
Y. Roberts et al. (Eds.): HiPC 2006, LNCS 4297, pp. 242 – 253, 2006.
© Springer-Verlag Berlin Heidelberg 2006

HeteroMPI+ScaLAPACK: Towards a ScaLAPACK
(Dense Linear Solvers) on Heterogeneous Networks of

Computers

Ravi Reddy1 and Alexey Lastovetsky2

1 GS Laboratory Private Limited, Pune, India
ravi@gs-lab.com

2 School of Computer Science and Informatics, University College Dublin,
Belfield, Dublin 4, Ireland

Alexey.Lastovetsky@ucd.ie

Abstract. The paper presents a tool that ports ScaLAPACK programs designed
to run on massively parallel processors to Heterogeneous Networks of
Computers. The tool converts ScaLAPACK programs to HeteroMPI programs.
The resulting HeteroMPI programs do not aim to extract the maximum
performance from a Heterogeneous Networks of Computers but provide an easy
and simple way to execute the ScaLAPACK programs on such networks with
good performance improvements. We demonstrate the efficiency of the
resulting HeteroMPI programs by performing experiments with a matrix
multiplication application on a local network of heterogeneous computers.

1 Introduction

In this paper, we present a tool, which ports conventional parallel programs that are
designed to run on massively parallel processors (MPP) such as Scalable Linear
Algebra Package (ScaLAPACK) programs [1] to Heterogeneous Message Passing
Interface (HeteroMPI) programs [2] for Heterogeneous Networks of Computers
(HNOCs). The resulting HeteroMPI programs do not aim to extract the maximum
performance from a heterogeneous network but provide an easy and simple way to
execute the conventional parallel programs on HNOCs with good performance
improvements. Before we describe the details of the porting procedure, we present
briefly the ScaLAPACK and HeteroMPI packages.

ScaLAPACK is a well-known standard package of high-performance linear
algebra routines for distributed-memory message passing MIMD computers and
networks of workstations supporting PVM [3] and/or MPI [4]. It is a continuation of
the LAPACK project [5], which designed and produced analogous software for
workstations, vector supercomputers, and shared-memory parallel computers. Both
libraries contain routines for solving systems of linear equations, least squares
problems, and eigenvalue problems.

HeteroMPI is an extension of MPI for programming high-performance
computations on heterogeneous networks of computers. The main idea of HeteroMPI
is to automate the process of selection of a group of processes, which would execute
the heterogeneous parallel algorithm faster than any other group.

HeteroMPI+ScaLAPACK: Towards a ScaLAPACK (Dense Linear Solvers) on HNOCs 243

The first step in this process of automation is the specification of the performance
model of the heterogeneous parallel algorithm in a performance model definition
language. Performance model is a tool supplied to the programmer to specify his or
her high-level knowledge of the application in a generic form. This knowledge is used
by the HeteroMPI runtime system to find the most efficient implementation of the
heterogeneous parallel algorithm on HNOCs.

The second step involves the writing of a HeteroMPI application. A typical
HeteroMPI application consists of the following steps:

1. Accurate determination of the platform parameters using HeteroMPI characterization
API;

2. Optimal data partitioning using HeteroMPI data partitioning API. This step of
heterogeneous decomposition is parameterized by the platform parameters
determined in the first step;

3. Determination of the optimal algorithmic parameters using HeteroMPI estimation
API;

4. Efficient mapping of processes to the computers of the executing heterogeneous
network. HeteroMPI group management operations automate this step.

5. Finally the execution of the HeteroMPI program using the HeteroMPI’s command
line interface.

The tool that we present in this paper mainly assists scientists trying to port their
homogeneous parallel algorithms to HNOCs. It is usually a difficult design task to
come up with a practical and efficient heterogeneous counterpart of a homogeneous
parallel algorithm on HNOCs. The problem of optimal heterogeneous data
distribution has proved to be NP-complete even for such a simple linear algebra
kernel as matrix multiplication on HNOCs [6]. Once the heterogeneous parallel
algorithm is designed, its portable and efficient implementation on heterogeneous
platforms requires writing of a lot of complex code to automate several tedious and
error-prone tasks [7]. The scientists can use this tool for porting their homogeneous
parallel algorithms for HNOCs without any rewriting or redesigning. It can be seen as
a first step towards the realization of a ScaLAPACK for HNOCs.

