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Abstract. In this paper, we present a novel algorithm of optimal matrix 
partitioning for parallel dense matrix factorization on heterogeneous processors 
based on their constant performance model. We prove the correctness of the 
algorithm and estimate its complexity. We demonstrate that this algorithm 
better suits extensions to more complicated, non-constant, performance models 
of heterogeneous processors than traditional algorithms. 

1   Introduction 

The paper presents a novel algorithm of optimal matrix partitioning for parallel dense 
matrix factorization on heterogeneous processors based on their constant performance 
model. We prove the correctness of the algorithm and estimate its complexity. We 
demonstrate that this algorithm better suits extensions to more complicated, non-
constant, performance models of heterogeneous processors, such as a model presented 
in [1,2], than traditional algorithms. 

A number of matrix distribution strategies for parallel dense matrix factorization in 
heterogeneous environments have been designed and implemented. Arapov et al., [3] 
propose a distribution strategy for 1D parallel Cholesky factorization. They consider 
the Cholesky factorization to be an irregular problem and distribute data amongst the 
processors of the executing parallel machine in accordance with their relative speeds. 
The distribution strategy divides the matrix into a number of column panels such that 
the width of each column panel is proportional to the speed of the processor. This 
strategy is developed into a more general 2D distribution strategy in [4]. Beaumont et 
al., [5-6] employ a dynamic programming algorithm (DP) to partition the matrix in 
parallel 1D LU decomposition. When processor speeds are accurately known and 
guaranteed not to change during program execution, the dynamic programming 
algorithm provides the best possible load balancing of the processors. A static group 
block distribution strategy [7-8] is used in parallel 1D LU decomposition to partition 
the matrix into groups (or generalized blocks in terms of [4]), all of which have the 
same number of blocks. The number of blocks per group (size of the group) and the 
distribution of the blocks in the group over the processors are fixed and are determined 
based on speeds of the processors, which are represented by a single constant number. 
All these aforementioned distribution strategies are based on a performance model, 
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which represents the speed of each processor by a constant positive number and 
computations are distributed amongst the processors such that their volume is 
proportional to this speed of the processor. The number characterizing the performance 
of the processor is typically its relative speed demonstrated during the execution of the 
code solving locally the core computational task of some given size. 

We present in this paper a novel matrix partitioning algorithm for 1D LU 
decomposition called the Reverse algorithm. Like the DP algorithm, the Reverse 
algorithm always returns an optimal solution. The complexity of the Reverse 
algorithm is a bit worse than that of the DP algorithm, but the algorithm has one 
important advantage. It better suits extensions to more complicated, non-constant, 
performance models of heterogeneous processors, such as the functional performance 
model [1,2], than traditional algorithms. 

The rest of the paper is organized as follows. In Section 2, we present the 
homogeneous LU factorization algorithm that is used for our heterogeneous 
modification. In section 3, we outline two existing heterogeneous modifications of 
this algorithm using the constant model of heterogeneous processors before 
presenting our original modification, the Reverse algorithm. This section also presents 
the correctness of the algorithm and its complexity. Finally we present experimental 
results on a local network of heterogeneous processors to demonstrate why the 
proposed algorithm better suits extensions to the functional performance model of 
heterogeneous processors than the traditional algorithms. 

2   LU Factorization on Homogeneous Multiprocessors 

Before we present our matrix partitioning algorithm, we describe the LU 
Factorization algorithm of a dense (n×b)×(n×b) matrix A, one step of which is shown 
in Figure 1, where n is the number of blocks of size b×b, optimal values of b 
depending on the memory hierarchy and on the communication-to-computation ratio 
of the target computer [9,10]. 

The LU factorization applies a sequence of Gaussian eliminations to form 
A=P×L×U, where A, L, and U are dense (n×b)×(n×b) matrices. P is a permutation 
matrix which is stored in a vector of size n×b, L is unit lower triangular (lower 
triangular with 1’s on the main diagonal), and U is upper triangular. 

