
V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 261–275, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Novel Algorithm of Optimal Matrix Partitioning for
Parallel Dense Factorization on Heterogeneous

Processors

Alexey Lastovetsky and Ravi Reddy

School of Computer Science and Informatics, University College Dublin, Belfield,
Dublin 4, Ireland

{alexey.lastovetsky,manumachu.reddy}@ucd.ie

Abstract. In this paper, we present a novel algorithm of optimal matrix
partitioning for parallel dense matrix factorization on heterogeneous processors
based on their constant performance model. We prove the correctness of the
algorithm and estimate its complexity. We demonstrate that this algorithm
better suits extensions to more complicated, non-constant, performance models
of heterogeneous processors than traditional algorithms.

1 Introduction

The paper presents a novel algorithm of optimal matrix partitioning for parallel dense
matrix factorization on heterogeneous processors based on their constant performance
model. We prove the correctness of the algorithm and estimate its complexity. We
demonstrate that this algorithm better suits extensions to more complicated, non-
constant, performance models of heterogeneous processors, such as a model presented
in [1,2], than traditional algorithms.

A number of matrix distribution strategies for parallel dense matrix factorization in
heterogeneous environments have been designed and implemented. Arapov et al., [3]
propose a distribution strategy for 1D parallel Cholesky factorization. They consider
the Cholesky factorization to be an irregular problem and distribute data amongst the
processors of the executing parallel machine in accordance with their relative speeds.
The distribution strategy divides the matrix into a number of column panels such that
the width of each column panel is proportional to the speed of the processor. This
strategy is developed into a more general 2D distribution strategy in [4]. Beaumont et
al., [5-6] employ a dynamic programming algorithm (DP) to partition the matrix in
parallel 1D LU decomposition. When processor speeds are accurately known and
guaranteed not to change during program execution, the dynamic programming
algorithm provides the best possible load balancing of the processors. A static group
block distribution strategy [7-8] is used in parallel 1D LU decomposition to partition
the matrix into groups (or generalized blocks in terms of [4]), all of which have the
same number of blocks. The number of blocks per group (size of the group) and the
distribution of the blocks in the group over the processors are fixed and are determined
based on speeds of the processors, which are represented by a single constant number.
All these aforementioned distribution strategies are based on a performance model,

262 A. Lastovetsky and R. Reddy

which represents the speed of each processor by a constant positive number and
computations are distributed amongst the processors such that their volume is
proportional to this speed of the processor. The number characterizing the performance
of the processor is typically its relative speed demonstrated during the execution of the
code solving locally the core computational task of some given size.

We present in this paper a novel matrix partitioning algorithm for 1D LU
decomposition called the Reverse algorithm. Like the DP algorithm, the Reverse
algorithm always returns an optimal solution. The complexity of the Reverse
algorithm is a bit worse than that of the DP algorithm, but the algorithm has one
important advantage. It better suits extensions to more complicated, non-constant,
performance models of heterogeneous processors, such as the functional performance
model [1,2], than traditional algorithms.

The rest of the paper is organized as follows. In Section 2, we present the
homogeneous LU factorization algorithm that is used for our heterogeneous
modification. In section 3, we outline two existing heterogeneous modifications of
this algorithm using the constant model of heterogeneous processors before
presenting our original modification, the Reverse algorithm. This section also presents
the correctness of the algorithm and its complexity. Finally we present experimental
results on a local network of heterogeneous processors to demonstrate why the
proposed algorithm better suits extensions to the functional performance model of
heterogeneous processors than the traditional algorithms.

2 LU Factorization on Homogeneous Multiprocessors

Before we present our matrix partitioning algorithm, we describe the LU
Factorization algorithm of a dense (n×b)×(n×b) matrix A, one step of which is shown
in Figure 1, where n is the number of blocks of size b×b, optimal values of b
depending on the memory hierarchy and on the communication-to-computation ratio
of the target computer [9,10].

The LU factorization applies a sequence of Gaussian eliminations to form
A=P×L×U, where A, L, and U are dense (n×b)×(n×b) matrices. P is a permutation
matrix which is stored in a vector of size n×b, L is unit lower triangular (lower
triangular with 1’s on the main diagonal), and U is upper triangular.