The tool takes two inputs. The first input is a ScaLAPACK program containing the
homogeneous parallel algorithm that solves the problem on MPPs. The other input is
the performance model of the homogeneous parallel algorithm employed in the
ScaLAPACK program described in HeteroMPI’s performance model definition
language. It generates a HeteroMPI program, which uses a multiprocessing algorithm
consisting of the following steps:

• The whole computation is partitioned into a large number of equal chunks;
• Each chunk is performed by a separate process;
• More than one process is allowed to be run on each processor. During the creation

of a HeteroMPI group of processes, the mapping of the parallel processes in the
group is performed such that the number of processes running on each processor is
as proportional to its relative speed as possible.

In other words, while distributed evenly across parallel processes, data and
computations are distributed unevenly over processors of the heterogeneous network,
and this way each processor performs the volume of computations as proportional to

244 R. Reddy and A. Lastovetsky

its speed as possible. At the same time during the creation of a HeteroMPI group of
processes, the mapping algorithm invoked tries to arrange the processors along a 2D
grid so as to optimally load balance the work of the processors.

We start with literature survey on the multiprocessing approaches to solving
parallel problems and proposals for heterogeneous ScaLAPACK. Then we describe
the details of the porting procedure of the ScaLAPACK programs to HeteroMPI
programs. This is followed by experimental results with a matrix multiplication
application on a local network of heterogeneous computers demonstrating the
efficiency of the resulting HeteroMPI programs. We conclude the paper by outlining
our future research goals.

2 Literature Survey

The section surveys related papers from the literature. The papers surveyed are
mainly: papers presenting proposals for heterogeneous ScaLAPACK and papers
presenting multiprocessing approaches to solve parallel problems on HNOCs.

Beaumont et al. [8] discuss data allocation strategies to implement matrix products
and dense linear system solvers on heterogeneous computing platforms as a basis for
a successful extension of the ScaLAPACK library to heterogeneous platforms. They
show that extending the standard ScaLAPACK block-cyclic distribution to
heterogeneous 2D grids is difficult. In most cases, a perfect balancing of the load
between all processors cannot be achieved and deciding how to arrange the processors
along the 2D grid is a challenging NP-complete problem. They formally state the
optimization problem to be solved and present both an exact solution (with
exponential cost) and a heuristic solution.

Kalinov and Lastovetsky [9] analyze two strategies:

• HeHo - heterogeneous distribution of processes over processors and homogeneous
block distribution of data over the processes;

• HoHe - homogeneous distribution of processes over processors with each process
running on a separate processor and heterogeneous block cyclic distribution of data
over the processes.

Both strategies were implemented in the mpC language [10, 11]. The first strategy
is implemented using calls to ScaLAPACK; the second strategy is implemented with
calls to LAPACK and BLAS [12]. They compare the strategies using Cholesky
factorization on a network of workstations. They show that for heterogeneous parallel
environments both the strategies HeHo and HoHe are more efficient that the
traditional homogeneous strategy HoHo (homogeneous distribution of processes over
processors and homogeneous distribution of data over the processes as implemented
in ScaLAPACK). The main disadvantage of the HoHe strategy is non-Cartesian
nature of the data distribution. This leads to additional communications that can be
essential in the case of large networks. The HeHo strategy is easy to accomplish. It
allows the reuse of high-quality software, such as ScaLAPACK, developed for
homogeneous distributed memory systems in heterogeneous environments and to
obtain a good speedup with minimal expenses.