At the k-th step of the computation (k=1,2,…), it is assumed that the m×m 
submatrix of A(k) (m = ((n – (k – 1))×b) is to be partitioned as follows: 
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where the block A11 is b×b, A12 is b×(m-b), A21 is (m-b)×b, and A22 is (m-b)×(m-b). L11 

is unit lower triangular matrix, and U11is an upper triangular matrix. 
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Fig. 1. One step of the LU factorization algorithm of a dense matrix A of size (n×b)×(n×b) 
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Fig. 2. Column-oriented CYCLIC distribution of six column blocks on a one-dimensional array 
of three homogeneous processors 

At first, a sequence of Gaussian eliminations is performed on the first m×b panel of 
A(k) (i.e., A11 and A21). Once this is completed, the matrices L11, L21, and U11 are known 
and we can rearrange the block equations 
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The LU factorization can be done by recursively applying the steps outlined above to 

the (m-b)×(m-b) matrix 22

~

A . Figure 1 shows how the column panel, L11 and L21, and 
the row panel, U11 and U12, are computed and how the trailing submatrix A22 is 
updated. In the figure, the regions L0, U0, L11, U11, L21, and U12 represent data for 
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which the corresponding computations are completed. Later row interchanges will be 
applied to L0 and L21. 

Now we present a parallel algorithm that computes the above steps on a one-
dimensional arrangement of p homogeneous processors. The algorithm can be 
summarized as follows: 

1. A CYCLIC(b) distribution of columns is used to distribute the matrix A over a one-
dimensional arrangement of p homogeneous processors as shown in Figure 2. The 
cyclic distribution assigns columns of blocks with numbers 1,2,…,n to processors 
1,2,…,p,1,2,…,p,1,2,…, respectively, for a p-processor linear array (n»p), until all 
n columns of blocks are assigned. 

2. The algorithm consists of n steps. At each step (k=1,2,...),  

− The processor owning the pivot column block of the size ((n–(k–1))×b)×b (i.e., A11 
and A21) factors it; 

− All processors apply row interchanges to the left and the right of the current 
column block k; 

− The processor owning L11 broadcasts it to the rest of the processors, which convert 
the row panel A12 to U12; 

− The processor owning the column panel L21 broadcasts it to the rest of the 
processors; 

− All the processors update their local portions of the matrix, A22, in parallel. 

The implementation of the algorithm, which is used in the paper, is based on the 
ScaLAPACK [10] routine, PDGETRF, and consists of the following steps: 

1. PDGETF2: Apply the LU factorization to the pivot column panel of size ((n–(k–
1))×b)×b (i.e., A11 and A21). It should be noted here that only the routine PDSWAP 
employs all the processes involved in the parallel execution. The rest of the 
routines are performed locally at the process owning the pivot column panel. 

− [Repeat b times (i = 1,…,b)] 

• PDAMAX: find the (absolute) maximum element of the i-th column and its 
location  

• PDSWAP: interchange the i-th row with the row that holds the maximum 
• PDSCAL: scale the i-th column of the matrix 
• PDGER: update the trailing submatrix 

− The process owning the pivot column panel broadcasts the same pivot information 
to all the other processes. 

2. PDLASWP: All processes apply row interchanges to the left and the right of the 
current panel. 

3. PDTRSM: L11 is broadcast to the other processes, which convert the row panel A12 
to U12; 

4. PDGEMM: The column panel L21 is broadcast to all the other processes. Then, all 
processes update their local portions of the matrix, A22. 

Because the largest fraction of the work takes place in the update of A22, therefore, 
to obtain maximum parallelism all processors should participate in its update. Since 
A22 reduces in size as the computation progresses, a cyclic distribution is used to 
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ensure that at any stage A22 is evenly distributed over all processors, thus obtaining 
their balanced load. 

3   LU Factorization on Heterogeneous Platforms with a Constant 
Performance Model of Processors 

Heterogeneous parallel algorithms of LU factorization on heterogeneous platforms are 
obtained by modification of the homogeneous algorithm presented in Section 2. The 
modification is in the distribution of column panels of matrix A over the linear array 
of processors. As the processors are heterogeneous having different speeds, the 
optimal distribution that aims at balancing the updates at all steps of the parallel LU 
factorization will not be fully cyclic. So, the problem of LU factorization of a matrix 
on a heterogeneous platform is reduced to the problem of distribution of column 
panels of the matrix over heterogeneous processors of the platform. 

