
A Parallel Algorithm for the Solution of the Deconvolution Problem on
Heterogeneous Networks∗†

Pedro Alonso, Antonio M. Vidal
Dpto. de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camino de Vera s/N, 46022 Valencia (Spain)

palonso@dsic.upv.es

Alexey L. Lastovetsky
School of Computer Science and Informatics

University College of Dublin
Belfield, Dublin 4 (Ireland)

alexey.lastovetsky@ucd.ie

Abstract

In this work we present a parallel algorithm for the so-
lution of a least squares problem with structured matri-
ces. This problem arises in many applications mainly re-
lated to digital signal processing. The parallel algorithm
is designed to speed up the sequential one on heteroge-
neous networks of computers. The parallel algorithm fol-
lows the HeHo strategy (Heterogeneous distribution of pro-
cesses over processors with homogeneous distribution of
computations over the processes) and is implemented us-
ing HeteroMPI, a recently developed extension of MPI for
programming high performance computations on heteroge-
neous networks of computers. The obtained results validate
HeteroMPI as a very useful tool for portable implementa-
tion of parallel algorithms for heterogeneous environments.

1. Introduction

The mpC is a programming language for writing par-
allel programs for Heterogeneous Networks of Computers
(HNOCs) [13]. mpC is an extension to the C[] language,
which is a Fortran 90 like extension to ANSI C support-
ing array–based computations. mpC provides the program-
mer with a useful means for description of the performance
model of the implemented parallel algorithm. The program-
ming system uses this description to optimally map (at run-
time) this algorithm to the computers of the executing net-
work. The mpC programming system employs an advanced
performance model of a heterogeneous network of comput-
ers (HNOC). As a result, mpC allows the programmer to
write an efficient program for heterogeneous networks in a

∗Funded by Secretarı́a de Estado de Universidades e Investigación del
Ministerio de Educación y Cultura of Spain.

†Supported by Spanish MCYT and FEDER under Grant TIC 2003-
08238-C02-02.

portable form. The program will be automatically tuned at
runtime to each executing HNOC trying to run on the net-
work with the maximal possible speed.

Heterogeneous Message Passing Interface (HeteroMPI)
is an extension of MPI obtained by applying the mpC
parallel programming model to the message–passing li-
brary [14]. Actually, HeteroMPI is an adaptation of mpC
language to the MPI programming level. The main idea of
HeteroMPI is to automate and optimize the selection of a
group of processes that will execute the parallel algorithm
faster than any other possible group. For this purpose, Het-
eroMPI provides a small and dedicated definition language
for specification of the performance model of the algorithm.
This language is a subset of mpC. In particular, HeteroMPI
can be used to port a homogeneous parallel algorithm to het-
erogeneous environments by allowing the application pro-
grammer to specify the performance model of the homo-
geneous algorithm and create a group of processes execut-
ing the algorithm on each HNOC with maximal speed. It
is supposed that in this case the HeteroMPI program em-
ploys the multiple–processes–per–processor configuration
and tries to find the optimal number of processes on each
processor to be involved in the execution of the algorithm.

In this work, a version of the HeteroMPI software freely
available from the UCD Heterogeneous Computing Labo-
ratory was used [17]. The main goal of this paper is to
present an example of the use of HeteroMPI to develop an
efficient and portable heterogeneous parallel program based
on a homogeneous algorithm. The key part of the work is
the development of an accurate performance model of the
homogeneous parallel algorithm. Once it has been build,
other important parameters of the algorithm that affect its
performance such as the block size and the number of pro-
cesses have to be correctly chosen to obtain the maximum
possible performance whatever HNOC is used.

The example application deals with a particular issue of
digital signal processing called inverse filtering of multi-

1-4244-0328-6/06/$20.00 c©2006 IEEE.

channel systems. However, the solution of the underlying
mathematical problem covers a wider field of related digital
signal analysis problems. Furthermore, the acquired expe-
rience can be generalised to a larger set of homogeneous
parallel triangularization algorithms on heterogeneous net-
works using HeteroMPI.

The following section describes very briefly the in-
verse filtering problem. Section 3 explains the mathemat-
ical background and the sequential algorithm. Section 4
presents the programming model used to implement the par-
allel algorithm. Section 5 describes the performance model
of the algorithm used by HeteroMPI to map processes to
the HNOC. A short description of the parallel algorithm is
given in Section 6 and some experimental results are pre-
sented in Section 7. A conclusions section closes the paper.