HeteroMPI+ScaLAPACK: Towards a ScaLAPACK (Dense Linear Solvers) on HNOCs 245

Kishimoto and Ichikawa [13] adopt a multiprocessing approach to estimate the best
processing element (PE) configuration and process allocation based on an execution-
time model of the application. The execution time is modeled from the measurement
results of various configurations. Then, a derived model is used to estimate the
optimal PE configuration and process allocation. Kalinov and Klimov [14] investigate
the HeHo strategy where the performance of the processor is given as a function of
the number of processes running on the processor and the amount of data distributed
to the processor. They present an algorithm that computes optimal number of
processes and their distribution over processors minimizing the execution time of the
application.

3 Porting a Legacy ScaLAPACK Program

This section is divided into three sub-sections. We start with the legacy ScaLAPACK
program that is to be ported. This is followed by description of the homogeneous
parallel algorithm used in the ScaLAPACK program in HeteroMPI’s performance
model definition language. In the second sub-section, we explain the structure of the
HeteroMPI program output by the porting procedure. Finally we explain the issues
involved in the porting procedure and how they are resolved.

3.1 Inputs

There are two inputs provided to the tool. The first input is the ScaLAPACK program
computing matrix multiplication using the routine PDGEMM. There are four basic
steps involved in calling a ScaLAPACK routine. The reader is directed to the
ScaLAPACK users’ guide [15] for more details.

The second input is the performance model definition pdgemm of the matrix
multiplication routine PDGEMM. HeteroMPI allows application programmers to
describe a performance model of their implemented homogeneous algorithm. This
model allows specification of all the main features of the underlying parallel
algorithm that have an essential impact on application execution performance on
HNOCs. These features are:

• The total number of processes executing the algorithm.
• The total volume of computations to be performed by each of the processes in the

group during the execution of the algorithm,
• The total volume of data to be transferred between each pair of processes in the

group during the execution of the algorithm, and
• The order of execution of the computations and communications by the involved

parallel processes in the group, that is, how exactly the processes interact during
the execution of the algorithm.

HeteroMPI provides a small and dedicated model definition language for specifying
this performance model. This language uses most of the features in the specification
of network types of the mpC language. A compiler compiles the description of this

246 R. Reddy and A. Lastovetsky

Fig. 1. Specification of the performance model of the homogeneous algorithm employed by
PDGEMM in the HeteroMPI’s performance definition language

performance model to generate a set of functions. The functions make up an
algorithm-specific part of the HeteroMPI runtime system.

The tool takes as input the performance model definition pdgemm shown in Figure 1.
This performance model definition describes the simplest scenario performed by the
pdgemm routine in ScaLAPACK, which uses outer-product algorithm using the
logical LCM hybrid algorithmic blocking strategy [16]. The performance model
definition describes the parallel matrix-matrix multiplication of two dense square
matrices A and B of size n×n. The distribution blocking factor b used in the matrix-
matrix multiplication is assumed to be equal to the algorithmic blocking factor. The
performance model definition also assumes that the matrices are divided into whole
number of blocks of size equal to distribution blocking factor, that is, (n%(b×p))
and (n%(b×q)) (see explanation of variables below) are both equal to zero.

The reader is referred to [11,17] for explanation of the main constructs, namely
coord, parent, node, link, and scheme, used in a description of a performance

