

Abstract

The problem of optimal matrix partitioning for

parallel linear algebra on p heterogeneous processors
is typically reduced to the geometrical problem of
partitioning a unit square into rectangles. In the most
general case, the problem has proved NP-complete.
Therefore, restrictions of this problem allowing for
polynomial solutions should be studied. So far, the only
well-studied restriction has been a column-based
geometrical partitioning problem obtained from the
general problem by imposing the additional restriction
that rectangles of the partitioning make up columns.
This problem has a solution of the complexity)(3pO .
This paper studies another restriction - a grid-based
partitioning problem obtained from the general
problem by imposing the additional restriction that the
heterogeneous processors owing the rectangles of the
partitioning form a two-dimensional grid. An
algorithm of the complexity)(2/3pO solving this
problem is proposed, proved and experimentally
validated.

1. Introduction

 Heterogeneous networks of computers are a
promising distributed-memory parallel architecture. In
the most general case, a heterogeneous network
includes PCs, workstations, multiprocessor servers,
clusters of workstations, and even supercomputers.
Unlike traditional homogeneous parallel platforms, the
heterogeneous parallel architecture uses processors
running at different speeds. Therefore, traditional
parallel algorithms, which distribute computations
evenly across parallel processors, will not balance the
load of different-speed processors of the heterogeneous
network. Faster processors will quickly perform their
portions of computation and will wait for slower ones
at points of synchronization.

A natural approach to the problem is to distribute
data across processors unevenly so that each processor
will perform the volume of computation proportional
to its speed. The simplest performance model,
capturing the heterogeneity of processors, sees the
heterogeneous network of computers as a set of
interconnected processors, each of which is
characterized by a single positive constant representing
its speed. Two important parameters of the model
include:

-- p, the number of the processors, and
-- S={s1, s2, ..., sp}, the speeds of the processors.
The speed of the processors can be absolute or

relative. The absolute speed of the processors is
understood as the number of computational units
performed by the processor per one time unit. The
relative speed of the processor can be obtained by
normalization of its absolute speed so that 1

1
=∑ =

p

i is

This is typical in the design of heterogeneous
parallel algorithms that the problem of distribution of
computations in proportion to the speed of processors
is reduced to the problem of partitioning of some
mathematical objects, such as sets, matrices, graphs,
etc.

Matrices are probably the most widely used
mathematical objects in scientific computing.
Therefore, no wonder that the studies of data
partitioning problems mainly deal with partitioning
matrices.

The problem of optimal matrix partitioning for
parallel linear algebra on p heterogeneous processors is
typically reduced to the geometrical problem of
partitioning a unit square into rectangles. In the most
general case, this problem has proved NP-complete [1].
Therefore, restrictions of this problem allowing for
polynomial solutions should be studied. So far, the
only well-studied restriction has been a column-based
geometrical partitioning problem obtained from the
general problem by imposing the additional restriction
that rectangles of the partitioning make up columns.

 On Grid-based Matrix Partitioning for Heterogeneous Processors

 Alexey Lastovetsky, Member, IEEE
University College Dublin
alexey.lastovetsky@ucd.ie

This problem has a solution of the complexity)(3pO
[1]. This paper studies another restriction - a grid-based
partitioning problem obtained from the general
problem by imposing the additional restriction that the
heterogeneous processors owing the rectangles of the
partitioning form a two-dimensional grid. An algorithm
of the complexity)(2/3pO solving this problem is
proposed, proved and experimentally validated.

The paper is organized as follows. Section II
outlines related work on matrix partitioning for parallel
computing on heterogeneous platforms. Section III
presents a grid-based partitioning problem and an
algorithm of its solution of the complexity)(2/3pO .
Section IV reports on some experimental results.
Section V concludes the paper.

2. Matrix Partitioning for Heterogeneous

Processors

In many cases the problem of optimal distribution of

computations over a one-dimensional arrangement of
heterogeneous processors can be reduced to the
mathematical problem of partitioning of a set or a well-
ordered set, even if the original problem is dealing with
matrices but reduced to the problem of partitioning of a
matrix in one dimension [2,3,4,5].

