
 
 

Abstract 
 
The problem of optimal matrix partitioning for 

parallel linear algebra on p heterogeneous processors 
is typically reduced to the geometrical problem of 
partitioning a unit square into rectangles. In the most 
general case, the problem has proved NP-complete. 
Therefore, restrictions of this problem allowing for 
polynomial solutions should be studied. So far, the only 
well-studied restriction has been a column-based 
geometrical partitioning problem obtained from the 
general problem by imposing the additional restriction 
that rectangles of the partitioning make up columns. 
This problem has a solution of the complexity )( 3pO . 
This paper studies another restriction - a grid-based 
partitioning problem obtained from the general 
problem by imposing the additional restriction that the 
heterogeneous processors owing the rectangles of the 
partitioning form a two-dimensional grid. An 
algorithm of the complexity )( 2/3pO  solving this 
problem is proposed, proved and experimentally 
validated. 
 
1. Introduction 
 
 Heterogeneous networks of computers are a 
promising distributed-memory parallel architecture. In 
the most general case, a heterogeneous network 
includes PCs, workstations, multiprocessor servers, 
clusters of workstations, and even supercomputers. 
Unlike traditional homogeneous parallel platforms, the 
heterogeneous parallel architecture uses processors 
running at different speeds. Therefore, traditional 
parallel algorithms, which distribute computations 
evenly across parallel processors, will not balance the 
load of different-speed processors of the heterogeneous 
network. Faster processors will quickly perform their 
portions of computation and will wait for slower ones 
at points of synchronization. 
 

 

A natural approach to the problem is to distribute 
data across processors unevenly so that each processor 
will perform the volume of computation proportional 
to its speed. The simplest performance model, 
capturing the heterogeneity of processors, sees the 
heterogeneous network of computers as a set of 
interconnected processors, each of which is 
characterized by a single positive constant representing 
its speed. Two important parameters of the model 
include: 

-- p, the number of the processors, and  
-- S={s1, s2, ..., sp}, the speeds of the processors. 
The speed of the processors can be absolute or 

relative. The absolute speed of the processors is 
understood as the number of computational units 
performed by the processor per one time unit. The 
relative speed of the processor can be obtained by 
normalization of its absolute speed so that 1

1
=∑ =

p

i is  

This is typical in the design of heterogeneous 
parallel algorithms that the problem of distribution of 
computations in proportion to the speed of processors 
is reduced to the problem of partitioning of some 
mathematical objects, such as sets, matrices, graphs, 
etc. 

Matrices are probably the most widely used 
mathematical objects in scientific computing. 
Therefore, no wonder that the studies of data 
partitioning problems mainly deal with partitioning 
matrices. 

The problem of optimal matrix partitioning for 
parallel linear algebra on p heterogeneous processors is 
typically reduced to the geometrical problem of 
partitioning a unit square into rectangles. In the most 
general case, this problem has proved NP-complete [1]. 
Therefore, restrictions of this problem allowing for 
polynomial solutions should be studied. So far, the 
only well-studied restriction has been a column-based 
geometrical partitioning problem obtained from the 
general problem by imposing the additional restriction 
that rectangles of the partitioning make up columns. 
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This problem has a solution of the complexity )( 3pO  
[1]. This paper studies another restriction - a grid-based 
partitioning problem obtained from the general 
problem by imposing the additional restriction that the 
heterogeneous processors owing the rectangles of the 
partitioning form a two-dimensional grid. An algorithm 
of the complexity )( 2/3pO  solving this problem is 
proposed, proved and experimentally validated. 

The paper is organized as follows. Section II 
outlines related work on matrix partitioning for parallel 
computing on heterogeneous platforms. Section III 
presents a grid-based partitioning problem and an 
algorithm of its solution of the complexity )( 2/3pO . 
Section IV reports on some experimental results. 
Section V concludes the paper.  

 
2. Matrix Partitioning for Heterogeneous 

Processors 
 
In many cases the problem of optimal distribution of 

computations over a one-dimensional arrangement of 
heterogeneous processors can be reduced to the 
mathematical problem of partitioning of a set or a well-
ordered set, even if the original problem is dealing with 
matrices but reduced to the problem of partitioning of a 
matrix in one dimension [2,3,4,5]. 