/* 1 */ algorithm pdgemm(int n, int b, int t, int p, int q)
/* 2 */ {
/* 3 */ coord I=p, J=q;
/* 4 */ node {I>=0 && J>=0: bench*((n/(b*p))*(n/(b*q))*(n/t));};
/* 5 */ link (K=p, L=q)
/* 6 */ {
/* 7 */ I>=0 && J>=0 && I!=K :
/* 8 */ length*((n/(b*p))*(n/(b*q))*(b*b)*sizeof(double))
/* 9 */ [I, J]->[K, J];
/* 10 */ I>=0 && J>=0 && J!=L:
/* 11 */ length*((n/(b*p))*(n/(b*q))*(b*b)*sizeof(double))
/* 12 */ [I, J]->[I, L];
/* 13 */ };
/* 14 */ parent[0,0];
/* 15 */ scheme
/* 16 */ {
/* 17 */ int i, j, k;
/* 18 */ for(k = 0; k < n; k+=b)
/* 19 */ {
/* 20 */ par(i = 0; i < p; i++)
/* 21 */ par(j = 0; j < q; j++)
/* 22 */ if (j != ((k/b)%q))
/* 23 */ (100.0/(n/(b*q))) %% [i,((k/b)%q)]->[i,j];
/* 24 */ par(i = 0; i < p; i++)
/* 25 */ par(j = 0; j < q; j++)
/* 26 */ if (i != ((k/b)%p))
/* 27 */ (100.0/(n/(b*p))) %% [((k/b)%p),j]->[i,j];
/* 28 */ par(i = 0; i < p; i++)
/* 29 */ par(j = 0; j < q; j++)
/* 30 */ ((100.0×b)/n) %% [i,j];
/* 31 */ }
/* 32 */ };
/* 33 */ };

HeteroMPI+ScaLAPACK: Towards a ScaLAPACK (Dense Linear Solvers) on HNOCs 247

Fig. 2. The most relevant fragments of generated HeteroMPI code computing matrix-matrix
multiplication using PDGEMM on heterogeneous networks

model. Briefly, Line 1 is a header of the performance model declaration. It introduces
the name of the performance model pdgemm parameterized with the scalar integer
parameters n, b, t, p, and q. Parameter n is the size of square matrices A, B, and C. It
is assumed that the benchmark code multiplies two b×t and t×b matrices. Parameter
b is the size of the distribution blocking factor. Parameters p and q are output
parameters representing the number of processes along the row and the column in the
process grid arrangement. Line 3 is a coordinate declaration declaring the coordinate
system to which the processor nodes of the network are related. Line 4 is a node
declaration. It relates the virtual processors to the coordinate system declared and
specifies the (absolute) volume of computations to be performed by each of the
processors. Lines 5-13 are a link declaration. This specifies the links between the
virtual processors, the pattern of communication among the abstract processors, and
the total volume of data to be transferred between each pair of virtual processors
during the execution of the algorithm. Line 14 is a parent declaration. It specifies the
coordinates of the parent processor node in a given coordinate system. Line 15
introduces the scheme declaration. The scheme block describes how exactly virtual
processors interact during the execution of the algorithm.

int main(int argc, char **argv) {
 static int p, q, n, t, input_p, output_p;

 int* mdlparams;
 HMPI_Group gid;
 HMPI_Init(&argc, &argv);
 // Estimation of speeds of the processors
 if (HMPI_Is_member(HMPI_PROC_WORLD_GROUP)
 HMPI_Recon(&dgemm, &input_p, 2, &output_p);
 // Model parameter initialization
 if (HMPI_Is_host())
 mdl_params[0] = n; mdl_params[1] = 64; mdl_params[2] = t;
 // HMPI Group creation
 if (HMPI_Is_host())
 HMPI_Group_heuristic_auto_create(&gid, &HMPI_Model_pdgemm,
 &hfunc, mdl_params);
 if (HMPI_Is_free())
 HMPI_Group__heuristic_auto_create(&gid, &HMPI_Model_pdgemm,
 NULL, NULL);
 // Execution of the algorithm
 if (HMPI_Is_member(&gid)) {
 MPI_Comm algocomm = *(MPI_Comm*)HMPI_Get_comm(&gid);
 HMPI_Group_topology(&gid, &nd, &dp);
 p = dp[0]; q = dp[1]; // optimal process grid arrangement
 ictxt = Csys2blacs_handle(algocomm);
 //Legacy ScaLAPACK program pdgemm code using ictxt
 }
 // HMPI Group Destruction
 if (HMPI_Is_member(&gid))
 HMPI_Group_free(&gid);
 HMPI_Finalize(0);

}

248 R. Reddy and A. Lastovetsky

3.2 Target HeteroMPI Program

The HeteroMPI program shown in Figure 2 resulting from the porting procedure
performs typically the following steps:

1. The initialization of HeteroMPI runtime using the function HMPI_Init;
2. This is followed by dynamic refreshment of the estimation of the processor speeds

using the characterization function HMPI_Recon. The benchmark code used in the
call to HMPI_Recon is a serial BLAS version of the parallel ScaLAPACK routine.
In this case, the BLAS routine dgemm multiplying two dense matrices is used to
dynamically refresh the processor speeds. The benchmark code allocates, multiplies,
and frees two b×t and t×b matrices where b is the distribution blocking factor and t
is is equal to the size of the matrix used in the parallel application divided by the
square root of the total number of processes that are available for computation. This
is a heuristic used because some of the processes may not be chosen by the mapping
algorithm employed by the HeteroMPI group constructor function (presented
subsequently) to participate in the execution the parallel application.

3. Creation of a HeteroMPI group of processes using the group management function
HMPI_Group_auto_create to obtain a handle to the HeteroMPI group of MPI
processes. This function detects the optimal number of processes that can execute the
parallel application, that is, finds the optimal arrangement of processes in a grid.
During the creation of a HeteroMPI group of processes, the mapping of the parallel
processes in the group is performed such that the number of processes running on
each processor is proportional to its speed. At the same time, the processors are
arranged along the 2D grid p×q so as to optimally load balance the work of the
processors. The mapping algorithm is explained in detail in [11]. Since the number of
2D process grid arrangements is large, the HeteroMPI program uses the HeteroMPI
function HMPI_Group_heuristic_auto_create instead of the HeteroMPI function
HMPI_Group_auto_create, which evaluates all the possible 2D process grid
arrangements. The function HMPI_Group_heuristic_auto_create uses heuristics to
reduce the number of process arrangements to evaluate. The design and
implementation of the HeteroMPI group constructor functions are explained in detail
in [17];

4. The function HMPI_Group_heuristic_auto_create returns an HeteroMPI handle to
the group of MPI processes in gid. The second parameter HMPI_Model_pdgemm
is a handle that encapsulates all the features of the performance model. These
features are in the form of a set of functions generated by the compiler from the
description of the performance model. The third parameter hfunc is a heuristic
function used to reduce the number of 2D process arrangements to evaluate. The
fourth parameter mdl_params is an input parameter to the performance model,
which consists of problem size to be solved, the algorithmic blocking factor used
(which is equal to the distribution blocking factor) and the size of matrix used in
the benchmark code. The only input provided by the application programmer is the
problem size to be solved;

5. Conversion of the handle to the HeteroMPI group of MPI processes obtained
previously to an MPI communicator using the function call HMPI_Get_comm;

6. Conversion of the MPI communicator to an integer BLACS handle, which can be
passed into grid creation routine. This is done using the interim BLACS routine
Csys2blacs_handle;

HeteroMPI+ScaLAPACK: Towards a ScaLAPACK (Dense Linear Solvers) on HNOCs 249

7. Creation of the BLACS context using the integer BLACS handle. This is done
using the interim BLACS routine Cblacs_gridinit;

8. The legacy ScaLAPACK code is then executed using the BLACS context
obtained;

9. This is followed by freeing the group using operation HMPI_Group_free and the
finalization of HeteroMPI runtime system using operation HMPI_Finalize.

It can be seen that the HeteroMPI program automates the most tedious and error-
prone tasks that are involved in porting a homogeneous parallel application.

3.3 Porting Issues

There are three important issues to be considered in the porting procedure.

1. The total number of processes to be allocated to each participating computer when
the user starts up the application. Some basic rules to choose the number of
processes to allocate per each processor can be followed:

• First of all, the number of processes running on each computer should not be less
than the number of processors of the computer just to be able to exploit all the
available processor resources. So the lower bound on the number of processes to be
run on a computer is given by the number of processors on the computer.

• The upper bound on the number of processes executed on each processor is
roughly equal to the ratio of speed of the fastest processor to speed of the slowest
processor on the executing network of computers.

