over communications, i.e., the contribution of computations
in the total execution time is much higher than that of communications. If it is
not the case, it normally means that the main goal of the application is not to speed
up the solution of some individual problem, and the distribution of its components
over different computers is its intrinsic feature, i.e., the application is actually distrib-
uted not parallel one.

Thus, the mpC language needs an efficient communication model of common het-
erogeneous networks of computers suitable for prediction of the execution time of
data transfer operations involving the transfer of relatively big volumes of data.

Fig. 1. The hierarchical model of the heterogeneous network of five computers.
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The accuracy of the prediction does not need to be too high because the contribution
of communications in the total execution time is supposed to be relatively small.
Actually, the accuracy cannot be high because of the nature of the modelled hard-
ware.

This communication model is designed to satisfy the primary necessities of
the mpC language. Its main disadvantage that should be addressed in the future
work is that it is static. An efficient way to update its parameters at runtime to reflect
the current situation could improve its accuracy. Another possible direction of
improvement is the model of parallel communication layer and collective commu-
nication operations. More experiments with different network configurations
are needed to make the model more accurate for a wide range of common net-
works.

4. Mapping of abstract mpC networks to real executing network

Any mpC program, running on the network of computers, is nothing more then a
number of processes interacting via message passing. The total number of the pro-
cesses and the number of processes running on each computer of the network are de-
termined by the user when the latter starts up the program. This information is
available to the component of the mpC runtime system responsible for mapping
of abstract mpC networks to these processes. Each definition of the abstract network
in the mpC application causes creating the group of processes that will play the role
of virtual processors of the abstract network. The main criteria of selection of pro-
cesses for this group is to minimize the time of execution of the parallel algorithm,
described by the corresponding abstract mpC network, on the particular network
of computers.

Thus, at runtime the mpC programming system solves the problem of optimal
mapping of virtual processors of the abstract mpC network into the set of processes
running on different computers of the heterogeneous network. When solving the
problem, the mpC system is based on the following:

• The mpC model of the parallel algorithm, which should be executed.
• The model of the executing network of computers, which reflects the state of this

network just before the execution of the algorithm.
• A map of processes of the parallel program, for each computer displaying both

the total number of running processes and the number of free processes, that is,
those processes available to play the role of virtual processor of the abstract
mpC network.

Each particular mapping, l: I� > C, where I is a set of coordinates of the virtual
processors of the abstract mpC network, and C is a set of computers of the executing
network, is characterized by the estimation of the time of execution of the algorithm
on the network of computers. The estimation is calculated based on the models of
the parallel algorithm and the executed network.
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Each computation unit in the scheme declaration of the form e%%[i] is estimated
as follows:

timeofðe%%½i�Þ ¼ ðe=100Þ  vi  blðiÞðt0Þ;

where vi is the total volume of computations to be performed by the virtual pro-
cessor with the coordinates i, and blðiÞðt0Þ is the time of execution of the bench-
mark code on the computer lðiÞ provided by the execution of the corresponding
recon statement (t0 denotes that time when this execution took place).

Each communication unit of the form e%%[i]–>[j] is estimated as follows:

timeofðe%%½i�� > ½j�Þ ¼ ðe=100Þ  wi�>j  slðiÞ� > lðjÞðwi�>jÞ;

where wi�>j is the total volume of data to be transferred from the virtual processor
with the coordinates i to the virtual processor with the coordinates j, and
slðiÞ�>lðjÞðwi�>jÞ is the speed of transfer of data block of wi�>j bytes between
computers lðiÞ and lðjÞ.

A simple calculation rule is associated with each sequential algorithmic pattern in
the scheme declaration. For example, the estimation T of the pattern

for(e1;e2;e3)a

is calculated as follows:

for(T¼0, e1; e2; e3)
T +¼ timeof(a);

The estimation T of the pattern

if(e) a1 else a2

is calculated as follows:

if(e)
T¼timeof(a1);

else
T¼timeof (a2);

The above rules just reflect semantics of the corresponding serial algorithmic pat-
terns.