2. Inverse Filtering of Multichannel Systems

Inverse filtering and equalisation of multichannel sys-
tems is a field of growing interest. This fact is mainly due to
the upcoming applications of multichannel systems such as
digital communication (mainly new generation digital mo-
bile communications that incorporates array processing at
the base stations) and the modern multichannel audio re-
production systems such as three–dimensional (3–D) au-
dio [12], or active noise control, and the availability of new
technology resources which make possible the implementa-
tion of more complex signal processing algorithms.

The mathematical model of inverse filtering and equal-
isation multichannel systems are standing for large–scale
matrix problems with structure. The major challenge in this
area is to design fast and numerically reliable algorithms
for large–scale structured linear matrix equations and the
least squares matrix problem. We formulate the mathe-
matical problem of inverse multichannel deconvolution sys-
tems [10] as

min
x

‖Mx − b‖ , (1)

where M ∈ IRm×n is a Toeplitz–block matrix with each
block being a special class of Toeplitz matrices arisen in
convolution operations and polynomial multiplications.

Several algorithms have been traditionally used to solve
the linear least squares problem of Toeplitz–like matrices
exploiting its special structure to get a computational cost
an order of magnitude lower than other classical algorithms
for non–structured matrices. These are the well–known fast
algorithms [11, 9, 16, 15, 8]. In this paper we used the nor-
mal equations associated to the least squares problem (1)

MT Mx = MT b , (2)

from which the seminormal equations

LT Lx = LT b ,

are computed by making the triangular decomposition of
MT M so the solution x is obtained by solving two triangu-
lar systems.

To develop the heterogeneous parallel algorithm we start
from a homogeneous parallel algorithm for the solution of
the inverse filtering multichannel systems presented in [2]
but modified to use a more efficient approach based on the
concept of Cauchy–like matrices. The use of Cauchy–like
matrices to design efficient parallel algorithms for the solu-
tion of standard numerical linear algebra problems such as
the linear systems solution or the minimisation of the least
squares problem with structured matrices has been success-
fully applied in the complex, hermitian, real and symmetric
real cases [3, 4, 7, 1, 5].

Let S be a Block Discrete Sine Transformation that ap-
plied to equation (2) and taking into account that S = ST

and SST = ST S = I we have

(SMT MS)Sx = Sb → Cx̂ = b̂ ,

where C is called a Cauchy–like matrix.

3. Parallel triangularization of symmetric
Cauchy–like matrices

Cauchy–like matrices, accordingly we use them, are im-
plicitly known by means of the generator pair (G, H) and
the diagonal displacement matrices Λ as it can be seen in its
displacement representation

ΛC − CΛ = GHGT . (3)

Generator G ∈ IRn×r and Λ are computed by means of
O(n log n) operations from the analog displacement repre-
sentation of the Block–Toeplitz matrix MT M that give rise
to the linear system to solve (2). However, the algorithm for
the solution of a symmetric Cauchy–like system Cx = b
is independent of how C has been formed. Cauchy–like
matrix is not explicitly formed in either case. Cauchy–like
matrix is implicitly known by means of the generator pair
(G, H) and the displacement matrix Λ (3). Algorithms to
solve this linear system are called “fast” just because they
work on the n × r entries of G instead of the n × n entries
of C, being fulfilled r � n for structured matrices.

For the parallel triangularization of C,

C = LDLT , (4)

being L unit lower triangular and D diagonal, we note that
the triangularization process operations can be carried out
independently on each row of G.

The BLACS distribution model used to manage logically
distributed arrays highly helps to distribute the factors in-
volved in the parallel process. A simply “logical column”
of p processes denoted by Pi, i = 0, . . . , p−1, is sufficient.

The generator G is partitioned into blocks of size nb× r.
The unit lower triangular factor L (4) obtained is parti-
tioned in a two dimensional array of (n/nb)×(n/nb) square
blocks of order nb. These blocks are cyclically distributed
among processes so blocks Gi, Li,j , i, j = 0, . . . , n/nb−1,
belong to process Pi mod p. For simplicity in the exposition
we assume (n mod nb) = 0 although this condition have
not to be accomplished in the implementation. The diago-
nal matrix D (4) is stored in the diagonal entries of L since
all the diagonal entries of L are implicitly one. Fig. 1 shows
an example of distribution of both factors G and L in a “log-
ical column” of three processors.