At the k-th step of the computation (k=1,2,…), it is assumed that the m×m
submatrix of A(k) (m = ((n – (k – 1))×b) is to be partitioned as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

222212211121

12111111

22

1211

2221

11

2221

1211

ULUL UL

UL UL

 U0

 UU

L L

0 L

A A

A A

P

P

where the block A11 is b×b, A12 is b×(m-b), A21 is (m-b)×b, and A22 is (m-b)×(m-b). L11

is unit lower triangular matrix, and U11is an upper triangular matrix.

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 263

 U0

L0

 A22

 A12

 A21

 A11

 U0

L0

~

22A

 U12

 L21

U11

 L11

A A

(n-(k-1))×b (n-(k-1))×b

b
 b

Fig. 1. One step of the LU factorization algorithm of a dense matrix A of size (n×b)×(n×b)

 P1 P2 P3 P1 P2 P3

A

Fig. 2. Column-oriented CYCLIC distribution of six column blocks on a one-dimensional array
of three homogeneous processors

At first, a sequence of Gaussian eliminations is performed on the first m×b panel of
A(k) (i.e., A11 and A21). Once this is completed, the matrices L11, L21, and U11 are known
and we can rearrange the block equations

()
.

,

222212212222

~

12
1

1112

ULULA A

AL U

=−←

← −

The LU factorization can be done by recursively applying the steps outlined above to

the (m-b)×(m-b) matrix 22

~

A . Figure 1 shows how the column panel, L11 and L21, and
the row panel, U11 and U12, are computed and how the trailing submatrix A22 is
updated. In the figure, the regions L0, U0, L11, U11, L21, and U12 represent data for

264 A. Lastovetsky and R. Reddy

which the corresponding computations are completed. Later row interchanges will be
applied to L0 and L21.

Now we present a parallel algorithm that computes the above steps on a one-
dimensional arrangement of p homogeneous processors. The algorithm can be
summarized as follows:

1. A CYCLIC(b) distribution of columns is used to distribute the matrix A over a one-
dimensional arrangement of p homogeneous processors as shown in Figure 2. The
cyclic distribution assigns columns of blocks with numbers 1,2,…,n to processors
1,2,…,p,1,2,…,p,1,2,…, respectively, for a p-processor linear array (n»p), until all
n columns of blocks are assigned.

2. The algorithm consists of n steps. At each step (k=1,2,...),

− The processor owning the pivot column block of the size ((n–(k–1))×b)×b (i.e., A11
and A21) factors it;

− All processors apply row interchanges to the left and the right of the current
column block k;

− The processor owning L11 broadcasts it to the rest of the processors, which convert
the row panel A12 to U12;

− The processor owning the column panel L21 broadcasts it to the rest of the
processors;

− All the processors update their local portions of the matrix, A22, in parallel.

The implementation of the algorithm, which is used in the paper, is based on the
ScaLAPACK [10] routine, PDGETRF, and consists of the following steps:

1. PDGETF2: Apply the LU factorization to the pivot column panel of size ((n–(k–
1))×b)×b (i.e., A11 and A21). It should be noted here that only the routine PDSWAP
employs all the processes involved in the parallel execution. The rest of the
routines are performed locally at the process owning the pivot column panel.

− [Repeat b times (i = 1,…,b)]

• PDAMAX: find the (absolute) maximum element of the i-th column and its
location

• PDSWAP: interchange the i-th row with the row that holds the maximum
• PDSCAL: scale the i-th column of the matrix
• PDGER: update the trailing submatrix

− The process owning the pivot column panel broadcasts the same pivot information
to all the other processes.

2. PDLASWP: All processes apply row interchanges to the left and the right of the
current panel.

3. PDTRSM: L11 is broadcast to the other processes, which convert the row panel A12
to U12;

4. PDGEMM: The column panel L21 is broadcast to all the other processes. Then, all
processes update their local portions of the matrix, A22.

Because the largest fraction of the work takes place in the update of A22, therefore,
to obtain maximum parallelism all processors should participate in its update. Since
A22 reduces in size as the computation progresses, a cyclic distribution is used to

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 265

ensure that at any stage A22 is evenly distributed over all processors, thus obtaining
their balanced load.