In this paper, we address matrix-partitioning
problems that do not impose the additional restriction
of partitioning the matrix in one dimension. The
partitioning problems occur, in particular, during
design of many parallel algorithms for solution of
linear algebra problems on heterogeneous platforms.

One such problem is matrix multiplication. Matrix
multiplication C=A×B is a very simple but important
linear algebra kernel. It also serves as a prototype for
many other scientific kernels. Parallel algorithms for
matrix multiplication on heterogeneous platforms have
been well studied over the last decade. A typical
heterogeneous matrix multiplication algorithm is
designed as a modification of a well-known algorithm
for matrix multiplication on homogeneous distributed-
memory multiprocessors. Most often, the two-
dimensional block-cyclic algorithm implemented in the
ScaLAPACK library is used as a basis for the
heterogeneous modifications [6].

Modifications of the algorithm for heterogeneous
platforms typically use the following general design
[7]:

 Matrices A, B, and C are identically partitioned
into equal rectangular generalized blocks.

 The generalized blocks are identically

partitioned into rectangles so that
o There is one-to-one mapping between

the rectangles and the processors.
o The area of each rectangle is

(approximately) proportional to the
speed of the processor which owns the
rectangle (see Figure 1).

o Then, the algorithm follows the steps
of its homogeneous prototype.

The motivation behind partitioning of the
generalized blocks in proportion to the speed of the
processors is as following. At each step of the
algorithm, the amount of computations needed to
update one rr × block of matrix C is the same for all
the blocks. Therefore, the load of the processors will be
perfectly balanced if the number of blocks updated by
each processor is proportional to its speed. The total
number of blocks updated by the processor is equal to
the number of blocks allocated to this processor in each
generalized block multiplied by the total number of
generalized blocks. The number of blocks in a partition
of the generalized block is equal to the area of the
partition measured in rr × blocks. Thus, if the area of
each partition is proportional to the speed of the
processor owing it, then the load of the processors will
be perfectly balanced.

The problem of optimal partitioning of the
generalized block has been studied. So far, the studies
have been interested not in an exact solution but rather
in an asymptotically optimal solution, which is an
approximate solution approaching the optimal one with
the increase of the block size. Such relaxation of the
partitioning problem makes its formulation possible
not only in terms of absolute speeds of the processors
but also in terms of their relative speeds. The use of
relative speeds instead of absolute speeds normally
simplifies the design and the application of partitioning
algorithms.

From the partitioning point of view, a generalized
block is an integer-valued rectangular. Therefore, if we
are only interested in an asymptotically optimal
solution, the problem of its partitioning can be reduced
to a geometrical problem of optimal partitioning of a
real-valued rectangle. Indeed, given a real-valued
optimal solution of the problem, its asymptotically
optimal solution can be easily obtained by rounding off
the real values of the optimal solution to integers.

P1

P4

P7

P8

P9

P6

P2

P3 P3

P2

P1

P6

P4

P9

P8

P7

P1

P4 P4

P7 P7P1

P2 P2P8 P8

P6 P6
P3 P3P9 P9

P5 P5

P5 P5

Figure 1. Data partitioning for parallel matrix
multiplication on nine heterogeneous
processors. A matrix is partitioned into four
equal generalized blocks, each identically
partitioned into nine rectangles. The area of
each rectangle is proportional to the speed of
the processors owing it.

In the most general form, the related geometrical

problem has been formulated as follows [1]:
 Given a set of p processors P1, P2, ..., Pp, the

relative speed of each of which is characterized
by a positive constant, si, (1

1
=∑ =

p

i is),

 Partition a unit square into p rectangles so that
o There is one-to-one mapping between

the rectangles and the processors.
o The area of the rectangle allocated to

processor Pi is equal to si
(},,1{ pi …∈).

o The partitioning minimizes

()∑
=

+
p

i
ii hw

1

, where iw is the width

and ih is the height of the rectangle
allocated to processor Pi (},,1{ pi …∈).