P0 G0 L0,0

P1 G1 L1,0 L1,1

P2 G2 L2,0 L2,1 L2,2

P0 G3 L3,0 L3,1 L3,2 L3,3

P1 G4 L4,0 L4,1 L4,2 L4,3 L4,4

...
...

...
...

...
...

...
. . .

Figure 1. Example of data distribution (p = 3).

The value nb chosen has a great impact in the parallel
algorithm. High values of nb produce low number of mes-
sages of big size but the load is unbalanced in this case.
Low values of nb produces higher number of messages with
lower size with better load balancing. Furthermore, this pa-
rameter highly depends on the hardware platform so it must
to be chosen by experimental tuning.

The block triangular factorization is a finite iterative pro-
cess that computes all blocks of one column of L in each
iteration. The operation of the parallel algorithm can be
easily seen in Fig. 2 by following the ordering numbers
in the computed blocks of L. No more detailed explana-
tion is needed but the amount of computations and com-
munications and the order of these operations to understand
the performance model described in the next sections. A
more detailed description of triangularization of symmetric
Cauchy–like matrices can be found, i.e. [7].

The following is the main piece of code of subroutine
pdtrf that implements this process.

1
2 call blacs_gridinfo(ictxt, nprow, npcol,
3 myrow, mycol)
4
5 if(nprow.eq.1) then
6
7 call dtrfx(n, r, G, lld, L, lld)
8 return

�
��

�
��

�
��

�
��

�
��

2

2

2

2

4

4

4

6

6 8

P0

1

3

5

7

9

P1

P2

P1

P0

Figure 2. Order of the computation of the
blocks that form the triangular factor L by
means of the pdtrf subroutine.

9
10 end if
11
12 do k = 1, n-nb, nb
13
14 call infog1l(k, nb, nprow, myrow,
15 rsrc, lk, pkrow)
16
17 if(myrow.eq.pkrow) then
18
19 call dtrfx(nb, r, G(lk), lld,
20 L(lk+k*lld), lld)
21 call dlacpy(’A’, nb, r,
22 G(lk), lld, V, nb)
23
24 call dgebs2d(ictxt, ’C’, ’ ’,
25 nb, r, V, nb)
26
27 else
28
29 call dgebr2d(ictxt, ’C’, ’ ’, nb, r,
30 V, nb, pkrow, 0)
31
32 end if
33
34 kk = k+nb
35 call infog1l(kk, nb, nprow, myrow,
36 rsrc, lk, pkrow)
37 np = numroc(n-kk+1, nb, myrow,
38 pkrow, nprow)
39 call dupdx(np, r, nb, G(lk), lld,
40 V, nb, L(lk+k*lld), lld)
41
42 end do
43
44 call infog1l(k, nb, nprow, myrow,
45 rsrc, lk, pkrow)

46
47 if(myrow.eq.pkrow) then
48
49 np = numroc(n-kk+1, nb, myrow,
50 pkrow, nprow)
51 call dtrfx(np, r, G(lk), lld,
52 L(lk), lld)
53
54 end if

Subroutine pdtrf calls to blacs_gridinfo (line 2)
in order to obtain the coordinates of the calling process
(myrow and mycol) together with the shape of the logi-
cal grid (nprow×npcol) on which the parallel algorithm
runs, for a given context manager number ictxt. Next,
if there is only one process in the network (line 5) subrou-
tine dtrfx is called to solve the problem sequentially (line
7). dtrfx receives a generator G of size n×r and returns
the triangular factor L of order n. Sequential subroutines
mentioned here and advance are block routines and it can
be found a further description in [6].

The general case when the number of processes is greater
than one is solved by means of the loop between lines 12
to 42. A triangular block and the rectangular block down
is computed in each iteration, that is, iteration k computes
blocks marked as 2k − 1 and 2k (Fig. 2). The implementa-
tion of the algorithm uses the style of BLACS and ScaLA-
PACK routines as it can be seen by the use of the infog1l
routine (line 14). Given a global index k of the distributed
matrix G, the block size nb, the number of processes in one
dimension nprow, the coordinate of the calling process in
this dimension myrow and the coordinate of the source pro-
cess that has the first element of the distributed array rsrc,
this routine returns the index of the global index k in the
local memory lk and the coordinate of the owner processor
(pkrow) of the global kth element. The process owner of
element k (lines 17–27) is in charge to compute the triangu-
lar block whereas the others only have to wait for data from
process pkrow. Process pkrow computes the triangular
factor calling dtrfx, stores the nb×r rectangular piece of
the generator G used to compute de triangular factor in a
different place of memory (V) (line 21) and broadcasts V to
the rest of processes (line 24). The rest of processes receive
V (line 29). BLACS routines dgebs2d and dgebr2d are
used to perform this intercommunication operation.