2. The blocking factor used to distribute the rows and the columns of the matrices
involved in the computation. It is observed that for a process arrangement,
execution times are the same no matter what algorithmic blocking factor is used.
However to ensure efficient data distribution, ScaLAPACK [15] recommends that
any blocking factor between 32 to 64 be used to distribute the rows and the
columns of the matrices involved in the computation of the linear algebra kernel.
The tool uses a value of 64;

3. The optimal arrangement of processes in the grid. This is determined by the
HeteroMPI group constructor functions HMPI_Group_auto_create or
HMPI_Group_heuristic_auto_create.

4 Experimental Results

A local network of 15 different heterogeneous Linux workstations hcl01 to hcl15 is
used in the experiments. The computers used in the experiments are connected to
communication network, which is based on 2 Gbit Ethernet with a switch enabling
parallel communications between the computers. The experimental results are
obtained by averaging the execution times over a number of experiments. Figure 3
shows the experimental results using the routine pdgemm performing parallel matrix-
matrix multiplication on this heterogeneous network. The speedup calculated is the
ratio of the execution time of the ScaLAPACK program over the execution time of
the HeteroMPI+ScaLAPACK program. The reader is referred to [17] for details on
the execution of the HeteroMPI program using HeteroMPI’s command line interface.

250 R. Reddy and A. Lastovetsky

Table 1. Optimal process grid arrangements (p,q) detected by the HeteroMPI group constructor
function HMPI_Group_heuristic_auto_create. n is the size of the matrix. The third
column gives the time taken to refresh the speeds of the processors at runtime. The fourth
column gives the time taken to evaluate the process arrangements during the creation of the
HeteroMPI group of processes that would execute the parallel application. The last column
gives the execution time of the parallel application.

N (p,q)
Processor

speed update
time (sec)

HeteroMPI
Group

creation time (sec)

Execution time
(sec)

1024 (4,2) 0.09 1.29 17

2048 (8,2) 0.10 2.59 20

3072 (6,3) 0.21 1.38 21

4096 (8,2) 0.26 1.32 26

5120 (10,2) 0.31 2.70 30

6144 (6,3) 0.37 7.02 41

7168 (7,2) 0.44 1.76 53

8192 (8,2) 0.51 2.83 69

9216 (9,2) 0.58 5.33 100

10240 (10,2) 0.67 7.85 138

11264 (11,2) 0.76 6.36 215

12288 (12,2) 0.88 48.19 266

13312 (13,2) 1.18 10.73 312

14336 (14,2) 3.41 23.64 354

15360 (15,2) 8.97 54.65 405

16384 (16,2) 11.78 34.83 513

17408 (17,2) 14.28 23.99 772

18432 (18,2) 24.15 100.94 956

19456 (19,2) 30.49 32.45 1323

20480 (8,4) 33.59 41.97 2063

The absolute speeds of the processors are obtained based on serial version dgemm
of the corresponding parallel routine pdgemm. The absolute speeds in million floating
point operations per second (MFlop/s) is obtained by multiplication of two dense
1536×1536 matrices for the processors. The absolute speeds are {2171, 2099, 1761,
1787, 1735, 1653, 1879, 1635, 3004, 2194, 4580, 1762, 4934, 4096, 2697}. It can be
seen that the fastest processor is hcl13 and the slowest processor is hcl08. It should be
noted that a process is run per processor to obtain these measurements. The ratio of

HeteroMPI+ScaLAPACK: Towards a ScaLAPACK (Dense Linear Solvers) on HNOCs 251

absolute speed of the fastest processor to the absolute speed of the slowest processor is
4934/1635 = 3. This is the number of processes run on each processor in the network
during the execution of the parallel application. So the total number of processes
available to the HeteroMPI+ScaLAPACK program for computation is 25×3 = 75 since
there are 25 processors in the network. The HeteroMPI+ScaLAPACK program detects
the optimal process grid arrangement from the set of all possible 2D process grid
arrangements of 75 processes in a reasonable amount of time as presented in Table 1.
The number of possible 2D process arrangements can be calculated to be 338 (using
the formula m×(1+1/2+1/3+…+1/m) where m=75). The ScaLAPACK program uses a
5×5 grid of processes (using one process per processor configuration).