Partitioning the unit square into rectangles with the
area proportional to the speed of the processors is
aimed at the balancing of the load of the processors.
As a rule, there are multiple different partitionings
satisfying the criterion. Minimization of the sum of

half-perimeters of the rectangles, ()∑
=

+
p

i
ii hw

1

, is

aimed at minimization of the total volume of data
communicated between the processors [1]. The use of a
unit square instead of a rectangle in the formulation of
the problem does not make it less general because the
optimal solution of this problem for an arbitrary
rectangle is obtained by straightforward scaling of the
corresponding optimal solution for the unit square.

The general geometrical partitioning problem has
proved NP-complete [1]. The NP-completeness means
that, most likely, an efficient algorithm, solving the
geometrical partitioning problem in its general form,
does not exist. Therefore, restrictions of this problem
allowing for polynomial solutions should be
formulated and efficiently solved. So far, the only
well-studied restriction is a column-based geometrical
partitioning problem.

The column-based problem is obtained from the
general one by imposing the additional restriction that
rectangles of the partitioning make up columns, as
illustrated in Figure 2. The column-based geometrical
partitioning problem has a polynomial solution of the
complexity ()3pO . The corresponding algorithm is
proposed and proved in [1].

P1
P12

P8

P2

P7

P10
P6

P9

P11

P3 P5

P4

Figure 2. Column-based partitioning of the
unit square into 12 rectangles. The rectangles
of the partitioning form three columns.

Another restricted form of the column-based
geometrical partitioning problem has been also
addressed. Namely, the pioneering result in the field
was an algorithm of the linear complexity solving the
column-based geometrical partitioning problem under
the additional assumption that the processors are

already arranged into a set of processor columns [8]
(that is, assuming that the number of columns c in the
partitioning and the mapping of rectangles in each
column to the processors are given). The algorithm is
as follows.

Algorithm 1: Optimal partitioning a unit square
between p heterogeneous processors arranged into c
columns, each of which is made of rj processors,

},,1{ cj …∈ :
 Let the relative speed of the i-th processor from

the j-th column, Pij, be ijs (1
1 1

=∑∑
= =

c

j

r

i
ij

j

s).

 Then, we first partition the unit square into c
vertical rectangular slices such that the width

the j-th slice ∑
=

=
jr

i
ijj sw

1

.

o This partitioning makes the area of
each vertical slice proportional to the
sum of speeds of the processors in the
corresponding column.

 Second, each vertical slice is partitioned
independently into rectangles in proportion with
the speed of the processors in the corresponding
processor column.

Figure 3 illustrates the algorithm for a 3×3 processor
grid.

3•P2•P1•P

 (a) (b)
Figure 3. Example of two-step partitioning of
the unit square between 9 heterogeneous
processors arranged into a 3×3 processor
grid. The relative speed of the processors is

given by matrix

















03.017.005.0
08.009.017.0
05.025.011.0 . (a) At the first

step, the unit square is partitioned in one
dimension between processor columns of the
3×3 processor grid in proportion
0.33:0.51:0.16. (b) At the second step, each
vertical rectangle is partitioned independently

in one dimension between processors of its
column. The first rectangle will be partitioned
in proportion 0.11:0.17:0.05. The second
rectangle will be partitioned in proportion
0.25:0.09:0.17. The third rectangle will be
partitioned in proportion 0.05:0.08:0.03.

3. Grid-Based Heterogeneous Partitioning

We can see that Algorithm 1 also solves a more

restricted problem when the given arrangement of
processors forms a two-dimensional grid.

In the paper, we study a grid-based geometrical
partitioning problem, obtained from the general
problem by imposing the additional restriction that the
heterogeneous processors owing the rectangles of the
partitioning form a two-dimensional grid as illustrated
in Figure 4. Equivalently, a grid-based partitioning can
be defined as a partitioning of the unit square into
rectangles such that there exist p and q such that any
vertical line crossing the unit square will pass through
exactly p rectangles and any horizontal line crossing
the square will pass through exactly q rectangles.