Traditionally the distribution problem is formulated as follows: Given a dense 
(n×b)×(n×b) matrix A, how can we assign n columns of size n×b of the matrix A to p 
(n»p) heterogeneous processors P1, P2, ..., Pp of relative speeds S={s1, s2, ..., sp}, 
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Now we briefly outline two existing approaches to solve the above distribution 
problem, which are the Group Block (GB) distribution algorithm [7] and the Dynamic 
Programming (DP) distribution algorithm [5,6].  

The GB algorithm. This algorithm partitions the matrix into groups (or generalized 
blocks in terms of [4]), all of which have the same number of column panels. The 
number of column panels per group (the size of the group) and the distribution of the 
column panels within the group over the processors are fixed and determined based 
on relative speeds of the processors. The relative speeds are obtained by running the 
DGEMM routine that locally updates some particular dense rectangular matrix. The 
inputs to the algorithm are p, the number of heterogeneous processors in the  
one-dimensional arrangement, b, the block size, n, the size of the matrix in number of  

blocks of size b×b or the number of column panels, and S={s1, s2, ..., 

sp}( 1
1

=∑ =

p

i is ), the relative speeds of the processors. The outputs are g, the size of 

the group, and d, an integer array of size p, the i-th element of which contains the 
number of column panels in the group assigned to processor i. The algorithm can be 
summarized as follows: 

1. The size of the group g is calculated as ⎣ ⎦)min(/1 is  (1≤i≤p). If g/p<2, 

then ⎣ ⎦)min(/2 isg = . This condition is imposed to ensure there is sufficient 

number of blocks in the group. 
2. The group is partitioned so that the number of column panels di assigned to 

processor i in the group will minimize 
i

i
i s

d
max (see [5] for a simple algorithm 

performing this partitioning).  
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3. In the group, processors are reordered to start from the slowest processors to the 
fastest processors for load balance purposes. 

The complexity of this algorithm is )log( 2 ppO × . At the same time, the 

algorithm does not guarantee that the returned solution will be optimal.  

The DP algorithm. Dynamic programming is used to distribute column panels of the 
matrix over the processors. The relative speeds of the processors are obtained by 
running the DGEMM routine that locally updates some particular dense rectangular 
matrix. The inputs to the algorithm are p, the number of heterogeneous processors in 
the one-dimensional arrangement, b, the block size, n, the size of the matrix in 
number of blocks of size b×b or the number of column panels, and S={s1, s2, ..., 

sp}( 1
1

=∑ =

p

i is ), the relative speeds of the processors. The outputs are c, an integer 

array of size p, the i-th element of which contains the number of column panels 
assigned to processor i, and d, an integer array of size n, the i-th element of which 
contains the processor to which the column panel i is assigned. The algorithm can be 
summarized as follows: 

(c1,…,cp)=(0,…,0); 
(d1,…,dn)=(0,…,0);  
for(k=1; k≤n; k=k+1) { 

    Costmin=∞;  
    for(i=1; i<=p; i=i+1) {  
          Cost=(ci+1)/si; 
         if (Cost < Costmin) {Costmin=Cost; j=i;} 
    } 
    dn-k+1=j; 
    cj=cj+1; 

} 

The complexity of the DP algorithm is O(p×n). The algorithm returns the optimal 
allocation of the column panels to the heterogeneous processors [6]. The fact that the 
DP algorithm always returns the optimal solution is not trivial. Indeed, at each 
iteration of the algorithm the column panel k is allocated to one of the processors, 
namely, to a processor, minimizing the cost of the allocation. At the same time, there 
may be several processors with the same, minimal, cost of allocation. The algorithm 
randomly selects one of them. It is not obvious that allocation of the column panel to 
any of these processors will result in a globally optimal allocation. But, fortunately, 
for this particular distribution problem this is proved to be true. 

