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1 Abstract 
The mpC language Ind its supportive portable program- 

ming environment are1 aimed at eficiently-portable modu- 
lar parallel progru ming heterogeneous networks of 
computers (HNcs). nlike traditional tools used for por- 
table progrumming Cs, mpC provides more advanced 
facilities for process anagement to support eficientport- 
ability. The paper p esents the abstraction of network 
object introduced in i he mpC language to manage pro- 

program in order to 
of m pC applications on anypar- 

is paid to the translation 
low-level notions of tar- 

ensure eficient 

1. Introduction I 

- shared-memory multiproces- 
multiprocessors 

nodes and communicition speeds and bandwidths of links 
interconnecting 

high-performance computing 
are used mostly the same 
programming MPPs (and, 
[l], MPI [2] and HPF [ 3 ] .  

To understand hod suitable the tools are for local net- 
works, let us estimate how they support efficient, portable, 
modular, efficiently- ortable, easy and reliable program- 
ming heterogeneous etworks of computers (HNCs). 

E$cient programm ng HNCs means developing such an 

lel algorithm utilizi the performance potential of the 
HNC with sufficient ompleteness. 

Portable programm’ng HNCs means developing such an 
application that once eveloped and tested for a particular 
HNC will run proper1 t on any other HNC without any cor- 

application that for a I particular HNC implements a paral- 

rections. 
Modular programming HNCs means developing such a 

parallel program unit that can be separately compiled and 
correctly used by other programmers when developing 
their parallel applications without knowing its inside. 

Eficiently-portable programming HNCs means develop- 
ing a portable parallel application able to adapt to pecu- 
liarities (in particular, processor performances and 
communication speeds) of any particular executing HNC 
to exploit its performance potential with sufficient com- 
pleteness. (Note, that only efficiently-portable and modu- 
lar programming HNCs enables the development of 
parallel packages and libraries for HNCs.) 

Easy-in-use and reliable programming HNCs means 
using such a parallel programming model that does not 
make the development of complex applications for HNCs 
tedious and error-prone. 

PVM, MPI and HPF all support portable programming 
HNCs. 

Unlike PVM, both MPI and HPF additionally support 
modular programming HNCs. 

To understand if MPI and HPF support efficient and effi- 
ciently-portable programming HNCs, let us consider some 
typical parallel algorithms allowing both efficient and effi- 
ciently-portable implementation for HNCs and analyze 
how they can be expressed in MPI and HPF. 

Firstly, let us consider a problem of simulating the evolu- 
tion of a system of stars in a galaxy (or set of galaxies) 
under the influence of Newtonian gravitational attraction. 
Let the system consist of a number of large groups of bod- 
ies being far away from each other. It is known, that since 
the magnitude of interaction between bodies falls off rap- 
idly with distance, the effect of a large group of bodies 
may be approximated by a single equivalent body, if the 
group of bodies is far enough away from the point at 
which the effect is being evaluated. So, we can parallelize 
the problem, and the corresponding message-passing algo- 
rithm will use a few processes, each of which updates data 
characterizing a single group of bodies. Each process 
holds attributes of all the bodies constituting the corre- 
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sponding group as well as masses and centers of gravity of 
other groups. The attributes characterizing a body include 
its position, velocity and mass. There is one process, called 
host-process, that holds all bodies constituting the galaxy 
and outputs successive states of the galaxy. The scheme of 
the corresponding message-passing algorithm looks as fol- 
lows: 

Initialize a host-process 
Initialize a galaxy on the host-process 
Initialize a balanced set ofprocesses for the groups 
of the galaxy (one process for each group of the galaxy) 

Scatter the groups over the processes 
Compute masses of the groups in parallel 
Interchange the masses among processes 
while(1) { 

Output the current state of the galaxy 

Compute centers of gravity of the groups in parallel 
Interchange the centers among processes 
Update the groups in parallel 
Gather the groups on the host-process 

on the host-process 

3 
Here, “a balanced set of processes” means that the pro- 

cesses are mapped to the executing HNC in such a way to 
provide the best balance between speeds of processes and 
speeds of data transfer among the processes minimizing 
the total running time. 