The rest of the code until the end of the loop computes
the square blocks down the actual triangular block that has
just been computed by means of routine dupdx (lines 34
and 40). In lines 44–54 is computed a non–square block if
it exists, that is, if (n mod nb) �= 0.

This triangularization processes represents between 80%
and 90% of the overall cost.

4. The HeHo strategy

The HeHo strategy for design of parallel algorithms
for HNOCs uses a Heterogeneous distribution of processes
over processors and Homogeneous block distribution of
data over the processes. This is carried out by mapping
different number of processes to the physical processors ac-
cording to their performance. The tool that allows to do that
is HeteroMPI. Specifically, HeteroMPI is a programming
environment that allows for porting a homogeneous parallel
algorithm based on calls to BLACS/ScaLAPACK routines
to a heterogeneous environment without changing the algo-
rithm. However, this step is not easy due to a very accurate
performance model of the algorithm is needed to be written
in order the mapping runtime system to map the processes
in the best way to achieve the maximum performance.

The cornerstone of the connection between a SPMD pro-
gram consisting of several MPI processes and the program
itself running on a HNOC is the Performance Model. The
Performance Model is based on the notion of network as it
is used in the context of the mpC language introduced by
A. Lastovetsky [13]. A network corresponds to a group of
processes jointly performing some parallel computations. A
mpC network is an abstraction facilitating the work with ac-
tual processes of the parallel program. Firstly, the program-
mer must define a network consisting of a given number of
abstract processors, and then describe the parallel compu-
tations on this network. Abstract processors representing
the network will be mapped to real processors of the physi-
cal HNOC according to the performance description of the
behaviour of the parallel algorithm. Therefore, the Perfor-
mance Model must define the mpC network with sufficient
detail so that the mapping algorithm can correctly map the
program processes (represented by the abstract processors
of the network) to suitable real processors to achieve the
maximum performance.

HeteroMPI is an adaptation of the mpC language to the
MPI programming level. HeteroMPI automates the selec-
tion of a group of processes that executes the heterogeneous
algorithm faster than any other group. The algorithms used
to solve the problem of process selection are essentially the
same as those used in the mpC compiler. HeteroMPI intro-
duces new routines for creating groups of processes. During
the creation of a group of processes with the routines, the
HeteroMPI runtime system solves the problem of selecting
the optimal set of processes running on different computers
of the heterogeneous networks. Summarizing, HeteroMPI
helps automatically find the optimal configuration of MPI
applications on a heterogeneous network by choosing the
suitable number of processes that will run on each real pro-
cessor according to its physical features and the defined per-
formance model.

5 The Performance Model

The following code corresponds to the performance
model of our parallel algorithm.

1 double cost(int n, int nb, int p, int I);
2
3 nettype Performance_model(int n, int r,
4 int nb, int nbb, int p)
5 {
6 coord I=p;
7 node {
8 I>=0:
9 bench * cost(n, nb, p, I) *
10 (nb*nb / (double) (nbb*nbb));
11 };
12 link (J=p)
13 {
14 I>=0 && J!=I:
15 length * ((nb*r)*(n/(nb*p)+
16 (n%nb?1:0))*sizeof(double))
17 [I] -> [J];
18 };
19 parent [0];
20 scheme
21 {
22 int P, k, i, j;
23 double cc, cl;
24 int nblks = n/nb;
25 double propor;
26
27 cl = (n/(nb*p)+(n%nb?1:0));
28 nblks = nblks + ((n%nb)!=0);
29 for(k = 0; k < nblks; k++) {
30 P = k%p;
31 cc = cost(P, p, nb, n);
32 propor = 1.0;
33 if(k==nblks-1) {
34 propor = n%nb / (double) nb;
35 }
36 (100.00 * propor * propor / cc)
37 %% [P];
38 par(i = 0; i < p; i++) {
39 if(i!=P) {
40 (100.00/cl) %% [P] -> [i];
41 }
42 }
43 par(i = 0; i < p; i++) {
44 cc = cost(i, p, nb, n);
45 for(j = k+1; j < nblks; j++) {
46 if(j%p == i) {
47 propor = 1.0;
48 if(j==nblks-1) {
49 propor = n%nb/(double)nb;
50 }
51 (2.0*100.00*propor/cc)
52 %% [i];
53 }