The rule to calculate the estimation T of the parallel algorithmic pattern

par(e1;e2;e3)a

is more complicated. Informally, the above pattern describes parallel execution of
some actions (mixtures of computations and communications) on the corresponding
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abstract mpC network. Let A ¼ fa0;a1; . . . ;aN�1g be a set of the actions ordered in
accordance with the estimation of the time of their execution, namely,
timeofða0Þ >¼ timeofða1Þ >¼ � � � >¼ timeofðaN�1Þ. Let B be a subset of A
consisting of all actions that only perform communications, B ¼ fb0;b1; . . . ;bQ�1g.
Let C ¼ fc0;c1; . . . ;cM�1g. Finally, let vi be the number of virtual processors of the
abstract mpC network mapped on the computer ci, and fi be the total number of
physical processors of the computer. Then the rule to calculate the estimation T of
the pattern looks as follows:

for(j¼0, T¼ 0; j<M; j++) {
for(i¼0, T0¼0, k¼0; k<Upper(vj,fj) && i<N; i++) {
if(ai performs some computations on cj) {
T0 +¼ timeofðaiÞ;
k++;

}
}
T ¼ max(T, T0);

}
T¼max(T,timeof(B));

Here, the function Upper is defined as follows:

Upper ðx;yÞ ¼ ifðx=y <¼ 1Þ
then 1

else ifððx=yÞ  y ¼¼ xÞ
then x=y
else x=yþ 1

Informally, the above system of loops first computes for each computer the esti-
mation T0 of the time of parallel execution of those actions, which use that computer
for some computations. The estimation is calculated, proceeding from the assump-
tion, that if the number of parallel actions on one computer exceeds the number
of its physical processors, then

• The actions are distributed evenly over the physical processors, that is, the num-
ber of actions executed by different physical processors differs by at most one.

• The most computationally intensive actions are executed on the same physical
processor.

Then those parallel actions, which are not related to computations, that is, per-
form pure communications, are taken into account. These communication actions
make up the set B. Let lðBÞ be the least communication layer covering all commu-
nication links involved in B, and let fb , fg be the level of parallelism of broadcast
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and gather correspondingly for this layer. Then the rule to calculate the estimation T
of parallel execution of communication operations from set B looks as follows:

if(l(B) is serial)

for(i¼0, T¼0; i<Q; i++)

T +¼ timeofðbiÞ;
else if(B matches broadcast/scatter) {
for(i¼0, Tserial¼0, Tparallel¼0; i<Q; i++) {
Tserial +¼ timeof(bi);

Tparallel ¼ max(T2,timeof(bi));

}
T¼fb*Tparallel þ ð1� fbÞ  Tserial

}
else if(B matches gather) {
for(i¼0, Tserial¼0, Tparallel¼0; i<Q; i++) {
Tserialþ ¼ timeofðbiÞ;
Tparallel ¼ maxðT2; timeofðbiÞÞ;

}
T ¼ fg*Tparallel+(1� fg)*Tserial

}
else
for (i¼0, T¼0; i<Q; i++)

Tþ ¼ maxðT; timeofðbiÞÞ;

The rule just sums the execution time of parallel communication operations if the
underlying communication layer serializes all data packages. Otherwise we have a
parallel communication layer, and if the set B of communication operations looks
like broadcasting or scattering, i.e., one virtual processor sends data to other in-
volved virtual processors, then the time of parallel execution of the communication
operations is calculated as if they performed broadcast. Similarly, if B looks like
gathering, i.e., one virtual processor receives data from other involved virtual proces-
sors, then the time of parallel execution of the communication operations is calcu-
lated as if they performed gather. In all other cases, it is assumed that B is a set of
independent point-to-point communications. It is responsibility of the programmer
not to specify different communication operations sharing the same communication
link as parallel ones.

The rule for estimation of the execution time of the parallel algorithmic pattern is
the core of the entire mapping algorithm determining its accuracy and efficiency. It
takes into account material nature and heterogeneity of both processors and network
equipment. It relies on fair allocating processes to processors in a shared-memory
multiprocessor normally implemented by operating systems for processes of the
same priority (mpC processes are just the case). At the same time, it proceeds from
the pessimistic point of view when estimating workload of different processors of
that multiprocessor. Estimation of communication cost by the rule is sensitive to sca-

1398 A. Lastovetsky / Parallel Computing 28 (2002) 1369–1407



lability of the underlying network technology. It treats differently communica-
tion layers serializing data packages and supporting their parallel transfer. The
most typical and widely used collective communication operations are treated spe-
cifically to provide better accuracy of the estimation of their execution time. An im-
portant advantage of the rule is its relative simplicity and effectiveness. The
effectiveness is critical because the algorithm is supposed to be multiply executed
at runtime.

Most disadvantages of the rule are just the backside of its simplicity and the ne-
cessity to keep it effective. Except some common collective communication opera-
tions, it is not sensitive to different collective communication patterns such as ring
data shifting, tree reduction, etc., treating all them as a set of independent point-
to-point communications. The main problem is that recognition of such patterns
is very expensive. A possible solution is introduction in the mpC language some ex-
plicit constructs for communication pattern specification as a part of the scheme de-
scription. Another disadvantage of the rule affecting the accuracy of estimation is
that any set of parallel communications is treated as if all they take place at the same
communication layer in the hierarchy, namely, at the lowest communication layer
covering all involved processors. In reality, some of the communications may use dif-
ferent communication layers. Incorporation of multi-layer parallel communications
in this algorithm without significant loss of its efficiency is a very difficult problem,
which is supposed to be addressed in the future works.