Table 1 shows the optimal process grid arrangements determined by the HeteroMPI
group constructor functions for the problem sizes experimented. The second column
gives the optimal process grid arrangements for the problem sizes shown in first
column. The third column gives the time taken to refresh the speeds of the processors
at runtime during the HMPI_Recon function call. The fourth column gives the time
taken to evaluate the process arrangements during the creation of the HeteroMPI group
of processes using the HMPI_Group_heuristic_auto_create function call.
This time varies due to different number of process arrangements evaluated for a given
values of n and b. The last column gives the execution time of the parallel application.
It includes the processor speed update time and the group creation time. It can be seen
that the processor speed refreshment time and the group creation time are much
less than the actual execution time of the parallel application. The function
HMPI_Group_heuristic_auto_create uses heuristics to reduce the number
of 2D process grid arrangements (p,q) to evaluate. One such heuristic used is that one-
dimensional process arrangements where either p or q or both is equal to 1 are not
evaluated.

The speedups of the HeteroMPI+ScaLAPACK program over ScaLAPACK
program for these problem sizes are shown in Figure 3. As can be seen from the
results, the resulting HeteroMPI programs deliver good performance improvements
on HNOCs for problem sizes beyond 12288. There are two reasons for such good
speedups observed. First reason is the better load balance achieved through proper
allocation of processes involved in the execution of the algorithm to the processors.
During the creation of a HeteroMPI group of processes, the mapping of the parallel
processes in the group is performed such that the number of processes running on
each processor is as proportional to its speed as possible. In other words, while
distributed evenly across parallel processes, data and computations are distributed
unevenly over processors of the heterogeneous network, and this way each processor
performs the volume of computations as proportional to its speed as possible. It can
be seen that for problem sizes larger than 12288, more than 25 processes must be
involved in the execution to achieve good load balance. Since only 25 processes are
involved in the execution of the ScaLAPACK program, good load balance is not
achieved. However just running more than 25 processes in the execution of the
ScaLAPACK program would not resolve the problem. This is because in such a case
the optimal process arrangement and the efficient mapping of the process arrangement
to the executing computers of the underlying network must also be determined. This
is a complex task automated by HeteroMPI.

252 R. Reddy and A. Lastovetsky

Matrix multiplication (HeteroMPI+ScaLAPACK over
ScaLAPACK)

1
6

11
16
21
26
31
36
41

0 5000 10000 15000 20000

Size of the matrix (n)

S
p

ee
d

u
p

Fig. 3. Speedup of the HeteroMPI+ScaLAPACK program over the ScaLAPACK program
employing matrix-matrix multiplication using the routine pdgemm

The second reason is the optimal 2D grid arrangement of processes. During
the creation of a HeteroMPI group of processes, the function
HMPI_Group_heuristic_auto_create estimates the time of execution of the
algorithm for each process arrangement evaluated. For each such estimation, it
invokes mapping algorithm, which tries to arrange the processors along a 2D grid so
as to optimally load balance the work of the processors. It returns the process
arrangement that results in the least estimated time of execution of the algorithm.

5 Conclusions and Future Work

In this paper, we have presented a tool that ports ScaLAPACK programs to
heterogeneous platforms. The tool converts the ScaLAPACK programs to HeteroMPI
programs. These HeteroMPI programs do not aim to extract the maximum
performance from a heterogeneous network but provide an easy and simple way to
execute the conventional parallel programs on HNOCs with good performance
improvements. We have taken the first step towards the realization of a heterogeneous
ScaLAPACK for HNOCs. Our future work will involve the development of a
Heterogeneous ScaLAPACK library, which will include dense linear solvers of
ScaLAPACK redesigned for HNOCs. The design and implementation of this library
will include: (a) Design of performance models for each of the level-1, level-2, and
level-3 PBLAS routines; (b) Design of performance models for each of the dense
linear solvers of ScaLAPACK routines.