54 }
55 }
56 }
57 };
58 };
59
60 double cost(int n, int nb, int p, int I)
61 {
62 double c=0.0;
63 double propor;
64 int nblocks, i;
65
66 nblocks = n/nb;
67 for(i = 0; i < nblocks; i++) {
68 if((i%p)==I) {
69 c = c + 2.0*i + 1.0;
70 }
71 }
72 propor = n%nb / (double) nb;
73 if(propor>0.0 && (nblocks%p)==I) {
74 c += propor * (2.0 * i + propor);
75 }
76 return c;
77 }

The first item in the network definition corresponds to
the association of the abstract processors with a coordinate
system (line 6). Each abstract processor in the network is
identified by an integer I representing its coordinate in a
line of p processors ranging from 0 to p-1.

Lines 7–11 describe the total amount of computation per-
formed by each of the abstract processors (I>=0). The
runtime mapping algorithm used in the HeteroMPI environ-
ment performs a benchmark operation, whose time is rep-
resented by variable bench. This benchmark corresponds
to the computation of a triangular block of order nbb by
means of dtrfx. The value nbb is supposed to be speci-
fied in the main program and passed to the description net-
work. The same is true for other problem parameters used
in this program. The time returned in the bench variable
is used to estimated the real computational cost of the Ith
abstract processor. Due to the complexity of the analytical
formulae that describe the total amount of computational
cost performed by each process, we have used the function
cost to compute this amount of computation (lines 60–
77).

The first loop of cost counts the number of square
blocks multiplied by 2 plus the number of triangular blocks
of the triangular factor belonging to each processor. Both
type of blocks are of order nb. Fig. 3 shows a distribution
example for a problem of size n = 27 with three proces-
sors and a block size of 5. The first loop of function cost
returns 8 when calling by P0, that is, 3 squares blocks × 2
plus 2 triangular blocks × 1. Also returns 12 and 5 for P1

and P2, respectively. The rest of cost returns the propor-
tional part of an incomplete row of blocks as it happens in

�
��

�
��

�
��

�
��

�
��

........
........

.........
.....

P0

P1

P1

P0

P2

P2

= 1

= 3

= 5

= 7

= 9

= 4.16

Figure 3. Example of operation of the cost
function.

the example. This last part returns 4.16 when is called by
P2 and 0 otherwise. Thus, function cost returns 8, 12 and
9.16 when calling by P0, P1 and P2, respectively.

Summarising, the total amount of computation per-
formed by an abstract processor and described in lines 9
and 10 is the result of the product of the benchmark time
for computing a triangular block of size nbb (bench), the
number of times that an abstract processor performs a com-
putation equivalent to the computation of a triangular block
of size nb (cost(n, nb, p, I)), and the propor-
tion between asymptotic cost of a nb block regarding a nbb
block.

The next section of the performance model describes
the total communication cost (lines 12–18). This cost cor-
responds to a broadcast per iteration of blocks of nb×r
double precision scalars. Lines 15–17 show the physi-
cal link performance returned by the runtime environment
(length) multiplied by the total amount of data sent from
processor I to processor J.

Until line 19 we described the total computational
(node) and communication (link) costs of the algorithm.
However, as our preliminary results have shown, this de-
scription is not enough for the mapping algorithm to dis-
tribute the workload optimally. The next part of the perfor-
mance model shows the behaviour of the parallel algorithm
in terms of the order and the cost of different operations
performed during its execution.

The scheme description for this case is given for the
main loop of the algorithm. Each iteration of this loop cor-
responds to the computation of a triangular block. Processor
P is the owner of the triangular block computed at iteration
k. Lines 36–37 are the percentage of the total computa-

tional cost computed by processor P when computing only
this triangular block. Lines 38–42 describe the communi-
cation percentage corresponding to the broadcast of a rect-
angular block of size nb×r. It is described by means of a
parallel loop because one-to-all communication operations
are supposed to be implemented as a concurrent combina-
tion of one-to-one communications. Lines 43–55 describe
the computation of the squares blocks below the computed
triangular one at the kth iteration. These blocks are com-
puted concurrently by each processor so the loop indexed
by variable i is a parallel structure. Inner loop (j) goes over
each of these squares and only computes the ones owned by
the calling processor. Lines 51–52 show the percentage of
the total amount of computation performed by processor i
during the computation of the square block j.