In this paper, we propose another algorithm solving this distribution problem, a 
Reverse distribution algorithm. Like the DP algorithm, the Reverse algorithm always 
returns the optimal allocation. The complexity of the Reverse 

algorithm, )log( 2 pnpO ×× , is a bit worse than that of the DP algorithm, but the 

algorithm has one important advantage. It better suits extensions to more complicated, 
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non-constant, performance models of heterogeneous processors (such as the 
functional model [1, 2]) than both the DP and GB algorithms. 

The Reverse algorithm. This algorithm generates the optimal distribution 

),,( )()(
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k
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k nn …  of n×b column panels of the dense (n×b)×(n×b) matrix over p 

heterogeneous processors for each step k of the parallel LU factorization 
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p
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k
i , k=1,…,n) and then allocates the column panels to the 

processors by comparing these distributions. In other words, the algorithm extracts the 
optimal allocation of the column panels from a sequence of optimal distributions of 
the panels for successive steps of the parallel LU factorization. The inputs to the 
algorithm are p, the number of heterogeneous processors in the one-dimensional 
arrangement, b, the block size, n, the size of the matrix in number of blocks of size 

b×b or the number of column panels, and S={s1, s2, ..., sp}( 1
1

=∑ =

p

i is ), the relative 

speeds of the processors. The output is d, an integer array of size n, the i-th element of 
which contains the processor to which the column panel i is assigned. The algorithm 
can be summarized as follows: 

(d1,…,dn)=(0,…,0);  
w=0; 
(n1,…,np)=HSP(p, n, S); 
for (k=1; k<n; k=k+1) { 

    ),,( ''
1 pnn … = HSP(p, n-k, S); 

    if (w==0) 

    then if ( ))(()1])(,1[!( ''
iijj nnjinnpj ==≠∀∧+==∈∃ ) 

            then {dk=j; ),,(),,( ''
11 pp nnnn …… = ;} 

            else w=1; 
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            else { 
                for (i=1; i≤p; i=i+1) 

                    for ( '
ii nn −=Δ ; Δ≠0; Δ=Δ-1, w=w-1) 

                        dk-w=i; 

                ),,(),,( ''
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                 w=0; 
            } 
} 

If ( )1])(,1[( ==∈∃ inpi ) 

then dn=i; 
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Here, HSP(p, n, S) returns the optimal distribution of n column panels over p 
heterogeneous processors of the relative speeds S={s1, s2, ..., sp} by applying the 
algorithm for optimal distribution of independent chunks of computations from [5]  
 

Table 1. Reverse Algorithm with three processors P1, P2, P3 

Distributions at step 
k 

Step of 
the 

algorithm 
(k) P1 P2 P3 

Allocation 
made 

 6 2 2  
1 5 2 2 P1 
2 4 2 2 P1 
3 3 2 2 P1 
4 1 3 2 No allocation 
5 1 3 1 No allocation 
6 1 2 1 P1, P1, P3 
7 1 1 1 P2 
8 0 1 1 P1 
9 0 0 1 P2 
10    P3 

(HSP stands for Heterogeneous Set Partitioning). Thus, first we find the optimal 
distributions of column panels for the first and second steps of the parallel LU 
factorization. If the distributions differ only for one processor, then we assign the first 
column panel to this processor. The reason is that this assignment guarantees a 
transfer from the best workload balance at the first step of the LU factorization to the 
best workload balance at its second step.  If the distributions differ for more than one 
processor, we postpone allocation of the first column panel and find the optimal 
distribution for the third step of the LU factorization and compare it with the 
distribution for the first step. If the number of panel columns distributed to each 
processor for the third step does not exceed that for the first step, we allocate the first 
and second column panels so that the distribution for each next step is obtained from 
the distribution for the immediate previous step by addition of one more column panel 
to one of the processors. If not, we delay allocation of the first two column panels and 
find the optimal distribution for the fourth step and so on. 