MPI does not allow to create a group of processes based 
on such properties of the created group as related speeds of 
processes or speeds of data transfer among processes. The 
basic way to create a group of processes is to explicitly 
point out all the processes of the entire ordered set of 
homogeneous MPI processes running over a HNC, that 
should join the created group. The only exception is an 
operation for dividing a single group of processes into n 
subgroups, each process explicitly specifying which sub- 
group it wants to join. But even this mechanism does not 
solve the problem of creating a group of processes based 
on their relative quantitative characteristics. An MPI pro- 
cess is identified only by its serial number and has no addi- 
tional properties (attributes) differing it from other MPI 
processes. Therefore, the programmer, writing the corre- 
sponding MPI application, cannot exert influence on the 
level of the balance among processes of the created group. 
From MPI’s point of view all process groups are equally 
balanced. This point of view is explainable, if to remem- 
ber, that MPI was originally developed for portable pro- 
gramming MPPs consisting of identical processors 
interconnected via very fast network equipment, and any 
mappings assigning different processes to different proces- 
sors of a MPP are considered equivalent to each other and 
optimal. Therefore, there is no problem to start up the MPI 
application on the MPP in such a way to enswe its efficient 

execution. 
The situation changes drastically for HNCs. Let, for 

example, a modelled system of bodies consist of 5 groups 
gl,  82, 83, 84, and g5, comprising 100,200, 300,400, and 
500 bodies correspondingly, and an executing HNC consist 
of 5 uniprocessor workstations wl ,  w2, w3, w4, and w5, 
relative performances of which are 1, 2, 3, 4, and 5 corre- 
spondingly. Simplifying the situation, suppose the work- 
stations to be interconnected with such a network 
equipment that provide communications, fast enough to 
neglect communication overheads for the given applica- 
tion. Obviously, that the mapping, assigning gl  to w5, g2 
to w4, g3 to w3, g4 to w2, and g5 to wl ,  will lead to much 
slower execution of the application, than the mapping, 
assigning gl  to wl ,  g2 to w2, g3 to w3, g4 to w4, and g5 to 
w5. Therefore, to start up the application on a HNC in such 
a way to ensure its efficient execution, a user should know 
well about both characteristics of the executing HNC and 
the inside of the application and solve a non-trivial optimi- 
zation problem. This problem becomes much more com- 
plicated if the executing HNC consists of an rather large 
number of uni- and multiprocessor computers intercon- 
nected with a mixed network equipment orland if the task 
of modelling the evolution of the system of bodies is only a 
part of a larger MPI application. 

Thus, when programming HNCs, one cannot use effi- 
ciently an MPI module without knowledge of its inside, 
that is, MPI cannot support both efficient and modular pro- 
gramming HNCs simultaneously. 

Moreover, if the number of groups of bodies and the 
number of bodies in each group are defined only in run 
time, the user has no information to start up the application 
in an efficient way. Therefore, in the most general case, 
MPI does not support efficient programming HNCs and, 
hence, efficiently-portable programming HNCs. 

Like MPI, HPF does not allow to express the above algo- 
rithm. The main obstacle is that a homogeneous multipro- 
cessor providing very fast communications among its 
processors is the only parallel machine visible when pro- 
gramming in HPF. Therefore, a programmer, writing the 
correspondmg HPF application, cannot exert influence on 
the level of the balance among processes of the target mes- 
sage-passing program. In addition, HPF does not support 
neither irregular andor uneven data distribution nor 
coarse-grained parallelism to express adequately this 
(rather coarse-grained task than pure data parallel) algo- 
rithm. Thus, HPF also does not support efficient (and, 
hence, efficiently-portable) programming HNCs. 

The above problem becomes much more complicated in 
the case of modelling a system of galaxies each of which in 
turn consists of a number of groups of bodies. The corre- 
sponding message-passing algorithm should deal with an 
hierarchy of interacting processes, implementing the inher- 
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f this complicated problem, that 
ated process management aimed 

nning the application on HNCs. 

lar parallel programming HNCs, 
and new tools ta 

system mpC [4-51. It is based on a 
ies that allow the user to spec- 
different groups of processes 
ion of different parts of the 
he corresponding abstraction 

the mpC language, the user 
define network objects (in 
ell as distribute data and 

network objects. The mpC pro- 
uses this information in run time 

ts to any underlying HNC 
ent running of the applica- 
st devoted to implementa- 

/ * 2 * /  coord 
/ * 3 * /  node { 
/ * 4 * /  I ;  
/ * 5 * /  . . .  
/ * 6 * /  { 
/ * 7 * /  repl. 
/ * 8 * /  

2. Outline of the impC language 

l=n; 
P = O :  p [ I l  ; I :  

i n t  m ,  q [ N ]  ; 
/*Cqmpute m , q [ O l  ,...,q [m-11 * /  
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ration declaring the coordinate system to which virtual 
processors are related. It introduces coordinate variable I 
ranging from 0 to n - 1. Line 3 is a node declaration. It 
relates virtual processors to the coordinate system and 
declares their types and performances. It stands for the 
predicate for all ICn i f  I>=O then a virtual processol: 
whose relative performance is specijied by the value of 
p [I], is related to the point with the coordinate [ I ] .  