3 LU Factorization on Heterogeneous Platforms with a Constant
Performance Model of Processors

Heterogeneous parallel algorithms of LU factorization on heterogeneous platforms are
obtained by modification of the homogeneous algorithm presented in Section 2. The
modification is in the distribution of column panels of matrix A over the linear array
of processors. As the processors are heterogeneous having different speeds, the
optimal distribution that aims at balancing the updates at all steps of the parallel LU
factorization will not be fully cyclic. So, the problem of LU factorization of a matrix
on a heterogeneous platform is reduced to the problem of distribution of column
panels of the matrix over heterogeneous processors of the platform.

Traditionally the distribution problem is formulated as follows: Given a dense
(n×b)×(n×b) matrix A, how can we assign n columns of size n×b of the matrix A to p
(n»p) heterogeneous processors P1, P2, ..., Pp of relative speeds S={s1, s2, ..., sp},

1
1

=∑ =

p

i is , so that the workload at each step of the parallel LU factorization is best

balanced? The relative speed si of processor Pi is obtained by normalization of its
(absolute) speed ai , understood as the number of column panels updated by the

processor per one time unit,

∑ =

=
p

i i

i
i

a

a
s

1

. While ai will increase with each next

step of the LU factorization (because the height of updated column panels will
decrease as the LU factorization progresses, resulting in a larger number of column
panels updated by the processor per time unit), the relative speeds si are assumed to be

constant. The optimal solution sought is the one that minimizes
i

k
i

i s

n)(

max for each

step of the LU factorization ()(

1

)(kp

i

k
i nn =∑ =

), where)(kn is the total number of

column panels updated at the step k and)(k
in denotes the number of column panels

allocated to processor Pi.
The motivation behind that formulation is the following. Strictly speaking, the

optimal solution should minimize the total execution time of the LU factorization,

which is given by ∑
=

=

n

k
k

i

k
ip

i a

n

1
)(

)(

1max , where)(k
ia is the speed of processor Pi

at step k of the LU factorization and)(k
in is the number of column panels

updated by processor Pi at this step. However, if a solution minimizes

)(

)(

1max
k

i

k
ip

i
a

n
= for each k, it will also minimize ∑

=
=

n

k
k

i

k
ip

i a

n

1
)(

)(

1max . Because

266 A. Lastovetsky and R. Reddy

i

k
ip

ip

i

k
i

p

i

k
ii

k
ip

ik
i

k
ip

i s

n

aas

n

a

n)(

1

1

)(

1

)(

)(

1)(

)(

1 max
1

maxmax =

==

== ×=
×

=
∑∑

, then for

any given k the problem of minimization of ∑
=

=

n

k
k

i

k
ip

i
a

n

1
)(

)(

1max will be equivalent

to the problem of minimization of
i

k
ip

i s

n)(

1max = . Therefore, if we are lucky and

there exists an allocation that minimizes
i

k
ip

i s

n)(

1max = for each step k of the LU

factorization, then the allocation will be globally optimal, minimizing

∑
=

=

n

k
k

i

k
ip

i
a

n

1
)(

)(

1max . Fortunately, such an allocation does exist [5,6].

Now we briefly outline two existing approaches to solve the above distribution
problem, which are the Group Block (GB) distribution algorithm [7] and the Dynamic
Programming (DP) distribution algorithm [5,6].

The GB algorithm. This algorithm partitions the matrix into groups (or generalized
blocks in terms of [4]), all of which have the same number of column panels. The
number of column panels per group (the size of the group) and the distribution of the
column panels within the group over the processors are fixed and determined based
on relative speeds of the processors. The relative speeds are obtained by running the
DGEMM routine that locally updates some particular dense rectangular matrix. The
inputs to the algorithm are p, the number of heterogeneous processors in the
one-dimensional arrangement, b, the block size, n, the size of the matrix in number of

blocks of size b×b or the number of column panels, and S={s1, s2, ...,

sp}(1
1

=∑ =

p

i is), the relative speeds of the processors. The outputs are g, the size of

the group, and d, an integer array of size p, the i-th element of which contains the
number of column panels in the group assigned to processor i. The algorithm can be
summarized as follows:

1. The size of the group g is calculated as ⎣ ⎦)min(/1 is (1≤i≤p). If g/p<2,

then ⎣ ⎦)min(/2 isg = . This condition is imposed to ensure there is sufficient

number of blocks in the group.
2. The group is partitioned so that the number of column panels di assigned to

processor i in the group will minimize
i

i
i s

d
max (see [5] for a simple algorithm

performing this partitioning).