In this paper, we address matrix-partitioning 
problems that do not impose the additional restriction 
of partitioning the matrix in one dimension. The 
partitioning problems occur, in particular, during 
design of many parallel algorithms for solution of 
linear algebra problems on heterogeneous platforms. 

One such problem is matrix multiplication. Matrix 
multiplication C=A×B is a very simple but important 
linear algebra kernel. It also serves as a prototype for 
many other scientific kernels. Parallel algorithms for 
matrix multiplication on heterogeneous platforms have 
been well studied over the last decade. A typical 
heterogeneous matrix multiplication algorithm is 
designed as a modification of a well-known algorithm 
for matrix multiplication on homogeneous distributed-
memory multiprocessors. Most often, the two-
dimensional block-cyclic algorithm implemented in the 
ScaLAPACK library is used as a basis for the 
heterogeneous modifications [6]. 

Modifications of the algorithm for heterogeneous 
platforms typically use the following general design 
[7]: 

 Matrices A, B, and C are identically partitioned 
into equal rectangular generalized blocks. 

 The generalized blocks are identically 

partitioned into rectangles so that 
o There is one-to-one mapping between 

the rectangles and the processors. 
o The area of each rectangle is 

(approximately) proportional to the 
speed of the processor which owns the 
rectangle (see Figure 1). 

o Then, the algorithm follows the steps 
of its homogeneous prototype. 

The motivation behind partitioning of the 
generalized blocks in proportion to the speed of the 
processors is as following. At each step of the 
algorithm, the amount of computations needed to 
update one rr ×  block of matrix C is the same for all 
the blocks. Therefore, the load of the processors will be 
perfectly balanced if the number of blocks updated by 
each processor is proportional to its speed. The total 
number of blocks updated by the processor is equal to 
the number of blocks allocated to this processor in each 
generalized block multiplied by the total number of 
generalized blocks. The number of blocks in a partition 
of the generalized block is equal to the area of the 
partition measured in rr ×  blocks. Thus, if the area of 
each partition is proportional to the speed of the 
processor owing it, then the load of the processors will 
be perfectly balanced. 

The problem of optimal partitioning of the 
generalized block has been studied. So far, the studies 
have been interested not in an exact solution but rather 
in an asymptotically optimal solution, which is an 
approximate solution approaching the optimal one with 
the increase of the block size. Such relaxation of the 
partitioning problem makes its formulation possible 
not only in terms of absolute speeds of the processors 
but also in terms of their relative speeds. The use of 
relative speeds instead of absolute speeds normally 
simplifies the design and the application of partitioning 
algorithms. 

From the partitioning point of view, a generalized 
block is an integer-valued rectangular. Therefore, if we 
are only interested in an asymptotically optimal 
solution, the problem of its partitioning can be reduced 
to a geometrical problem of optimal partitioning of a 
real-valued rectangle. Indeed, given a real-valued 
optimal solution of the problem, its asymptotically 
optimal solution can be easily obtained by rounding off 
the real values of the optimal solution to integers. 
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Figure 1. Data partitioning for parallel matrix 
multiplication on nine heterogeneous 
processors. A matrix is partitioned into four 
equal generalized blocks, each identically 
partitioned into nine rectangles. The area of 
each rectangle is proportional to the speed of 
the processors owing it. 

 
In the most general form, the related geometrical 

problem has been formulated as follows [1]: 
 Given a set of p processors P1, P2, ..., Pp, the 

relative speed of each of which is characterized 
by a positive constant, si, ( 1

1
=∑ =

p

i is ), 

 Partition a unit square into p rectangles so that 
o There is one-to-one mapping between 

the rectangles and the processors. 
o The area of the rectangle allocated to 

processor Pi is equal to si  
( },,1{ pi …∈ ). 

o The partitioning minimizes 

( )∑
=

+
p

i
ii hw

1

, where iw  is the width 

and ih  is the height of the rectangle 
allocated to processor Pi  ( },,1{ pi …∈ ). 

Partitioning the unit square into rectangles with the 
area proportional to the speed of the processors is 
aimed at the balancing of the load of the processors.  
As a rule, there are multiple different partitionings 
satisfying the criterion. Minimization of the sum of 

half-perimeters of the rectangles, ( )∑
=

+
p

i
ii hw

1

, is 

aimed at minimization of the total volume of data 
communicated between the processors [1]. The use of a 
unit square instead of a rectangle in the formulation of 
the problem does not make it less general because the 
optimal solution of this problem for an arbitrary 
rectangle is obtained by straightforward scaling of the 
corresponding optimal solution for the unit square. 