Line 7 defines variable m and array q both replicated 
over the entire computing space (any network object is 
considered a region of the entire computing space). By 
definition, data object distributed over a region of the 
computing space comprises a set of components of any 
one type so that each virtual processor of the region holds 
one component. By definition, a distributed data object is 
replicated if all its components is equal to each other. 

Conceptually, creation of a new network object is initi- 
ated by a virtual processor of a network object already cre- 
ated. This virtual processor is called a parent of the 
created network object. The parent belongs to the created 
network object. In our case, the parent of network object r 
is the so-called virtual host-processor - the only virtual 
processor defined from the beginning of program execu- 
tion till program termination. 

Suppose we to model the evolution of m groups of bodies 
under the influence of Newtonian gravitational attraction, 
and our parallel application uses a virtual processor to 
update a single group. Suppose also q [i] to be equal to 
the square of the number of bodies in the i-th group. 
Then, line 10 defines network object r, executing most of 
computations and communications, in such a way, that it 
consists of m virtual processors, and the relative perfor- 
mance of each processor is characterized by the volume of 
computations to update the group which it computes. So, 
the more powerful is the virtual processor, the larger group 
of bodies it computes. The mpC programming environ- 
ment bases on this information as well as on the informa- 
tion about the topology of an underlying HNC to map the 
virtual processors into the processes, running on this HNC 
and representing the entire computing space, in the most 
appropriate way. Since it does it in run time, the user does 
not need to recompile the mpC code to port it to other 
HNCS. 

So, unlike MPI and HPF, supporting efficiently-portable 
modular programming MPPs, mpC also supports effi- 
ciently-portable modular programming HNCs, including 
MPPs as particular cases. 

3. Translation of network definitions 

The mpC compiler translates a source mpC file into a 
target ANSI C file with calls to functions of the run-time 



support system. It uses the SPMD model of target code, 
when all processes constituting the target mpC program 
run identical code. 

All processes constituting the target program are divided 
into 2 groups - a special process, called dispatcher; playing 
the role of the manager of the computing space, and com- 
mon processes, called nodes, playing the role of virtual 
processors of the computing space. The dispatcher works 
as a server. It receives requests from nodes and sends them 
commands. 

In the target program, every network of the source mpC 
program is represented by a set of nodes called region. At 
any time of the target program running, any node is either 
free or hired in one or several regions. Hiring nodes in cre- 
ated regions and dismissing them are responsibility of the 
dispatcher. The only exception is the pre-hired host-node 
representing the mpC pre-defined virtual host-processor. 
Thus, just after initialization, the computing space is repre- 
sented by the host and a set of temporarily free (unem- 
ployed) nodes. 

The main problem in managing processes is hiring them 
to network regions and dismissing them. A solution of this 
problem establishes the whole structure of the target code 
and forms requirements for functions of the run-time sup- 
port system. 

To create a network region, its parent node computes, if 
necessary, parameters of the corresponding network topol- 
ogy and sends a creation request to the dispatcher. The 
request contains full topological information about the cre- 
ated region including the number of nodes and their rela- 
tive performances. On the other hand, the dispatcher keeps 
information about the topology of the target network of 
computers including the number of actual processors, their 
relative performances and the mapping of nodes onto the 
actual processors. Based on the topological information, 
the dispatcher selects the set of free nodes, which is most 
appropriative to be hired in the created network region. 
(More detailed description how dispatcher does it, may be 
found in [SI.) After that, it sends to every free node a mes- 
sage saying whether the node is hired in the created region 
or not. 

To deallocate a network region, its parent node sends a 
message to the dispatcher. Note, that the parent node 
leaves hired in the parent-network region of the deallo- 
cated region. The rest of members of the deallocated net- 
work region become free and begin waiting for commands 
from the dispatcher. 