Ideally, the mpC runtime system should find such a mapping that is estimated to
ensure the fastest execution of the parallel algorithm. In general, for accurate solu-
tion of this problem as many as MK possible mappings have to be probated to find the
best one (here, K is the power of the set I of coordinates of virtual processors). Ob-
viously, that computational complexity is not acceptable for a practical algorithm
that should be performed at runtime. Therefore, the mpC runtime system searches
for some approximate solution that can be found in some reasonable interval of
time, namely, after probation of M � K possible mappings instead of MK .

The underlying algorithm is the following. At the preliminary step, the set I is re-
ordered in accordance with the volume of computations to be performed by the vir-
tual processors, so that the most loaded virtual processor will come first. Let
P ¼ fpkg (k ¼ 0; . . . ;K � 1) be this well-ordered set. Let Qj be a subnetwork of
the abstract mpC network formed by the set Pj ¼ fpig (i ¼ 0; . . . ;j) of virtual pro-
cessors. By definition, a subnetwork is a result of projection of the abstract network
onto some subset of its virtual processors. Semantically, the subnetwork is equiva-
lent to its supernetwork modified in the following way:

• The zero volume of computations is set for each virtual processor not included in
the subnetwork.

• The zero volume of communications is set for each pair of virtual processors with
at least one of which not included in the subnetwork.

Finally, let cj denote the j-th computer from the set C. Then the main loop of the
algorithm can be described by the following pseudo-code:
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for(k¼0; k<K; k++) {
forðj ¼ 0;tbest ¼ MAXTIME; cbest ¼ c0; j<M; j++) {
ifðpk is not a parent of the mpC network) {
Map pk to cj
Estimate execution time t for this mapping of Qk to C

ifðt < tbest) {
tbest ¼ t;
cbest ¼ cj;

}
Unmap pk

}
}
Map pk to cbest

}

The presented algorithm reflects the focus of the mpC language on applications
with computations prevailing over communications. Therefore, the algorithm is dri-
ven by virtual processors not communication links. Another argument for that ap-
proach is that the maximal number of virtual communication links is equal to the
total number of virtual processors squared. Therefore, in general, an algorithm dri-
ven by virtual links would be more expensive.

Informally, the algorithm first maps the most loaded virtual processor not taking
into account other virtual processors as well as communications. Then, given the first
virtual processor mapped, it maps the second most loaded virtual processor only tak-
ing into account communications between these two processors and so on. At the
i-th step, it maps the i-th most loaded virtual processor only taking into account data
transfer between these i virtual processors. This algorithm exploits the obvious ob-
servation that the smaller are things, the easier they can be evenly distributed. Hence,
bigger things should be distributed under weaker constraints than smaller ones. For
example, if you want to distribute a number of balls of different size over a number
of baskets of different size, you better start from the biggest ball and put it into the
biggest basket; then put the second biggest ball into the basket having the biggest
free space and so on. This algorithm keeps balance between ball sizes and free basket
space and guarantees that if at some step you do not have enough space for the next
ball, it simply means that there is no way to put all the balls in the baskets. Similarly,
if the above algorithm cannot balance the load of actual processors in case of prac-
tically zero communication costs, it simply means that there is no way to balance
them at all. This algorithm will also work well if data transfer between more loaded
virtual processors is more significant than data transfer between less loaded ones. In
this case, more loaded virtual communication links are taken into account at earlier
stages of the algorithm.

An obvious case when this mapping algorithm may not work well is when the
least loaded virtual processor is involved in transfer of much bigger volume of data
than more loaded ones, and the contribution of communications in the total execu-
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tion time is significant. But even quick analysis shows that it is not the case for most
parallel algorithms.

5. Experimental results

This section presents some results of experiments with the matrix multiplication
application presented in Section 2.2. All presented results are obtained for
r ¼ t ¼ 20.