The general geometrical partitioning problem has 
proved NP-complete [1]. The NP-completeness means 
that, most likely, an efficient algorithm, solving the 
geometrical partitioning problem in its general form, 
does not exist. Therefore, restrictions of this problem 
allowing for polynomial solutions should be 
formulated and efficiently solved. So far, the only 
well-studied restriction is a column-based geometrical 
partitioning problem. 

The column-based problem is obtained from the 
general one by imposing the additional restriction that 
rectangles of the partitioning make up columns, as 
illustrated in Figure 2. The column-based geometrical 
partitioning problem has a polynomial solution of the 
complexity ( )3pO . The corresponding algorithm is 
proposed and proved in [1]. 
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Figure 2. Column-based partitioning of the 
unit square into 12 rectangles. The rectangles 
of the partitioning form three columns. 
 

Another restricted form of the column-based 
geometrical partitioning problem has been also 
addressed. Namely, the pioneering result in the field 
was an algorithm of the linear complexity solving the 
column-based geometrical partitioning problem under 
the additional assumption that the processors are 



 
 

already arranged into a set of processor columns [8] 
(that is, assuming that the number of columns c in the 
partitioning and the mapping of rectangles in each 
column to the processors are given). The algorithm is 
as follows. 

Algorithm 1: Optimal partitioning a unit square 
between p heterogeneous processors arranged into c 
columns, each of which is made of rj processors, 

},,1{ cj …∈ : 
 Let the relative speed of the i-th processor from 

the j-th column, Pij, be ijs  ( 1
1 1

=∑∑
= =

c

j

r

i
ij

j

s ). 

 Then, we first partition the unit square into c 
vertical rectangular slices such that the width 

the j-th slice ∑
=

=
jr

i
ijj sw

1

. 

o This partitioning makes the area of 
each vertical slice proportional to the 
sum of speeds of the processors in the 
corresponding column. 

 Second, each vertical slice is partitioned 
independently into rectangles in proportion with 
the speed of the processors in the corresponding 
processor column. 

Figure 3 illustrates the algorithm for a 3×3 processor 
grid. 
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  (a)                                                   (b) 
Figure 3. Example of two-step partitioning of 
the unit square between 9 heterogeneous 
processors arranged into a 3×3 processor 
grid. The relative speed of the processors is 

given by matrix

















03.017.005.0
08.009.017.0
05.025.011.0 . (a) At the first 

step, the unit square is partitioned in one 
dimension between processor columns of the 
3×3 processor grid in proportion 
0.33:0.51:0.16. (b) At the second step, each 
vertical rectangle is partitioned independently 

in one dimension between processors of its 
column. The first rectangle will be partitioned 
in proportion 0.11:0.17:0.05. The second 
rectangle will be partitioned in proportion 
0.25:0.09:0.17. The third rectangle will be 
partitioned in proportion 0.05:0.08:0.03. 

 
3. Grid-Based Heterogeneous Partitioning 

 
We can see that Algorithm 1 also solves a more 

restricted problem when the given arrangement of 
processors forms a two-dimensional grid. 

In the paper, we study a grid-based geometrical 
partitioning problem, obtained from the general 
problem by imposing the additional restriction that the 
heterogeneous processors owing the rectangles of the 
partitioning form a two-dimensional grid as illustrated 
in Figure 4. Equivalently, a grid-based partitioning can 
be defined as a partitioning of the unit square into 
rectangles such that there exist p and q such that any 
vertical line crossing the unit square will pass through 
exactly p rectangles and any horizontal line crossing 
the square will pass through exactly q rectangles. 

The grid-based partitioning problem has some nice 
properties that allow for its efficient solution. 

Proposition 1. Let a grid-based partitioning of the 
unit square between p heterogeneous processors form c 
columns, each of which consists of r processors, 

crp ×= . Then, the sum of half-perimeters of the 
rectangles of the partitioning will be equal to )( cr + . 