The grid-based partitioning problem has some nice
properties that allow for its efficient solution.

Proposition 1. Let a grid-based partitioning of the
unit square between p heterogeneous processors form c
columns, each of which consists of r processors,

crp ×= . Then, the sum of half-perimeters of the
rectangles of the partitioning will be equal to)(cr + .

Proof. The sum of heights of the rectangles owned
by each column of processors will be equal to 1. As we
have in total c columns, the sum of heights of all
rectangles of the partitioning will be equal to c.
Similarly, the sum of widths of the rectangles owned
by each row of processors in the processor grid will be
equal to 1. As we have in total r rows in the grid, the
sum of widths of all rectangles of the partitioning will
be equal to r. Hence, the sum of half-perimeters of all
rectangles will be equal to)(cr + .

P21

P11 P12 P13

P32

P23

P43

P42

P31

P41

P22

P33

Figure 4. Grid-based partitioning of the unit
square into 12 rectangles. The processors
owing the rectangles of the partitioning form
4×3 processor grid.

There are two important corollaries from Proposition

1:
 The shape cr × of the processor grid formed

by any optimal grid-based partitioning will
minimize)(cr + .

 The sum of half-perimeters of the rectangles of
the optimal grid-based partitioning does not
depend on the mapping of the processors onto
the nodes of the grid

The grid-based geometrical partitioning problem has
a polynomial solution of the complexity ()2/3pO . The
corresponding algorithm is as follows.

Algorithm 2: Optimal grid-based partitioning of a
unit square between p heterogeneous processors:

 Step 1: Find the optimal shape cr × of the
processor grid such that crp ×= and

)(cr + is minimal.
 Step 2: Map the processors onto the nodes of

the grid.
 Step 3: Apply Algorithm 1 of the optimal

partitioning of the unit square to this cr ×
arrangement of the p heterogeneous processors.

The correctness of Algorithm 2 is obvious. Step 1 of
the algorithm finds the optimal shape of the processor
grid that minimizes the sum of half-perimeters of any
grid-based partitioning for any mapping of the
processors onto the nodes of the grid. Step 3 just finds
one of such partitioning, the rectangles of which are
proportional to the speeds of the processors. Note that
the returned partitioning is always column-based due to

P21

P11
P12 P13

P32

P23

P43

P42

P31

P41

P22

P33

Figure 5. A 4×3 optimal grid-based partitioning
returned by Algorithm 2. The rectangles of the
partitioning form three columns.

the nature of Algorithm 1 (see Figure 5).
Step 1 of Algorithm 2 can be performed by the

following simple algorithm.
Algorithm 3: Finding r and c such that crp ×=

and)(cr + is minimal:

 pr = ;
while(r>1)

 if()mod(rp ==0))
 goto stop;
 else r--;

stop: c = p/r;
Proposition 2. Algorithm 3 is correct.
Proof. If p is a square number then pcr ==

minimizes)(cr + , and the algorithm works correctly
in this case. Now let us assume that p is not a square
number. Then, cr ≠ . Due to symmetry, we can
assume cr < without loss of generality. We have

r
prcr +=+ . It is easy to show that function

r
prrf +=)(will be decreasing if cr < . Indeed,

21
r
p

dr
df −= . Therefore, if cr < then pr < and,

hence, 01 2 <−
r
p . Thus, if 110 cr << , 220 cr << ,

21 rr < and pcrcr =×=× 2211 , then

2211 crcr +>+ . Therefore, the algorithm will return

the correct result if p is not a square number.
Proposition 3. The complexity of Algorithm 2 can

be bounded by ()2/3pO .
Proof. The complexity of Step 1 of Algorithm 2 can

be bounded by ()2/3pO . Indeed, we can use Algorithm
3 at this step. The number of iterations of the main
loop of Algorithm 3 is no greater than p . At each
iteration, we test the condition 0)mod(==rp . A
straightforward testing of this condition can be done in







r
p steps, each of the complexity)1(O (for example,

by repeated subtraction of r from p). Therefore, the
overall complexity of Algorithm 3 can be comfortably
bounded by ()2/3pO . As we can use an arbitrary
mapping of the processors onto the nodes of the cr ×
grid, the complexity of Step 2 of Algorithm 2 can be
bounded by)(pO . Algorithm 1 used at Step 3 has the
complexity)(pO . Thus, the overall complexity of
Algorithm 2 can be bounded by