6. Implementation of the Parallel Algorithm

The HeteroMPI provides with the facility of using a ho-
mogeneous model of computation in the real running envi-
ronment of a HNOC. This is done by means of performing
certain operations before and after calling the main driver
routine that solves the problem (pdtrf). We will show the
main operations through the description of the main pro-
gram.

�

�

�

�

�

�

�

�

Hetero MPI env.

MPI env.

BLACS/ScaLAPACK env.

Figure 4. Structure of the parallel algorithm
through the different programming environ-
ments.

Fig. 4 shows the interaction between different environ-
ments used. First of all, the main routine (written in C)
works in the HeteroMPI environment. The first operation
deals with the performance of the underlying physical pro-
cessors, which are going to execute the parallel algorithm.
All starting processes belong to the predefined communi-
cation universe known as HMPI_COMM_WORLD_GROUP,
and call the HMPI_Recon routine. This routine performs
a call to a benchmark routine chosen by the programmer. In
our case, the benchmark routine is dtrfx, that is, the rou-
tine that allows to obtain a triangular block of size nbb×r,

Table 1. Main characteristics of the processors of the Heterogeneous cluster.

Name (number cpu Total Main Cache Relative speed
of processors) Architecture MHz. Memory (kBytes) dtrfx

(mBytes)

pg1cluster02 (2) Linux 2.6.8-1.521smp 2048 1024 512 375
Intel(R) XEON(TM)

csultraXX (1) SunOS 5.8 sun4 sparc 440 512 2048 95
SUNW,Ultra-5_10

where nbb is a parameter that can be passed to the main
program or can be of a fixed size, and r is the number of
columns of the generator. The number nbb is chosen to
be large enough so that the time spent by the benchmark
function can be used to accurately estimate the relative per-
formance of the underlying physical processors, and, at the
same time, to be as small as possible in order to minimize
the involved overhead. This choice is important because it
has a significant impact on the accuracy of the mapping.

The main driver routine, pdtrfx, depends on several
parameters. These parameters are not only parameters de-
fined by the problem itself such as the generator size (n×r),
but also some other additional parameters such as the block
size (nb) and the number of processes. This fact means
that these latter parameters would be tuned before calling
the parallel routine in order to execute it with the best val-
ues and to free the user from their selection, which would
force them to have a profound knowledge of the parallel al-
gorithm and the environment.

The next step in the parallel algorithm deals with the tun-
ing of the number of processes and the block size nb. Two
nested loops indexed by attempted values perform this com-
putation by calling to the HMPI_Timeof routine. This
routine estimates the execution time of the parallel algo-
rithm without its real execution. The execution time of
HMPI_Timeof itself is negligible. HMPI_Timeof uses
the information provided by the performance model. Af-
ter the execution of the nested loop, the best values of the
parameters are found and the parallel algorithm will work
with this choice.

Really, the HeteroMPI environment setup starts next.
This setup consists of similar steps to the MPI environment
setup. The host processor (the parent processor under the
mpC terminology) calls routine HMPI_Group_create
with the suitable arguments to create a HeteroMPI work
group of abstract processes. The number of processes (p)
are the ones chosen by the previous tuning algorithm. The
rest of processes call the same routine as well. This must be
done in this way since HMPI_Group_create is a collec-
tive operation. The HeteroMPI group will be composed by
only these p processes so the rest of the processes must exit

the application calling HMPI_Finalize.
After these HeteroMPI operations, the MPI environment

setup takes place in order to have the possibility of running
the homogeneous routine as it is shown in Fig. 4. The link
between HeteroMPI and MPI environments is made up by
a call to the HeteroMPI routine

mpicomm = *(MPI_Comm*)HMPI_Get_comm(&gid);

This routine allows to obtain a MPI communicator from
a HeteroMPI group of processes (mpicomm) identified in
the example with the variable gid. This is the only step
representing the MPI environment due to the rest of the par-
allel algorithm uses the BLACS model.