Any node can detect its hiredlfree status. It is hired if a 
call to function MPC-Is-busy returns 1. If such a call 
returns 0, the node is free. 

Any node can detect if it is hired in some particular 
region or not. A region is accessed via its descriptor. If the 
descriptor rd corresponds to the region, then a node 

belongs to the region if and only if the function call 
MPC-Is-member (&rd) returns 1. In this case, descrip- 
tor rd allows the node to obtain comprehensive informa- 
tion about the region as well as identify itself in the region. 
The region descriptor has type MPC-Net and holds the 
following data: 

- topological data associated with the region, such as the 
number of coordinates, an integer array containing actual 
topological arguments (if any) and the number of elements 
in this array, pointers to the corresponding topological 
functions; 

- the number of nodes in the region; 
- the linear number of the node in the region; 
- an integer array containing coordinates of the given 

node in the corresponding network; 
- some additional and lor redundant information aimed 

at optimization of computations and communications. 
When a free node is hired in a network region, the dis- 

patcher must let the node know, in which region it is hired, 
that is, must specify the descriptor of that region. The sim- 
plest way - to pass the pointer to the region descriptor from 
the parent node through the dispatcher to the free node, is 
senseless for distributed memory systems not having com- 
mon address space. Therefore, in addition to the region 
descriptor, something else is needed to identify the created 
region in a unique fashion. The additional identifier must 
have the same value on both the parent and the free node 
and be passable from the parent node through the dis- 
patcher to the free node. 

In a source mpC program, a network is denoted by its 
name, being an ordinary identifier and not having to have 
file scope. Therefore, a network name can not serve as a 
unique network identifier even within a file. One could 
enumerate all networks declared in the file and use the 
number of a network as an identifier unique within the file. 
However, such an identifier being unique within a file can 
not be used as a unique identifier within the whole program 
that may consist of several files. Nevertheless, one can use 
it without collisions when creating network regions, if dur- 
ing network-region creation all participating nodes execute 
the target code located in the same file. Our compiler just 
enumerates networks defined in a file and uses their num- 
bers as network identifiers in target code when creating the 
corresponding network regions. It does ensure that during 
the creation of a network region all involved nodes exe- 
cute the target code located in the same file. 

Creating a network region involves its parent node, all 
free nodes and the dispatcher. The parent node calls to 
function 
int MPC-Net-create(MPC-Name name, 

where name contains the unique number of the created 
network in the file, and net points to the corresponding 

MPC-Net* net) ; 
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region descriptor. function computes all topological 
creation request to the dispatcher. 

are waiting for commands from 
waitingpoint calling the h c -  

information and 

the network numbers and 
in the following way. If a 

k the number of which is equal to 
de is hired in the network region 

hich are expected at the 
contains the number of 

cher a message saying 

by nets-voted [il. 
g function MPC-Of f er 
network region or after 
nodes the command to 

tion 

that it is hired in 

computations distrib 
and/or in creationid 
defined in nested 
ment in the block 
a waiting-point break 

Then, in the most 
target code of the 
I 

declarations 
{ 
if (!MPC-IsbusyO) 

target code 
t o  create 
defined i n  

1 
i f  (MPC-Is-busy 

target code 
nodes t o  
networks 

ted over the entire computing space) 
allocation of regions for networks 

blccks. Let us call the first mpC state- 
inbolving all free nodes in its execution 

statement. 
general case, the compiler generates 

following structure: 

I 
executed by f r e e  nodes 

regions f o r  networks 
source mpC block 

( )  ) { 
executed by hired 

create regions f o r  
defined i n  source mpC-block 

and 
target code f o r  mpC statements 
before waiting-point break statement 

I 
epilogue of waiting point 

1 
target code f o r  mpC statements, s tart ing 
from waiting-point break statement 
I 

target code executed by hired nodes 
t o  deallocate regions f o r  networks 
defined i n  source mpC block 

label of deallocating waiting poin t :  
if (!MPC-Is-busy()) { 

target code executed by f r e e  nodes 
t o  deallocate regions f o r  networks 
defined i n  source mpC block 