() ()2/32/3)()(pOpOpOpO =++ .

4. Experimental Results

In order to validate the algorithm presented in

Section III, an algorithm of parallel matrix
multiplication on heterogeneous processors based on
the general scheme described in Section II and the
grid-based matrix partitioning was implemented. The
algorithm was implemented in HeteroMPI [9]. This
section presents some results of experiments with this
application. All presented results are obtained for r =
16 and the maximal size of generalized block
providing the best balance of load of heterogeneous
processors.

A heterogeneous cluster of 16 different Linux,
Solaris and HP-UX workstations shown in Table 1 is
used in the experiments. The network is based on 2
Gbit Ethernet with a switch enabling parallel
communications between the computers. The absolute
speeds of the processors are obtained using the BLAS
routine dgemm. The absolute speeds in million floating
point operations per second (MFlops) obtained by
multiplication of two dense 1536×1536 matrices for
the processors are shown in the last column in Table 1.
It can be seen that the fastest processor is hcl13 and the
slowest processor is hcl08. It should be noted that one
process is run per processor to obtain these

In the experiments, we use the one-process-per-
workstation configuration of the application and vary
the shape of arrangement, cr × , of the processes.
Table 2 shows the results of the experiments. As

expected, 4×4 is the best arrangement minimizing the
communication time. It can be also seen that the
difference in total execution times for the same

TABLE 1.
SPECIFICATIONS OF SIXTEEN LINUX COMPUTERS ON

WHICH THE MATRIX MULTIPLICATION IS EXECUTED
Com-
puter

Cpu / Main memory / Cache
(GHz/Mbytes/Kbytes)

 Absolute speed
 (MFlops)

hcl01 3.60 / 256 / 2048 2171
hcl02 3.00 / 256 / 2048 2099

hcl03 3.40 / 1024 / 1024 1761
hcl04 3.40 / 1024 / 1024 1787
hcl05 3.40 / 256 / 1024 1735
hcl06 3.40 / 256 / 1024 1653
hcl07 3.40 / 256 / 1024 1879
hcl08 3.40 / 256 / 1024 1635
hcl09 1.00 / 1024 / 1024 3004
hcl10 1.00 / 1024 / 1024 2194
hcl11 3.00 / 512 / 1024 4580
hcl12 3.40 / 512 / 1024 1762
hcl13 3.40 / 1024 / 1024 4934
hcl14 2.80 / 1024 / 1024 4096

hcl15 3.60 / 1024 / 16 2697
hcl16 3.60 / 1024 / 2048 4840

TABLE 2.
EXECUTION TIMES OF THE PARALLEL

MULTIPLICATION OF TWO DENSE N×N MATRICES ON
16 HETEROGENEOUS PROCESSORS FOR DIFFRENT

ARRANGEMENTS R×C

Matrix
size (n)

 Processor
grid
(r×c)

Total
 execution

time
 (sec)

Communication
 time
 (sec)

2048 1×16 54 27
2048 2×8 32 5
2048 4×4 32 2
3072 1×16 113 61
3072 2×8 68 19
3072 4×4 62 8
4096 1×16 218 114
4096 2×8 133 45
4096 4×4 101 7
5120 1×16 348 180
5120 2×8 211 61
5120 4×4 179 23
6144 1×16 537 258
6144 2×8 335 95
6144 4×4 276 30
7168 1×16 770 352
7168 2×8 514 150
7168 4×4 420 51
8192 1×16 1264 464
8192 2×8 709 181
8192 4×4 582 50
9216 1×16 1444 590
9216 2×8 969 233
9216 4×4 828 93
10240 1×16 1916 727
10240 2×8 1292 297
10240 4×4 1100 110

problem size is solely due to the difference in
communication times.