In Table 1, we demonstrate the algorithm for n=10. The first column represents the 
step k of the algorithm. The second column shows the distributions obtained during 
each step by HSP. The entry “Allocation made” denotes the rank of the processor to 
which the column panel k is assigned. At steps k=4 and k=5, the algorithm does not 
make any assignments. At k=6, processor P1 is allocated column panels (4, 5) and  
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Table 2. Distribution algorithms and their complexities 

Distribution Algorithm Complexity 
GB O(p×log

2
p) 

DP O(p×n) 
Reverse O(p×n×log

2
p) 

 
processor P2 is allocated column panel 6. The output d in this case would be 
(P1P1P1P1P1P3P2P1P2P3). 

Proposition 1. The Reverse algorithm returns the optimal allocation. 

Proof of Proposition 1. If the algorithm assigns the column panel k at each iteration 
of the algorithm, then the resulting allocation will be optimal by design. Indeed, in 
this case the distribution of column panels over the processors will be produced by the 
HSP and hence optimal for each step of the LU factorization. 

Consider the situation when the algorithm assigns a group of w (w>1) column 
panels beginning from the column panel k. In that case, the algorithm first produces a 
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the end by the Reverse algorithm for the column panels k, k+1,…,k+w-1 result in a 
new sequence of distributions for steps k, k+1,…,k+w-1 of the LU factorization such 
that each next distribution differs from the previous one for exactly one processor. 

Each distribution ),,( 1 pmm …  in this new sequence satisfies the inequality 
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1max = , which is the cost of the optimal distribution for these 

steps of the LU factorization found by the HSP. Hence, each distribution in this 
sequence will be optimal for the corresponding step of the LU factorization.              □ 

Proposition 2. The complexity of the Reverse algorithm is )log( 2 pnpO ×× . 

Proof. At each iteration of this algorithm, we apply the HSP, which is of complexity 

)log( 2 ppO × [5]. Testing the condition 

))(()1])(,1[!( ''
iijj nnjinnpj ==≠∀∧+==∈∃  is of complexity O(p). 

Testing the condition )])(,1[( '
ii nnpi <∈∃  is also of complexity O(p). Finally, the 

total number of iterations of the inner loop of the nest of loops 

                for (i=1; i≤p; i=i+1) 

                    for ( '
ii nn −=Δ ; Δ≠0; Δ=Δ-1, w=w-1) 

                        dk-w=i; 
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Table 3. Specifications of sixteen Linux computers of a heterogeneous network 

Processor GHz CPU RAM 
(mBytes) 

Cache 
(kBytes) 

Absolute speed 
(MFlops) 

hcl01 3.6 Xeon 256 2048 246 

hcl02 3.6 Xeon 256 2048 226 

hcl03 3.4 Xeon 1024 1024 258 

hcl04 3.4 Xeon 1024 1024 258 

hcl05 3.4 Xeon 1024 1024 260 

hcl06 3.4 Xeon 1024 1024 258 

hcl07 3.4 Xeon 256 1024 257 

hcl08 3.4 Xeon 256 1024 257 

hcl09 1.8 AMD Opteron 1024 1024 386 

hcl10 1.8 AMD Opteron 1024 1024 347 

hcl11 3.2 P4 512 1024 518 

hcl12 3.4 P4 512 1024 258 

hcl13 2.9 Celeron 1024 256 397 

hcl14 3.4 Xeon 1024 1024 558 

hcl15 2.8 Xeon 1024 1024 472 

hcl16 3.6 Xeon 1024 2048 609 

 
during the execution of the algorithm cannot exceed the total number of allocations of 
column panels, n. Thus, the overall complexity of the algorithm is upper-bounded by 

).log()1()()()log( 22 pnpOOnppOnpOnppOn ××=××+×+×+×× Table 2 

presents the complexities of the algorithms employing the constant performance model 
of heterogeneous processors. 

4   Experimental Results 

A small heterogeneous local network of sixteen different Linux workstations shown 
in Table 3 is used in the experiments. The network is based on 2 Gbit Ethernet with a 
switch enabling parallel communications between the computers. 