At the next step the BLACS environment is set up as
usual when programming for homogeneous NOCs. The
connection between the MPI and BLACS code is performed
by

ictxt = Csys2blacs_handle(mpicomm);

where ictxt represents the BLACS context. Once
the context identifier is obtained, the following is typical
BLACS/ScaLAPACK code started by the initialisation of
the logical BLACS grid.

Each of the environments finishes by calling the ap-
propriate closing routines such as gridexit for BLACS
or HMPI_Group_free and HMPI_Finalize for Het-
eroMPI.

7. Experimental Results

The experiments are carried out on a cluster of se-
ven interconnected computers, one of which is a two–
processor Linux workstation, pg1cluster02, and the
others are identical uniprocessor Sun workstations called
csultra01, csultra02, csultra03, csultra04,
csultra05 and csultra06, respectively. Table 1
shows specification of the computers, including their rel-
ative speed measured with the core computation of our al-
gorithm, dtrfx. One can see that for our algorithm a pro-
cessor of pg1cluster02 is ≈ 4 times faster than that of
Sun workstations.

heteroMPI
MPI

number of rows = 7920

number of columns

se
c.

60 80 100 120 140 160 180 200

30

25

20

15

10

5

0

Figure 5. Execution time with fixed number of
rows varying the number of columns.

number of rows = 7920

number of columns

Sp
ee

du
p

2001801601401201008060

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 6. Speedup obtained using HeteroMPI
over MPI with fixed number of rows varying
the number of columns.

As it has been shown in the previous section, our appli-
cation finds the optimal number of processes and the op-
timal block size before a call to the main routine execut-
ing the core computations and communications. In our ex-
periments, 14 processes were always chosen to perform the
main routine and a block size varied in a range of 14 − 24.

Fig. 5 shows the execution time of the HeteroMPI appli-
cation and the standard MPI application using a fixed num-
ber of rows (n = 7920) and varying the number of columns.
Fig. 6 shows the speedup as a ratio between the execution
time of the standard MPI application and the HeteroMPI
application of Fig. 5. The speedup is about 1.4 in this case.
Similar results have been obtained with a fixed number of

heteroMPI
MPI

number of columns = 100

number of rows

se
c.

4000 5000 6000 7000 8000 9000

20

15

10

5

0

Figure 7. Execution time with fixed number of
columns varying the number of rows.

number of columns = 100

number of rows

Sp
ee

du
p

900080007000600050004000

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 8. Speedup obtained using HeteroMPI
over MPI with fixed number of columns vary-
ing the number of rows.

columns of 100 and varying the number of rows. In this
last case, it can be seen that the difference in time between
the standard MPI application and the HeteroMPI applica-
tion grows with the size of the problem (Fig. 7) since the
cost of the problem grows quadratically with the number
of rows. This can be better seen in Fig. 8. This fact also
explains a higher speedup (1.6) than in the other case.

Both type of results show how with a detailed and well
designed Performance Model it can be achieved a heteroge-
neous parallel algorithm that exploits the power of computa-
tion of each of the different computers of the heterogeneous
network.

8. Conclusions

In this paper, we have presented our experience with a
real application on a HNOC using HeteroMPI. HeteroMPI
is an extension of MPI for programming high–performance
computations for HNOCs. HeteroMPI automates creation
of a group of processes which would execute the hetero-
geneous algorithm faster than any other group. HeteroMPI
provides some features that allows the user to write efficient
heterogeneous algorithms.

One of the most interesting advantages is the ability
to Efficiently implement legacy homogeneous algorithms
for heterogeneous environments without any change in the
source code. However, the performance of the application
strongly depends on the accuracy of the Performance Model
designed by the application programmers to describe their
implemented algorithms. HeteroMPI provides comprehen-
sive features to express many scientific parallel applications
such as the one presented in this paper. Other features deal
with the use of HMPI_Recon and HMPI_Timeof rou-
tines. The first one allows the application programmer to
express the computational core of the application and is
used by the mapping algorithm to make the best on its work.
The accuracy of HMPI_Recon depends on how accurately
the benchmark code provided by the programmer reflects
the core computations of each phase of the algorithm. Rou-
tine HMPI_Timeof allows for tuning the application pa-
rameters by estimating the execution time at runtime. The
accuracy of HMPI_Timeof depends on both the accuracy
of the Performance Model and HMPI_Recon.