A small local network of 9 Solaris and Linux workstations (named csultra01,
csserver, csultra02, csultra03, csultra04, csultra05, csultra07,
csultra08, and csultra10) is used for the experiments. The network is based
on 100 Mbit Ethernet with a switch enabling parallel communications between the
computers. The initial static structure of the network automatically obtained by
the mpC environment and saved in the form of ASCII file was the following:

parallel(0.49, 0.97) c154056 c4407404 c11188106

#csultra01

s1 p4288 n6 serial c251556 c6987375 c75412443

#csserver

s1 p6667 n6 serial c291589 c8708311 c32021610

#csultra02

s1 p4213 n6 serial c421605 c17034484 c73290148

#csultra03

s1 p4092 n6 serial c196882 c10150458 c69696275

#csultra04

s1 p4263 n6 serial c360042 c21758106 c74743908

#csultra05

s1 p4288 n6 serial c411954 c18204945 c75087604

#csultra07

s1 p4260 n6 serial c321599 c15395040 c78303652

#csultra08

s1 p4357 n6 serial c430860 c21868078 c72443345

#csultra10

s1 p4318 n6 serial c382766 c30094072 c70345882

Here, each computer is characterized by seven parameters. The first parameter, s,
determines the number of processors. Thus, all the workstations are uniprocessor
computers.

The second parameter, p, determines the performance of the computer demon-
strated on execution of some serial test code. One can see that csserver is the most
powerful computer, meanwhile the rest of computers are approximately of the same
power. Note that at runtime the execution of the recon statement updates the value
of the parameter for each participated computer.
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The third parameter, n, determines the total number of processes of the parallel
program to run on the computer. Each computer runs 6 processes, what means that
the total number of processes is equal to 54.

The fourth parameter determines the scalability of the communication layer pro-
vided by the computer. In this case, all computers provide serial communication lay-
ers.

Finally, the last three parameters determine the speed of point-to-point data
transfer between processes running on the same computer as a function of size of
the transferred data block. The first of them specifies the speed of transfer of a data
block of 64 bytes (measured in bytes per second), and the second and the third spec-
ify that of 642 and 643 bytes correspondingly. The speed of transfer of a data block of
an arbitrary size is calculated by interpolation of the measured speeds. Although
there could be used more points to approximate this function without visible loss
of efficiency (remember that corresponding calculations were performed at runtime),
so far the 3-point approximation appeared accurate enough.

The homogeneous communication space of higher level is also characterized by
those three parameters. Besides, the layer is detected as a parallel communication
layer with factors 0.49 and 0.97 characterizing the level of parallelism of broadcast
and gather correspondingly.

The execution time of the matrix multiplication application is compared with its
execution time predicted by the mpC programming system as well as with the execu-
tion time of a simplified version of this application not taking into account the cost
of data transfers at all.

Fig. 2 depicts the speedup demonstrated by the advanced application against the
simplified one. Meanwhile the simplified application always involves in matrix mul-

Fig. 2. The speedup against matrix multiplication involving all available workstations.
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tiplication all available workstations, the advanced application only involves
some optimal number, which varies from 4 to 9 in our experiments and depends
on the matrix size and the current performance demonstrated by different worksta-
tions.

Fig. 3 demonstrates how the actual execution time agrees with the execution time
predicted at runtime by the mpC programming system. It gives the ratio of the pre-
dicted execution time and the real one as a function of matrix size. One can see that,
as a rule, the real execution time differs from the predicted one not more than by
5–6%.

6. Related work

The section surveys related papers from the literature. The papers range into four
categories: papers focusing on general load-balancing strategies, papers dealing with
design of heterogeneous parallel algorithms, papers devoted to high-level tools facil-
itating the implementation of parallel algorithms, and papers covering performance
models of parallel architectures.

General load balancing strategies for heterogeneous platforms have been widely
studied. Scheduling the tasks can be performed either dynamically or statically or
a mixture of both. Most schedulers use simple mapping strategies such as master–
slave techniques or the use of currently observed performance of each machine to
decide for the next distribution of work (see survey papers [6–9]). Several scheduling
and mapping heuristics have been proposed to map task graphs onto heterogeneous
networks of workstations [10–13]. Scheduling tools such as Prophet [14] or AppLeS
[15] are available (see also the survey paper [16]). Mapping algorithms underlying all
the strategies are quite general. They make very little suggestions about the nature of

Fig. 3. Ratio of the predicted and real execution time.
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scheduled tasks (if any) often considering them as a set of independent equal units.
More attention is paid to the model of heterogeneous hardware.

A small number of recent papers are devoted to the design of concrete heteroge-
neous parallel algorithms [1,17–20]. They mainly deal with linear algebra. They an-
alyse different modifications of traditional homogeneous algorithms and try to find
their best mapping on heterogeneous networks of workstations. The mappings take
into account all peculiarities of the corresponding parallel algorithms and are based
on very careful performance analysis. The MPI library or the mpC language is used
to implement the algorithms.