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 267

3. In the group, processors are reordered to start from the slowest processors to the
fastest processors for load balance purposes.

The complexity of this algorithm is)log(2 ppO × . At the same time, the

algorithm does not guarantee that the returned solution will be optimal.

The DP algorithm. Dynamic programming is used to distribute column panels of the
matrix over the processors. The relative speeds of the processors are obtained by
running the DGEMM routine that locally updates some particular dense rectangular
matrix. The inputs to the algorithm are p, the number of heterogeneous processors in
the one-dimensional arrangement, b, the block size, n, the size of the matrix in
number of blocks of size b×b or the number of column panels, and S={s1, s2, ...,

sp}(1
1

=∑ =

p

i is), the relative speeds of the processors. The outputs are c, an integer

array of size p, the i-th element of which contains the number of column panels
assigned to processor i, and d, an integer array of size n, the i-th element of which
contains the processor to which the column panel i is assigned. The algorithm can be
summarized as follows:

(c1,…,cp)=(0,…,0);
(d1,…,dn)=(0,…,0);
for(k=1; k≤n; k=k+1) {

 Costmin=∞;
 for(i=1; i<=p; i=i+1) {
 Cost=(ci+1)/si;
 if (Cost < Costmin) {Costmin=Cost; j=i;}
 }
 dn-k+1=j;
 cj=cj+1;

}

The complexity of the DP algorithm is O(p×n). The algorithm returns the optimal
allocation of the column panels to the heterogeneous processors [6]. The fact that the
DP algorithm always returns the optimal solution is not trivial. Indeed, at each
iteration of the algorithm the column panel k is allocated to one of the processors,
namely, to a processor, minimizing the cost of the allocation. At the same time, there
may be several processors with the same, minimal, cost of allocation. The algorithm
randomly selects one of them. It is not obvious that allocation of the column panel to
any of these processors will result in a globally optimal allocation. But, fortunately,
for this particular distribution problem this is proved to be true.

In this paper, we propose another algorithm solving this distribution problem, a
Reverse distribution algorithm. Like the DP algorithm, the Reverse algorithm always
returns the optimal allocation. The complexity of the Reverse

algorithm,)log(2 pnpO ×× , is a bit worse than that of the DP algorithm, but the

algorithm has one important advantage. It better suits extensions to more complicated,

268 A. Lastovetsky and R. Reddy

non-constant, performance models of heterogeneous processors (such as the
functional model [1, 2]) than both the DP and GB algorithms.

The Reverse algorithm. This algorithm generates the optimal distribution

),,()()(
1

k
p

k nn … of n×b column panels of the dense (n×b)×(n×b) matrix over p

heterogeneous processors for each step k of the parallel LU factorization

(1
1

)(+−=∑ =
knn

p

i

k
i , k=1,…,n) and then allocates the column panels to the

processors by comparing these distributions. In other words, the algorithm extracts the
optimal allocation of the column panels from a sequence of optimal distributions of
the panels for successive steps of the parallel LU factorization. The inputs to the
algorithm are p, the number of heterogeneous processors in the one-dimensional
arrangement, b, the block size, n, the size of the matrix in number of blocks of size

b×b or the number of column panels, and S={s1, s2, ..., sp}(1
1

=∑ =

p

i is), the relative

speeds of the processors. The output is d, an integer array of size n, the i-th element of
which contains the processor to which the column panel i is assigned. The algorithm
can be summarized as follows:

(d1,…,dn)=(0,…,0);
w=0;
(n1,…,np)=HSP(p, n, S);
for (k=1; k<n; k=k+1) {

),,(''
1 pnn … = HSP(p, n-k, S);

 if (w==0)

 then if ())(()1])(,1[!(''
iijj nnjinnpj ==≠∀∧+==∈∃)

 then {dk=j;),,(),,(''
11 pp nnnn …… = ;}

 else w=1;

 else if ()])(,1[('
ii nnpi <∈∃)

 then w=w+1;
 else {
 for (i=1; i≤p; i=i+1)

 for ('
ii nn −=Δ ; Δ≠0; Δ=Δ-1, w=w-1)

 dk-w=i;