Proof. The sum of heights of the rectangles owned 
by each column of processors will be equal to 1. As we 
have in total c columns, the sum of heights of all 
rectangles of the partitioning will be equal to c. 
Similarly, the sum of widths of the rectangles owned 
by each row of processors in the processor grid will be 
equal to 1. As we have in total r rows in the grid, the 
sum of widths of all rectangles of the partitioning will 
be equal to r. Hence, the sum of half-perimeters of all 
rectangles will be equal to )( cr + .  
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Figure 4. Grid-based partitioning of the unit 
square into 12 rectangles. The processors 
owing the rectangles of the partitioning form 
4×3 processor grid. 

 
There are two important corollaries from Proposition 

1: 
 The shape cr ×  of the processor grid formed 

by any optimal grid-based partitioning will 
minimize )( cr + . 

 The sum of half-perimeters of the rectangles of 
the optimal grid-based partitioning does not 
depend on the mapping of the processors onto 
the nodes of the grid 

The grid-based geometrical partitioning problem has 
a polynomial solution of the complexity ( )2/3pO . The 
corresponding algorithm is as follows. 

Algorithm 2: Optimal grid-based partitioning of a 
unit square between p heterogeneous processors: 

 Step 1: Find the optimal shape cr ×  of the 
processor grid such that crp ×=  and 

)( cr +  is minimal. 
 Step 2: Map the processors onto the nodes of 

the grid. 
 Step 3: Apply Algorithm 1 of the optimal 

partitioning of the unit square to this cr ×  
arrangement of the p heterogeneous processors. 

The correctness of Algorithm 2 is obvious. Step 1 of 
the algorithm finds the optimal shape of the processor 
grid that minimizes the sum of half-perimeters of any 
grid-based partitioning for any mapping of the 
processors onto the nodes of the grid. Step 3 just finds 
one of such partitioning, the rectangles of which are 
proportional to the speeds of the processors. Note that 
the returned partitioning is always column-based due to  
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Figure 5. A 4×3 optimal grid-based partitioning 
returned by Algorithm 2. The rectangles of the 
partitioning form three columns. 

 
the nature of Algorithm 1 (see Figure 5). 
Step 1 of Algorithm 2 can be performed by the 

following simple algorithm. 
Algorithm 3: Finding r and c such that crp ×=  

and )( cr +  is minimal: 

 pr = ; 
while(r>1) 

     if( )mod( rp ==0)) 
      goto stop; 
     else r--; 

stop: c = p/r; 
Proposition 2. Algorithm 3 is correct. 
Proof. If p is a square number then pcr ==  

minimizes )( cr + , and the algorithm works correctly 
in this case. Now let us assume that p is not a square 
number. Then, cr ≠ . Due to symmetry, we can 
assume cr <  without loss of generality. We have 

r
prcr +=+ . It is easy to show that function 

r
prrf +=)(  will be decreasing if cr < . Indeed, 

21
r
p

dr
df −= . Therefore, if  cr <  then pr <  and, 

hence, 01 2 <−
r
p . Thus, if 110 cr << , 220 cr << , 

21 rr <  and pcrcr =×=× 2211 , then 

2211 crcr +>+ . Therefore, the algorithm will return 

the correct result if p is not a square number. 
Proposition 3. The complexity of Algorithm 2 can 



 
 

be bounded by ( )2/3pO . 
Proof. The complexity of Step 1 of Algorithm 2 can 

be bounded by ( )2/3pO . Indeed, we can use Algorithm 
3 at this step. The number of iterations of the main 
loop of Algorithm 3 is no greater than p . At each 
iteration, we test the condition 0)mod( ==rp . A 
straightforward testing of this condition can be done in 







r
p  steps, each of the complexity )1(O  (for example, 

by repeated subtraction of r from p). Therefore, the 
overall complexity of Algorithm 3 can be comfortably 
bounded by ( )2/3pO . As we can use an arbitrary 
mapping of the processors onto the nodes of the cr ×  
grid, the complexity of Step 2 of Algorithm 2 can be 
bounded by )( pO . Algorithm 1 used at Step 3 has the 
complexity )( pO . Thus, the overall complexity of 
Algorithm 2 can be bounded by 

( ) ( )2/32/3 )()( pOpOpOpO =++ .  
 

4. Experimental Results 
 
In order to validate the algorithm presented in 

Section III, an algorithm of parallel matrix 
multiplication on heterogeneous processors based on 
the general scheme described in Section II and the 
grid-based matrix partitioning was implemented. The 
algorithm was implemented in HeteroMPI [9]. This 
section presents some results of experiments with this 
application. All presented results are obtained for r = 
16 and the maximal size of generalized block 
providing the best balance of load of heterogeneous 
processors. 