5. Application to Cartesian Matrix

Partitioning

The grid-based partitioning problem is not the most

restrictive partitioning problem that has been addressed
by algorithm designers. A Cartesian partitioning
problem is even more restrictive. The Cartesian
problem can be obtained from the column-based
problem by imposing the additional restriction that
rectangles of the partitioning make up rows, as
illustrated in Figure 6. A Cartesian partitioning can be
also defined as a grid-based partitioning, rectangles of
which make up both rows and columns.

Cartesian partitionings play an important role in
design of parallel heterogeneous algorithms. In
particular, scalable heterogeneous parallel algorithms
are normally based on Cartesian partitionings. The
point is that in a Cartesian partitioning no rectangle has
more than one direct neighbor in any direction (left, up,
right, or down), which results in scalable
communication patterns for algorithms with
communications only between direct neighbors.

P21

P11 P12 P13

P32

P23

P43P42

P31

P41

P22

P33

Fig. 6. Cartesian partitioning of the unit square
into 12 rectangles. The rectangles of the
partitioning form a 34× grid. No rectangle has
more than one direct neighbor in any direction
(left, up, right, or down).

Despite it is more restrictive than the column-based
and grid-based problems, the Cartesian partitioning
problem proves more difficult. The reason is that
unlike optimal column-based and grid-based

partitionings, an optimal Cartesian partitioning may not
perfectly balance the load of processors (just because
for some combinations of relative speeds there may be
no Cartesian partitioning at all perfectly balancing their
load). In other words, the areas of the rectangles of the
partitioning may not be proportional to the speeds of
the processors. Therefore, relative speeds of the
processors become useless and the problem should be
re-formulated in terms of absolute speeds. In a general
form, the Cartesian partitioning problem can be
formulated as follows:

 Given p processors, the speed of each of which
is characterized by a given positive constant,

 Find a Cartesian partitioning of a unit square
such that

o There is one-to-one mapping between
the rectangles of the partitioning and
the processors.

o The partitioning minimizes











 ×

ij

ji

ji s
wh

,
max , where ih is the

height of rectangles in the i-th row,
jw is the width of rectangles in the j-th

column, ijs is the speed of the

processor owing j-th rectangle in the i-
th row, },,1{ ri …∈ , },,1{ cj …∈ ,

crp ×= .
This formulation is motivated by parallel matrix

algorithms requiring the same amount of computation
for calculation of each single element of the resulting
matrix. The speed of a processor can be obtained by
normalizing its absolute speed expressed in numbers of
matrix elements computed per time unit (that is, by
dividing the absolute speed by the total number of
elements in the matrix). In this case,

ij

ji

s
wh × will give

us the computation time of the processor owing j-th
rectangle in the i-th row of the partitioning; and











 ×

ij

ji

ji s
wh

,
max will give the total computation time

assuming fully parallel execution of the algorithm. The
cost of communication is not addressed in this
formulation at all (to do it, additional parameters
describing the communication network are needed).

The Cartesian problem has not been studied in the
above general form. An algorithm solving this problem
has to find an optimal combination of the shape r×c of
the processor grid, the mapping of the processors onto

the nodes of the grid, and sizes of rectangles allocated
to the processors. However, simplified versions of the
problem were studied and proved its difficulty. For
example, under the additional assumption that the
shape r×c of the partitioning is given, the problem
proved NP-complete [2]. Moreover, it is still unclear if
there exists a polynomial algorithm solving the
problem even when both the shape r×c of the grid and
the mapping of the processors onto the nodes of the
grid are given. The only positive result states that there
exists an optimal Cartesian partitioning such that the
processors will be arranged in the grid in a non-
increasing order of their speeds (in any direction –
from left to right and from top to bottom) [2].