Several high-level languages have been developed to facilitate the implementation
of parallel algorithms on distributed-memory architectures, among which HPF
(High Performance Fortran) and Dataparallel C are the most popular. The lan-
guages were originally designed with homogeneous multiprocessor as target architec-
ture in mind. HPF was standardized in 1994 as HPF 1.1 [21]. It only provided
regular mapping patterns and did not support uneven distribution of the array ele-
ments over processors, necessary for balanced mappings of heterogeneous algo-
rithms. This did not satisfy the HPF community; and in 1997 a new HPF version,
2.0, was standardized [22]. HPF 2.0 extends BLOCK distribution with the ability
to explicitly specify the size of each individual block (GEN_BLOCK distribution).
In addition, HPF 2.0 introduces a new distribution method, INDIRECT distribu-
tion, where each individual array element is explicitly assigned to a particular proces-
sor––this is achieved by the use of a vector-subscript type of array. Thus, HPF 2.0
provides some basic support for programming heterogeneous algorithms. At the
same time, HPF 2.0 still provides no language constructs allowing the programmer
to control better mapping of the heterogeneous algorithms to heterogeneous clusters.
The HPF programmer should rely on some default mapping provided by the HPF
compiler. The mapping cannot be sensitive to peculiarities of each individual algo-
rithm just because the HPF compiler has no information about the peculiarities.
Therefore, to control the mapping and take into account both the peculiarities of
the implemented parallel algorithm and the peculiarities of the executing heteroge-
neous environment, the HPF programmer needs to additionally write a good peace
of quite complex code.

Dataparallel C [23] is a C-based counterpart of HPF. It presents the model of com-
putation characterized by a global name space, synchronous execution, and virtual
processors as the unit of parallelism. The virtual topologies offered by Dataparallel
C are ring or torus. Virtual processors are, therefore, organized as one- or two-dimen-
sional arrays. To map the virtual processors, Dataparallel C uses a data file provided
by the user and dictating the initial mapping. Dynamic load balancing is accom-
plished through periodic exchange of load information during calls to the routing li-
brary at runtime. Entire processes are not moved in this load-balancing scheme;
merely some the virtual processors assigned to a given machine are shifted. Since a
virtual processor is characterized by its data, migrating the data alone is sufficient.

A good deal of theoretical research has focused on models of parallel computers.
The most widely used parallel models are the parallel random access machine
(PRAM) [24], the bulk-synchronous parallel model (BSP) [25], and the LogP model
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[26]. All the models assume a parallel computer to be a homogeneous multiproces-
sor. The PRAM is the most simplistic model. It assumes that all processors work
synchronously and that interprocessor communication is free. The BSP allows pro-
cessors to work asynchronously and models latency and limited bandwidth. Finally,
the LogP is the most realistic model among them. It characterizes a parallel machine
by the number of processors (P), the communication bandwidth (g), the communi-
cation delay (L), and the communication overhead (o). The LogP model has been
successfully used for developing fast and portable parallel algorithms for (homoge-
neous) supercomputers. In this case, the portability of a parallel algorithm means
that the algorithm adapts to the particular supercomputer configuration in terms
of these parameters. Nonetheless, the LogP model or its extensions are not appro-
priate to model heterogeneous networks of computers, mainly due to their irregular-
ity and non-deterministic nature. The irregularity multiply increases the number of
parameters, meanwhile the non-deterministic behavior of common networks makes
the parameters stochastic. The resulting model becomes extremely sophisticated and
non-effective. At the same time, this over-sophistication is not justified by the pro-
vided accuracy. The model presented in Section 3 is much simpler and more effective
and has demonstrated quite good accuracy.

7. Conclusion and future work

The paper has presented new advanced features of the mpC parallel language that
allow the programmer to define all main features of the implemented parallel algo-
rithm that can have an impact on the performance of execution of the algorithm on a
heterogeneous network of computers. The features include the total number of par-
ticipating parallel processes, the total volume of computations to be performed on
each of the processes, the total volume of data to be transferred between each pair
of the processes, and how exactly the processes interact during the execution of
the algorithm. The mpC programming system uses that abstraction of the parallel
algorithm together with the model of the executing heterogeneous network to map
the processes of the parallel program to this network in such a way that ensure better
execution time. The mapping is executed at runtime; therefore its efficiency is crucial
for the total execution performance of mpC applications. The presented model of a
heterogeneous network and the mapping algorithm were developed to keep balance
between accuracy and efficiency.

Some directions of the future work on the mpC programming system include im-
provement of the underlying model of heterogeneous network and the mapping al-
gorithm, as well as implementation of the mpC technology in the form of library
with bindings to C++, Fortran, and Java.
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