The absolute speed of a processor is obtained by running the DGEMM routine that 
is used in our application to locally update a dense non-square matrix of size n1×n2. 
DGEMM is a level-3 BLAS routine [11] supplied by Automatically Tuned Linear 
Algebra Software (ATLAS) [12]. ATLAS is a package that generates efficient code 
for basic linear algebra operations. The total number of computations involved in 
updating A22=A22-L21×U12 of the rectangular n1×n2 matrix A22, where L21 is a matrix 
of the size n1×b and U12 is a matrix of the size b×n2, is 2×b×n1×n2. The block size b 
used in the experiments is 32, which is typical for cache-based workstations [9,10]. 

Figure 3 shows the first set of experiments. For the range of problem sizes used in 
these experiments, the speed of the processor is a constant function of the problem 
size. These experiments demonstrate the optimality of the Reverse and the DP  
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LU factorization (constant performance model)
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Fig. 3. Execution times of the Reverse, DP, and GB distribution strategies for LU 
decomposition of a dense square matrix 

algorithms over the GB algorithm when the speed of the processor is a constant 
function of the problem size. The figure shows the execution times of the LU 
factorization application using these algorithms. The single number speeds of the 
processors used for these experiments are obtained by running the DGEMM routine 
to update a dense non-square matrix of size 5120×320. These speeds are shown in the 
last column of Table 3. The ratio of speeds of the most powerful computer hcl16 and 
the least powerful computer hcl01 is 609/226 ≈ 2.7. 

Tables 4 and 5 show the second set of experiments showing the execution times of 
the different strategies presented in this paper along with their extensions using the 
functional model of heterogeneous processors [1, 2]. The strategies FDP, FGB, and 
FR are extensions of the DP, GB, and the Reverse algorithms respectively using the 
functional model of heterogeneous processors. 

We consider two cases for comparison in the range (1024, 25600) of matrix sizes. 
The GB and DP algorithms uses single number speeds. For the first case the single 
number speeds are obtained by running the DGEMM routine to update a dense non-
square matrix of size 16384×1024. This case covers the range of small sized matrices. 
The results for this case are shown in Table 4. For the second case the single number 
speeds are obtained by running the DGEMM routine to update a dense non-square 
matrix of size 20480×1440. This case covers the range of large sized matrices. The 
results for this case are shown in Table 5. The ratios of speeds of the most powerful 
computer hcl16 and the least powerful computer hcl01 in these cases are (531/131 = 
4.4) and (579/64 = 9) respectively. 

It can be seen that the FR algorithm, which is an extension of the Reverse 
algorithm and employing the functional model of heterogeneous processors performs 
well for all sizes of matrices. The Reverse and the DP algorithms perform better than 
the GB algorithm when the speed of the processor is represented by a constant  
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Table 4. Execution times (in seconds) of the LU factorization using different data distribution 
algorithms 

Size 
of the 
matrix 

FR FDP FGB Reverse/DP GB 

1024 15 17 18 16 20 
5120 86 155 119 103 138 

10240 564 1228 690 668 919 
15360 2244 3584 2918 2665 2829 
20480 7014 10801 8908 9014 9188 
25360 14279 22418 19505 27204 27508 

Table 5. Execution times (in seconds) of the LU factorization using different data distribution 
algorithms 

Size 
of the 
matrix 

FR FDP FGB Reverse/DP GB 

1024 15 17 18 18 18 
5120 86 155 119 109 155 

10240 564 1228 690 711 926 
15360 2244 3584 2918 2863 3018 
20480 7014 10801 8908 9054 9213 
25360 14279 22418 19505 26784 26983 

function of the problem size. The main reason is that the GB algorithm imposes 
additional restrictions on the mapping of the columns to the processors. These 
restrictions are that the matrix is partitioned into groups, all of which have the same 
number of blocks. The number of columns per group (size of the group) and the 
distribution of the columns in the group over the processors are fixed. The Reverse 
and the DP algorithms impose no such limitations on the mapping. 

5   Conclusions and Future Work 

In this paper, we presented a novel algorithm of optimal matrix partitioning for 
parallel dense matrix factorization on heterogeneous processors based on their 
constant performance model. We prove the correctness of the algorithm and estimate 
its complexity. We demonstrate that this algorithm better suits extensions to more 
complicated, non-constant, performance models of heterogeneous processors than 
traditional algorithms. 
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