),,(),,(''
11 pp nnnn …… = ;

 w=0;
 }
}

If ()1])(,1[(==∈∃ inpi)

then dn=i;

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 269

Here, HSP(p, n, S) returns the optimal distribution of n column panels over p
heterogeneous processors of the relative speeds S={s1, s2, ..., sp} by applying the
algorithm for optimal distribution of independent chunks of computations from [5]

Table 1. Reverse Algorithm with three processors P1, P2, P3

Distributions at step
k

Step of
the

algorithm
(k) P1 P2 P3

Allocation
made

 6 2 2
1 5 2 2 P1
2 4 2 2 P1
3 3 2 2 P1
4 1 3 2 No allocation
5 1 3 1 No allocation
6 1 2 1 P1, P1, P3
7 1 1 1 P2
8 0 1 1 P1
9 0 0 1 P2
10 P3

(HSP stands for Heterogeneous Set Partitioning). Thus, first we find the optimal
distributions of column panels for the first and second steps of the parallel LU
factorization. If the distributions differ only for one processor, then we assign the first
column panel to this processor. The reason is that this assignment guarantees a
transfer from the best workload balance at the first step of the LU factorization to the
best workload balance at its second step. If the distributions differ for more than one
processor, we postpone allocation of the first column panel and find the optimal
distribution for the third step of the LU factorization and compare it with the
distribution for the first step. If the number of panel columns distributed to each
processor for the third step does not exceed that for the first step, we allocate the first
and second column panels so that the distribution for each next step is obtained from
the distribution for the immediate previous step by addition of one more column panel
to one of the processors. If not, we delay allocation of the first two column panels and
find the optimal distribution for the fourth step and so on.

In Table 1, we demonstrate the algorithm for n=10. The first column represents the
step k of the algorithm. The second column shows the distributions obtained during
each step by HSP. The entry “Allocation made” denotes the rank of the processor to
which the column panel k is assigned. At steps k=4 and k=5, the algorithm does not
make any assignments. At k=6, processor P1 is allocated column panels (4, 5) and

270 A. Lastovetsky and R. Reddy

Table 2. Distribution algorithms and their complexities

Distribution Algorithm Complexity
GB O(p×log

2
p)

DP O(p×n)
Reverse O(p×n×log

2
p)

processor P2 is allocated column panel 6. The output d in this case would be
(P1P1P1P1P1P3P2P1P2P3).

Proposition 1. The Reverse algorithm returns the optimal allocation.

Proof of Proposition 1. If the algorithm assigns the column panel k at each iteration
of the algorithm, then the resulting allocation will be optimal by design. Indeed, in
this case the distribution of column panels over the processors will be produced by the
HSP and hence optimal for each step of the LU factorization.

Consider the situation when the algorithm assigns a group of w (w>1) column
panels beginning from the column panel k. In that case, the algorithm first produces a

sequence of (w+1) distributions),,()()(
1

k
p

k nn … ,),,()1()1(
1

++ k
p

k nn … , …,

),,()()(
1

wk
p

wk nn ++ … such that

− the distributions are optimal for steps k, k+1,…, k+w of the LU factorization
respectively, and

−),,(),,()()(
1

)()(
1

ik
p

ikk
p

k nnnn ++> …… is only true for i=w (by definition,

(a1,…,ap)>(b1,…,bp) if and only if))(())((iiii baibai >∃∧≥∀).

Lemma 1. Let),,(1 pnn … and),,(''
1 pnn … be optimal distributions such that

'

1

'

1
nnnn

p

i i

p

i i ∑∑ ==
=>= ,))(('

ii nni <∃ and)
1

)(max(1
j

j

i

ip
i s

n

s

n
j

+
≤∀ = .

Then,
i

ip
i

i

ip
i s

n

s

n '

11 maxmax == = .