A heterogeneous cluster of 16 different Linux, 
Solaris and HP-UX workstations shown in Table 1 is 
used in the experiments. The network is based on 2 
Gbit Ethernet with a switch enabling parallel 
communications between the computers. The absolute 
speeds of the processors are obtained using the BLAS 
routine dgemm. The absolute speeds in million floating 
point operations per second (MFlops) obtained by 
multiplication of two dense 1536×1536 matrices for 
the processors are shown in the last column in Table 1. 
It can be seen that the fastest processor is hcl13 and the 
slowest processor is hcl08. It should be noted that one 
process is run per processor to obtain these  

In the experiments, we use the one-process-per-
workstation configuration of the application and vary 
the shape of arrangement, cr × , of the processes. 
Table 2 shows the results of the experiments. As 

expected, 4×4 is the best arrangement minimizing the 
communication time. It can be also seen that the 
difference in total execution times for the same 

TABLE 1. 
SPECIFICATIONS OF SIXTEEN LINUX COMPUTERS ON 

WHICH THE MATRIX MULTIPLICATION IS EXECUTED 
Com-
puter 

Cpu / Main memory / Cache 
(GHz/Mbytes/Kbytes) 

 Absolute speed 
 (MFlops) 

hcl01 3.60 / 256 / 2048 2171 
hcl02 3.00 / 256 / 2048 2099 

hcl03 3.40 / 1024 / 1024 1761 
hcl04 3.40 / 1024 / 1024 1787 
hcl05 3.40 / 256 / 1024 1735 
hcl06 3.40 / 256 / 1024 1653 
hcl07 3.40 / 256 / 1024 1879 
hcl08 3.40 / 256 / 1024 1635 
hcl09 1.00 / 1024 / 1024 3004 
hcl10 1.00 / 1024 / 1024 2194 
hcl11 3.00 / 512 / 1024 4580 
hcl12 3.40 / 512 / 1024 1762 
hcl13 3.40 / 1024 / 1024 4934 
hcl14 2.80 / 1024 / 1024 4096 

hcl15 3.60 / 1024 / 16 2697 
hcl16 3.60 / 1024 / 2048 4840 

 
 

TABLE 2. 
EXECUTION TIMES OF THE PARALLEL 

MULTIPLICATION OF TWO DENSE N×N MATRICES ON 
16 HETEROGENEOUS PROCESSORS FOR DIFFRENT 

ARRANGEMENTS R×C 

Matrix 
size (n) 

 Processor 
grid 
(r×c) 

Total 
 execution 

time 
 (sec) 

Communication 
          time 
         (sec) 

2048 1×16 54 27 
2048 2×8 32 5 
2048 4×4 32 2 
3072 1×16 113 61 
3072 2×8 68 19 
3072 4×4 62 8 
4096 1×16 218 114 
4096 2×8 133 45 
4096 4×4 101 7 
5120 1×16 348 180 
5120 2×8 211 61 
5120 4×4 179 23 
6144 1×16 537 258 
6144 2×8 335 95 
6144 4×4 276 30 
7168 1×16 770 352 
7168 2×8 514 150 
7168 4×4 420 51 
8192 1×16 1264 464 
8192 2×8 709 181 
8192 4×4 582 50 
9216 1×16 1444 590 
9216 2×8 969 233 
9216 4×4 828 93 
10240 1×16 1916 727 
10240 2×8 1292 297 
10240 4×4 1100 110 



 
 

problem size is solely due to the difference in 
communication times. 

 
5. Application to Cartesian Matrix 

Partitioning 
 
The grid-based partitioning problem is not the most 

restrictive partitioning problem that has been addressed 
by algorithm designers. A Cartesian partitioning 
problem is even more restrictive. The Cartesian 
problem can be obtained from the column-based 
problem by imposing the additional restriction that 
rectangles of the partitioning make up rows, as 
illustrated in Figure 6. A Cartesian partitioning can be 
also defined as a grid-based partitioning, rectangles of 
which make up both rows and columns. 