References

[1] Blackford, L., Choi, J., Cleary, A., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S.,
Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.: ScaLAPACK: A Portable
Linear Algebra Library for Distributed Memory Computers – Design Issues and
Performance. In: Proceedings of the 1996 ACM/IEEE Supercomputing Conference. IEEE
Computer Society, CD-ROM/Abstracts Proceedings, Pittsburgh PA USA (1996)

HeteroMPI+ScaLAPACK: Towards a ScaLAPACK (Dense Linear Solvers) on HNOCs 253

[2] Lastovetsky, A., Reddy. R: HeteroMPI: Towards a Message-Passing Library for
Heterogeneous Network of Computers. Journal of Parallel and Distributed Computing 66
(2006) 197-220

[3] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V. S.: PVM:
Parallel Virtual Machine, Users’ Guide and Tutorial for Networked Parallel Computing.
The MIT Press: Cambridge, MA (1994)

[4] Dongarra, J., Huss-Ledermann, S., Otto, S., Snir, M., Walker, D.: MPI: The Complete
Reference. The MIT Press (1996)

[5] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A.,
Hmmarling, S., McKinney, A., Ostrouchov, S., Sorenson, D. LAPACK Users' Guide.
Release 1.0, SIAM, Philadelphia (1992)

[6] Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on
Heterogeneous Platforms. IEEE Transactions on Parallel and Distributed Systems 12
(2001) 1033-1051

[7] Lastovetsky, L.: Scientific Programming for Heterogeneous Systems - Bridging the Gap
between Algorithms and Applications. In: Proceedings of the 5th International
Symposium on Parallel Computing in Electrical Engineering (PARELEC 2006), IEEE
Computer Society Press (2006)

[8] Beaumont, O., Boudet, V., Petitet, A., Rastello, F., Robert, Y.: A Proposal for a
Heterogeneous Cluster ScaLAPACK (Dense Linear Solvers). IEEE Transactions on
Computers 50 (2001) 1052-1070

[9] Kalinov, A., Lastovetsky, A.: Heterogeneous Distribution of Computations Solving
Linear Algebra Problems on Networks of Heterogeneous Computers. Journal of Parallel
and Distributed Computing 61 (2001) 520-535

[10] Lastovetsky, A., Arapov, A. Kalinov, A., Ledovskih, I.: A Parallel Language and Its
Programming System for Heterogeneous Networks. Concurrency: Practice and
Experience 12 (2000) 1317-1343

[11] Lastovetsky, A.: Adaptive parallel computing on heterogeneous networks with mpC.
Parallel Computing 28 (2002) 1369-1407

[12] Dongarra, J., Croz, J.D., Duff, I.S., Hammarling, S.: A set of level-3 basic linear algebra
subprograms. ACM Transactions on Mathematical Software 16 (1990) 1-17

[13] Kishimoto, Y., Ichikawa, I.: An Execution-Time Estimation Model for Heterogeneous
Clusters. In: 13th Heterogeneous Computing Workshop (HCW 2004), Proceedings of
18th International Parallel and Distributed Processing Symposium (IPDPS'04). IEEE
Computer Society (2004)

[14] Kalinov, A., Klimov, S.: Optimal mapping of a parallel application processes onto
heterogeneous platform. In: 4th Heterogeneous Computing Workshop (HCW 2005),
Proceedings of 19th International Parallel and Distributed Processing Symposium
(IPDPS'05), IEEE Computer Society (2005)

[15] Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.:
ScaLAPACK User’s Guide. SIAM (1997)

[16] Petitet, A., Dongarra, J.: Algorithmic Redistribution Methods for Block-Cyclic
Decompositions. IEEE Transactions on Parallel and Distributed Systems 10 (1999) 1201-
1216

[17] Reddy, R.: HeteroMPI: A Message Passing Library for Heterogeneous Networks of
Computers. PhD Dissertation, University College Dublin, Dublin, Ireland (2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