Proof of Lemma 1. As 'nn > and),,(1 pnn … and),,(''
1 pnn … are both optimal

distributions, then
i

ip
i

i

ip
i s

n

s

n '

11 maxmax == ≥ . On the other hand, there exists

],1[pj ∈ such that '
jj nn < , which implies '1 jj nn ≤+ . Therefore,

j

j

j

j

i

ip
i s

n

s

n

s

n 1
max

''

1

+
≥≥= . As we assumed that)

1
)(max(1

j

j

i

ip
i s

n

s

n
j

+
≤∀ = , then

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 271

i

ip
i

j

j

j

j

i

ip
i s

n

s

n

s

n

s

n '

1

'

1 max
1

max == ≤≤
+

≤ . Thus, from
i

ip
i

i

ip
i s

n

s

n '

11 maxmax == ≥

and
i

ip
i

i

ip
i s

n

s

n '

11 maxmax == ≤ we conclude that
i

ip
i

i

ip
i s

n

s

n '

11 maxmax == = . □

We can apply Lemma 1 to the pair),,()()(
1

k
p

k nn … and),,()()(
1

lk
p

lk nn ++ … for any

]1,1[−∈ wl .Indeed, ∑∑ =
+

=
> p

i

lk
i

p

i

k
i nn

1

)(

1

)(and))(()()(lk
i

k
i nni +<∃ . Finally,

the HSP guarantees that)
1

)(max(
)()(

1
j

k
j

i

k
ip

i s

n

s

n
j

+
≤∀ = (see [5,6]). Therefore,

i

wk
ip

i
i

k
ip

i
i

k
ip

i s

n

s

n

s

n)1(

1

)1(

1

)(

1 maxmaxmax
−+

=

+

== === … . In particular, this means

that for any),,(1 pmm … such that)(1)(1 maxmin j
i

wk
kji

j
i

wk
kj nmn −+

=
−+

= ≤≤

(pi ,,1…=), we will have
i

k
ip

i
i

ip
i s

n

s

m)(

11 maxmax == = . The allocations made in

the end by the Reverse algorithm for the column panels k, k+1,…,k+w-1 result in a
new sequence of distributions for steps k, k+1,…,k+w-1 of the LU factorization such
that each next distribution differs from the previous one for exactly one processor.

Each distribution),,(1 pmm … in this new sequence satisfies the inequality

)(1)(1 maxmin j
i

wk
kji

j
i

wk
kj nmn −+

=
−+

= ≤≤ (pi ,,1…=). Therefore, all they will have

the same cost
i

k
ip

i s

n)(

1max = , which is the cost of the optimal distribution for these

steps of the LU factorization found by the HSP. Hence, each distribution in this
sequence will be optimal for the corresponding step of the LU factorization. □

Proposition 2. The complexity of the Reverse algorithm is)log(2 pnpO ×× .

Proof. At each iteration of this algorithm, we apply the HSP, which is of complexity

)log(2 ppO × [5]. Testing the condition

))(()1])(,1[!(''
iijj nnjinnpj ==≠∀∧+==∈∃ is of complexity O(p).

Testing the condition)])(,1[('
ii nnpi <∈∃ is also of complexity O(p). Finally, the

total number of iterations of the inner loop of the nest of loops

 for (i=1; i≤p; i=i+1)

 for ('
ii nn −=Δ ; Δ≠0; Δ=Δ-1, w=w-1)

 dk-w=i;

272 A. Lastovetsky and R. Reddy

Table 3. Specifications of sixteen Linux computers of a heterogeneous network

Processor GHz CPU RAM
(mBytes)

Cache
(kBytes)

Absolute speed
(MFlops)

hcl01 3.6 Xeon 256 2048 246

hcl02 3.6 Xeon 256 2048 226

hcl03 3.4 Xeon 1024 1024 258

hcl04 3.4 Xeon 1024 1024 258

hcl05 3.4 Xeon 1024 1024 260

hcl06 3.4 Xeon 1024 1024 258

hcl07 3.4 Xeon 256 1024 257

hcl08 3.4 Xeon 256 1024 257

hcl09 1.8 AMD Opteron 1024 1024 386

hcl10 1.8 AMD Opteron 1024 1024 347

hcl11 3.2 P4 512 1024 518

hcl12 3.4 P4 512 1024 258

hcl13 2.9 Celeron 1024 256 397

hcl14 3.4 Xeon 1024 1024 558

hcl15 2.8 Xeon 1024 1024 472

hcl16 3.6 Xeon 1024 2048 609

during the execution of the algorithm cannot exceed the total number of allocations of
column panels, n. Thus, the overall complexity of the algorithm is upper-bounded by

).log()1()()()log(22 pnpOOnppOnpOnppOn ××=××+×+×+×× Table 2

presents the complexities of the algorithms employing the constant performance model
of heterogeneous processors.