At the same time, an efficient algorithm returning an
approximate solution of the simplified version of the
Cartesian partitioning problem, when the shape r×c of
the partitioning is given, has been proposed [2]. An
approximate solution of the general Cartesian
partitioning problem can be found by applying this
algorithm [2] to the shape r×c returned by Algorithm
3, that is, to the shape optimal for grid-based
partitionings.

6. Conclusion

The problem of optimal matrix partitioning for

parallel linear algebra on p heterogeneous processors is
typically reduced to the geometrical problem of
partitioning a unit square into rectangles. In the most
general case, this problem has proved NP-complete [1].
So far, the only well-studied restriction of the general
problem has been a column-based geometrical
partitioning problem that has a solution of complexity
O(p3) [1]. This paper has studied another restriction - a
grid-based partitioning problem obtained from the
general problem by imposing the additional restriction
that the heterogeneous processors owing the rectangles
of the partitioning form a two-dimensional grid. An
algorithm of the complexity O(p3/2) solving this
problem has been proposed, proved and experimentally
validated. We have also demonstrated how the results
can be used in approximate solution of the general
Cartesian matrix-partitioning problem.

ACKNOWLEDGMENT
The author would like to thank Ravi Reddy for his

help in conducting the experiments.

REFERENCES
[1] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert,

“Matrix Multiplication on Heterogeneous Platforms”,
IEEE Transactions on Parallel and Distributed Systems
12(10), pp. 1033-1051, 2001.

[2] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y.
Robert, “A Proposal for a Heterogeneous Cluster
ScaLAPACK (Dense Linear Solvers)”, IEEE
Transactions on Computers, Volume 50, No. 10,
pp.1052-1070, October 2001.

[3] P. Boulet, J. Dongarra, F. Rastello, Y. Robert, and F.
Vivien, “Algorithmic issues on heterogeneous
computing platforms”,, Parallel Processing Letters, 9(2),
pp.197-213, 1999.

[4] A. Lastovetsky and R. Reddy, “A Variable Group Block
Distribution Strategy for Dense Factorizations on
Networks of Heterogeneous Computers”, Proceedings
of the 6th International Conference on Parallel
Processing and Applied Mathematics (PPAM 2005), 11-
14 September, Poznan, Poland, Lecture Notes in
Computer Science 3911, pp.1074-1081, Springer, 2006.

[5] J. Barbosa, J. Tavares, and A. J. Padilha, “Linear
Algebra Algorithms in a Heterogeneous Cluster of
Personal Computers”, Proceedings of the 9th
Heterogeneous Computing Workshop (HCW 2000),
Cancun, Mexico, IEEE Computer Society Press, May
2000, pp.147-159.

[6] J. Choi, J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D.
W. Walker, and R. C. Whaley, “The Design and
Implementation of the ScaLAPACK LU, QR, and
Cholesky Factorization Routines”, Scientific
Programming, 5(3), pp.173–184, 1996.

[7] A. Kalinov and A. Lastovetsky, "Heterogeneous
Distribution of Computations Solving Linear Algebra
Problems on Networks of Heterogeneous Computers",
Journal of Parallel and Distributed Computing 61(4), pp.
520-535, Academic Press, 2001.

[8] A. Kalinov and A. Lastovetsky, “Heterogeneous
Distribution of Computations While Solving Linear
Algebra Problems on Networks of Heterogeneous
Computers”, Proceedings of the 7th International
Conference on High Performance Computing and
Networking Europe (HPCN'99), 12-14 April 1999,
Amsterdam, The Netherlands, Lecture Notes in
Computer Science 1593, pp.191-200, Springer-Verlag,
1999.

[9] A. Lastovetsky and R. Reddy, “HeteroMPI: Towards a
Message-Passing Library for Heterogeneous Networks
of Computers”, Journal of Parallel and Distributed
Computing, 66(2), pp.197-220, Elsevier, 2006.