Other experiments with this tool have been recently car-
ried out by the developers of the HeteroMPI. Our contri-
bution demonstrates even more the utility of this tool pro-
viding with a real application widely used in digital–signal
analysis with a wide range of real applications like 3D
sound reproduction systems. In addition, we have explored
the behaviour of an irregular parallel heterogeneous algo-
rithm with the particular feature of a very low cost derived
from the use of structured matrices like it is the case of
Toeplitz–Block and Block–Cauchy–like matrices. As our
results confirm, even with these type of low cost algorithms
it can be achieved a good speedup exploiting the aggre-
gate power of a HNOC by written an accurate Performance
Model of the application.

References

[1] P. Alonso, , and A. M. Vidal. An efficient parallel solution
of complex toeplitz linear systems. In Proceedeings of the
Sixth International Conference On Parallel Processing and
Applied Mathmatics, Poznan, Poland, Sept. 2005.

[2] P. Alonso, J. M. Badı́a, A. González, and A. M. Vidal. Paral-
lel design of multichannel inverse filters for audio reproduc-
tion. In Parallel and Distributed Computing and Systems,

IASTED, volume II, pages 719–724, Marina del Rey, CA,
USA, Nov. 2003.

[3] P. Alonso, J. M. Badı́a, and A. M. Vidal. Parallel algorithms
for the solution of toeplitz systems of linear equations. Lec-
ture Notes in Computer Science, 3019:969–976, 2004.

[4] P. Alonso, J. M. Badı́a, and A. M. Vidal. An efficient and sta-
ble parallel solution for non–symmetric Toeplitz linear sys-
tems. Lecture Notes in Computer Science, 3402:685–692,
2005.

[5] P. Alonso, M. O. Bernabeu, and A. M. Vidal. A parallel
solution of hermitian toeplitz linear systems. In Computa-
tional Science – ICCS 2006, volume 3991 of LNCS, pages
348–355. Springer, 2006.

[6] P. Alonso, A. Lastovetsky, and A. M. Vidal. A parallel
algorithm for the solution of the deconvolution problem in
heterogeneous networks. Technical Report 2006–2, School
of Computer Science and Informatics. University College of
Dublin, 2006.

[7] P. Alonso and A. M. Vidal. The symmetric–toeplitz linear
system problem in parallel. LNCS, 3514:220–228, 2005.

[8] A. W. Bojanczyk, R. P. Brent, and F. R. de Hoog. QR
factorization of Toeplitz matrices. Numerische Mathematik,
49(1):81–94, July 1986.

[9] A. González and J. López. Two steps levinson algorithm for
time domain multichannel deconvolution. Electronic Let-
ters, 36(7):686–688, 2000.

[10] A. González and J. López. Fast transversal filters for decon-
volution in multichannel sound reproduction. IEEE Trans.
on Speech and Audio Processing, 9 (4):429–440, May 2001.

[11] H. Irisawa, S. Shimada, H. Hokari, and S. Hosoya. Study of
a fast method to calculate inverse filters. J. Audio Eng. Soc.,
46(7/8):611–619, 1998.

[12] C. Kyriakakis, P. Tsakalides, and T. Holman. Surrounded
by sound. IEEE Signal Processing Magazine, 16 (1):55–66,
1999.

[13] A. Lastovetsky. Parallel Computing on Heterogeneous Net-
works. John Wiley & Sons, NJ, USA, 2003.

[14] A. Lastovetsky and R. Reddy. HeteroMPI: Towards a
Message–Passing Library for Heterogeneous Networks of
Computers. Journal of Parallel and Distributed Computing,
Elsevier, 66(2):197–220, 2006.

[15] J. López, A. Gónzalez, and F. Orduña Bustamante. Equal-
ization zones for cross talk cancellation as a function of
loudspeaker position and room acoustics. In proc. de AC-
TIVE 99, Ford Lauderdale, Florida, Dec. 1999.

[16] J. López, A. González, and F. Ordua-Bustamante. Measure-
ment of cross-talk cancellation and equalization zones in 3-d
sound reproduction under real listening conditions. In proc.
de AES 16th International Conference on Spatial Sound Re-
production, Rovaniemi, Finlandia, 1999.

[17] R. Reddy and A. Lastovetsky. HeteroMPI: Programmer’s
and installation guide. Technical report, School of Computer
Science and Informatics, University College of Dublin,
2005.