4 Experimental Results

A small heterogeneous local network of sixteen different Linux workstations shown
in Table 3 is used in the experiments. The network is based on 2 Gbit Ethernet with a
switch enabling parallel communications between the computers.

The absolute speed of a processor is obtained by running the DGEMM routine that
is used in our application to locally update a dense non-square matrix of size n1×n2.
DGEMM is a level-3 BLAS routine [11] supplied by Automatically Tuned Linear
Algebra Software (ATLAS) [12]. ATLAS is a package that generates efficient code
for basic linear algebra operations. The total number of computations involved in
updating A22=A22-L21×U12 of the rectangular n1×n2 matrix A22, where L21 is a matrix
of the size n1×b and U12 is a matrix of the size b×n2, is 2×b×n1×n2. The block size b
used in the experiments is 32, which is typical for cache-based workstations [9,10].

Figure 3 shows the first set of experiments. For the range of problem sizes used in
these experiments, the speed of the processor is a constant function of the problem
size. These experiments demonstrate the optimality of the Reverse and the DP

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 273

LU factorization (constant performance model)

0
100
200
300
400
500
600
700
800
900

1000

1024 3024 5024 7024 9024 11024

Size of the matrix

E
xe

cu
ti

o
n

 t
im

e
(s

ec
) GB

DP
Reverse

Fig. 3. Execution times of the Reverse, DP, and GB distribution strategies for LU
decomposition of a dense square matrix

algorithms over the GB algorithm when the speed of the processor is a constant
function of the problem size. The figure shows the execution times of the LU
factorization application using these algorithms. The single number speeds of the
processors used for these experiments are obtained by running the DGEMM routine
to update a dense non-square matrix of size 5120×320. These speeds are shown in the
last column of Table 3. The ratio of speeds of the most powerful computer hcl16 and
the least powerful computer hcl01 is 609/226 ≈ 2.7.

Tables 4 and 5 show the second set of experiments showing the execution times of
the different strategies presented in this paper along with their extensions using the
functional model of heterogeneous processors [1, 2]. The strategies FDP, FGB, and
FR are extensions of the DP, GB, and the Reverse algorithms respectively using the
functional model of heterogeneous processors.

We consider two cases for comparison in the range (1024, 25600) of matrix sizes.
The GB and DP algorithms uses single number speeds. For the first case the single
number speeds are obtained by running the DGEMM routine to update a dense non-
square matrix of size 16384×1024. This case covers the range of small sized matrices.
The results for this case are shown in Table 4. For the second case the single number
speeds are obtained by running the DGEMM routine to update a dense non-square
matrix of size 20480×1440. This case covers the range of large sized matrices. The
results for this case are shown in Table 5. The ratios of speeds of the most powerful
computer hcl16 and the least powerful computer hcl01 in these cases are (531/131 =
4.4) and (579/64 = 9) respectively.

It can be seen that the FR algorithm, which is an extension of the Reverse
algorithm and employing the functional model of heterogeneous processors performs
well for all sizes of matrices. The Reverse and the DP algorithms perform better than
the GB algorithm when the speed of the processor is represented by a constant

274 A. Lastovetsky and R. Reddy

Table 4. Execution times (in seconds) of the LU factorization using different data distribution
algorithms

Size
of the
matrix

FR FDP FGB Reverse/DP GB

1024 15 17 18 16 20
5120 86 155 119 103 138

10240 564 1228 690 668 919
15360 2244 3584 2918 2665 2829
20480 7014 10801 8908 9014 9188
25360 14279 22418 19505 27204 27508

Table 5. Execution times (in seconds) of the LU factorization using different data distribution
algorithms