Cartesian partitionings play an important role in 
design of parallel heterogeneous algorithms. In 
particular, scalable heterogeneous parallel algorithms 
are normally based on Cartesian partitionings. The 
point is that in a Cartesian partitioning no rectangle has 
more than one direct neighbor in any direction (left, up, 
right, or down), which results in scalable 
communication patterns for algorithms with 
communications only between direct neighbors. 
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Fig. 6. Cartesian partitioning of the unit square 
into 12 rectangles. The rectangles of the 
partitioning form a 34×  grid. No rectangle has 
more than one direct neighbor in any direction 
(left, up, right, or down). 

Despite it is more restrictive than the column-based 
and grid-based problems, the Cartesian partitioning 
problem proves more difficult. The reason is that 
unlike optimal column-based and grid-based 

partitionings, an optimal Cartesian partitioning may not 
perfectly balance the load of processors (just because 
for some combinations of relative speeds there may be 
no Cartesian partitioning at all perfectly balancing their 
load). In other words, the areas of the rectangles of the 
partitioning may not be proportional to the speeds of 
the processors.  Therefore, relative speeds of the 
processors become useless and the problem should be 
re-formulated in terms of absolute speeds. In a general 
form, the Cartesian partitioning problem can be 
formulated as follows: 

 Given p processors, the speed of each of which 
is characterized by a given positive constant, 

 Find a Cartesian partitioning of a unit square 
such that 

o There is one-to-one mapping between 
the rectangles of the partitioning and 
the processors. 

o The partitioning minimizes 











 ×

ij

ji

ji s
wh

,
max , where ih  is the 

height of rectangles in the i-th row,  
jw  is the width of rectangles in the j-th 

column, ijs  is the speed of the 

processor owing j-th rectangle in the i-
th row, },,1{ ri …∈ , },,1{ cj …∈ , 

crp ×= . 
This formulation is motivated by parallel matrix 

algorithms requiring the same amount of computation 
for calculation of each single element of the resulting 
matrix. The speed of a processor can be obtained by 
normalizing its absolute speed expressed in numbers of 
matrix elements computed per time unit (that is, by 
dividing the absolute speed by the total number of 
elements in the matrix). In this case, 

ij

ji

s
wh ×  will give 

us the computation time of the processor owing j-th 
rectangle in the i-th row of the partitioning; and 











 ×

ij

ji

ji s
wh

,
max  will give the total computation time 

assuming fully parallel execution of the algorithm. The 
cost of communication is not addressed in this 
formulation at all (to do it, additional parameters 
describing the communication network are needed). 

The Cartesian problem has not been studied in the 
above general form. An algorithm solving this problem 
has to find an optimal combination of the shape r×c of 
the processor grid, the mapping of the processors onto 



 
 

the nodes of the grid, and sizes of rectangles allocated 
to the processors. However, simplified versions of the 
problem were studied and proved its difficulty. For 
example, under the additional assumption that the 
shape r×c of the partitioning is given, the problem 
proved NP-complete [2]. Moreover, it is still unclear if 
there exists a polynomial algorithm solving the 
problem even when both the shape r×c of the grid and 
the mapping of the processors onto the nodes of the 
grid are given. The only positive result states that there 
exists an optimal Cartesian partitioning such that the 
processors will be arranged in the grid in a non-
increasing order of their speeds (in any direction – 
from left to right and from top to bottom) [2]. 

At the same time, an efficient algorithm returning an 
approximate solution of the simplified version of the 
Cartesian partitioning problem, when the shape r×c of 
the partitioning is given, has been proposed [2]. An 
approximate solution of the general Cartesian 
partitioning problem can be found by applying this 
algorithm [2] to the shape r×c returned by Algorithm 
3, that is, to the shape optimal for grid-based 
partitionings. 

 
6. Conclusion 

 
The problem of optimal matrix partitioning for 

parallel linear algebra on p heterogeneous processors is 
typically reduced to the geometrical problem of 
partitioning a unit square into rectangles. In the most 
general case, this problem has proved NP-complete [1]. 
So far, the only well-studied restriction of the general 
problem has been a column-based geometrical 
partitioning problem that has a solution of complexity 
O(p3) [1]. This paper has studied another restriction - a 
grid-based partitioning problem obtained from the 
general problem by imposing the additional restriction 
that the heterogeneous processors owing the rectangles 
of the partitioning form a two-dimensional grid. An 
algorithm of the complexity O(p3/2) solving this 
problem has been proposed, proved and experimentally 
validated. We have also demonstrated how the results 
can be used in approximate solution of the general 
Cartesian matrix-partitioning problem. 
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