Size
of the
matrix

FR FDP FGB Reverse/DP GB

1024 15 17 18 18 18
5120 86 155 119 109 155

10240 564 1228 690 711 926
15360 2244 3584 2918 2863 3018
20480 7014 10801 8908 9054 9213
25360 14279 22418 19505 26784 26983

function of the problem size. The main reason is that the GB algorithm imposes
additional restrictions on the mapping of the columns to the processors. These
restrictions are that the matrix is partitioned into groups, all of which have the same
number of blocks. The number of columns per group (size of the group) and the
distribution of the columns in the group over the processors are fixed. The Reverse
and the DP algorithms impose no such limitations on the mapping.

5 Conclusions and Future Work

In this paper, we presented a novel algorithm of optimal matrix partitioning for
parallel dense matrix factorization on heterogeneous processors based on their
constant performance model. We prove the correctness of the algorithm and estimate
its complexity. We demonstrate that this algorithm better suits extensions to more
complicated, non-constant, performance models of heterogeneous processors than
traditional algorithms.

Acknowledgement

This work was supported by the Science Foundation Ireland (SFI).

 A Novel Algorithm of Optimal Matrix Partitioning for Parallel Dense Factorization 275

References

[1] Lastovetsky, A., Reddy, R.: Data Partitioning with a Realistic Performance Model of
Networks of Heterogeneous Computers. In: Proceedings of 18th International Parallel
and Distributed Processing Symposium (IPDPS’04), IEEE Computer Society Press, Los
Alamitos (2004)

[2] Lastovetsky, A., Reddy, R.: Data Partitioning with a Functional Performance Model of
Heterogeneous Processors. International Journal of High Performance Computing
Applications 21, 76–90 (2007)

[3] Arapov, D., Kalinov, A., Lastovetsky, A., Ledovskih, I.: Experiments with mpC:
Efficient Solving Regular Problems on Heterogeneous Networks of Computers via
Irregularization. In: Ferreira, A., Rolim, J.D.P., Teng, S.-H. (eds.) IRREGULAR 1998.
LNCS, vol. 1457, pp. 332–343. Springer, Heidelberg (1998)

[4] Kalinov, A., Lastovetsky, A.: Heterogeneous Distribution of Computations Solving
Linear Algebra Problems on Networks of Heterogeneous Computers. Journal of Parallel
and Distributed Computing 61, 520–535 (2001)

[5] Beaumont, O., Boudet, V., Petitet, A., Rastello, F., Robert, Y.: A Proposal for a
Heterogeneous Cluster ScaLAPACK (Dense Linear Solvers). IEEE Transactions on
Computers 50, 1052–1070 (2001)

[6] Boulet, P., Dongarra, J., Rastello, F., Robert, Y., Vivien, F.: Algorithmic issues on
heterogeneous computing platforms. Parallel Processing Letters 9, 197–213 (1999)

[7] Barbosa, J., Tavares, J., Padilha, A.J.: Linear Algebra Algorithms in a Heterogeneous
Cluster of Personal Computers. In: 9th Heterogeneous Computing Workshop (HCW
2000), pp. 147–159 (2000)

[8] Barbosa, J., Morais, C.N., Padilha, A.J.: Simulation of Data Distribution Strategies for
LU Factorization on Heterogeneous Machines. In: Proceedings of 17th International
Parallel and Distributed Processing Symposium (IPDPS 2003), IEEE Computer Society
Press, Los Alamitos (2003)

[9] Choi, J., Dongarra, J., Ostrouchov, L.S., Petitet, A.P., Walker, D.W., Whaley, R.C.: The
Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization
Routines. Scientific Programming 5, 173–184 (1996)

[10] Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.:
ScaLAPACK User’s Guide. SIAM (1997)

[11] Dongarra, J., Croz, J.D., Duff, I.S., Hammarling, S.: A set of level-3 basic linear algebra
subprograms. ACM Transactions on Mathematical Software 16, 1–17 (1990)

[12] Whaley, R.C., Petitet, A., Dongarra, J.: Automated empirical optimizations of software
and the atlas project. Technical report, Department of Computer Sciences, University of
Tennessee, Knoxville (2000)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