1 
epilogue o f  waiting point 

1 
I 

If the source mpC block does not contain a waiting-point 
break statement (that is, overall statements and nested 
blocks with network definitions or overall statements), 
then creating and deallocating waiting points can be 
merged. Let us call such a waiting point shared waiting 
point. Target code for the mpC block with a shared waiting 
point looks as follows: 
I 

declarations 
{ 

label o f  shared waiting poin t :  
if ( !MPC-Is-busy ( )  ) { 

target code executed by f r e e  nodes 
t o  create and deallocate regions f o r  
networks defined i n  source mpC block 

1 
if (MPC-Is-busy ( )  ) { 

target code executed by hired nodes 
t o  create and deallocate regions f o r  
networks defined i n  source mpC block 
and 
target code f o r  statements 
of source mpC block 

1 
epilogue of waiting point 

I 
1 

To ensure that during the creation of a network region all 
involved nodes execute target code located in the same 
file, the compiler put a global barrier into the epilogue of 
waiting point. 

The coordinated arrival of nodes to the epilogue of 
waiting point is ensured by the following scenario: 

- the host makes sure that all other hired nodes, which 
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might send a creationideallocation request expected in the 
waiting point, have already reached the epilogue; 

- after that, the host sends a message, saying that any 
creationideallocation request expected in the waiting point 
will not appear yet, to the dispatcher; 

- after receiving the message the dispatcher sends all 
free nodes a command ordering to leave the waiting point; 

- after receiving the command each free node leaves the 
waiting function and reach the epilogue. 

5. Process management in details 

To introduce the process management in more details, let 
us consider the following mpC file: 
/*l */nettype T(m) { coord I=m; 1; 
/*2 */void [*If (int [host] hn) { 
/*3 * /  net T(2) n; 
/*4 * /  rep1 in: 
/*5 * /  in=hn; 
/ * 6  * /  { 
/*7 * /  net T(in) [n] nn; 
/*8 * /  . . .  / *  declarations*/ 
/*9 * /  . . . / *  statements without a waiting- 
/*lo*/ point break statement*/ 
/*11*/ 1 
/*12*/1 

Line 1 introduces topology T with parameter m. It 
describes networks consisting of m virtual processors with 
the integer coordinate variable I ranging from 0 to m - 1. 

Line 3 defines network n consisting of two virtual pro- 
cessors. 

Line 4 defines integer variable i n  replicated over the 
entire computing space. 

Line 5 broadcasts the value of variable hn from the vir- 
tual host-processor over the entire computing space. The 
statement is executed by the entire computing space. 
Therefore, it is a waiting-point break statement for the 
function body. 

Line 7 defines network nn. The network nn is a distrib- 
uted network. In general, mpC allows to define not only a 
single network but also a set of single networks by means 
of defining so-called distributed network. A definition of a 
distributed network specifies the type of the network and 
its parent network. Such a definition may be considered as 
a distributed over the parent network definition of a single 
network of the specified type. The parent network of a dis- 
tributed network can also be distributed. But in any case, a 
distributed network is a set of single networks of the same 
type. The number of single networks in this set is equal to 
the number of virtual processors in the parent network 
each of the virtual processors of the parent network being a 
parent of a single network of the set. 

There are not facilities to specify a single network 

belonging to a distributed network in mpC. Therefore, 
whenever one specifies a subnetwork of a distributed net- 
work, he means a set of subnetworks of the single net- 
works constituting the distributed network. Similarly, if 
one specifies a single processor of a distributed network, 
he means a set of single processors of the single networks 
constituting the distributed network. Any computation on a 
distributed network is divided into independent computa- 
tions on the single networks constituting the distributed 
network. 

So, network nn, distributed over its parent network n, 
divides into a set of two single networks the type of which 
is defined completely only in run time. 

There will be all three kinds of waiting points in target 
code for function f , The function body, where network n is 
defined, contains a waiting-point break statement. There- 
fore, target code for the function body will contain both 
creating and deallocating waiting points. The nested block 
(lines 6- 1 l), where network nn is defined, does not contain 
a waiting-point break statement. Therefore, target code for 
the nested block will contain a shared waiting point. 

/*1 */void f 0 I 
/*2 * /  int MPC-Net-n-6-coord [11 ; 
/*3 * /  MPC-Parameters 
/*4 * /  MPC-Net-n-Ggarams [11=12} ; 
/*5 * /  MPC-Net MPC-Net-n-6={ . . .  
/ * 6  * /  / *  initialization list * / } ;  
/ * 7  * /  int in: 
/*8 * /  { 
/*9 * /  if (!MPC-Is-busyO) I 
/*lo*/ 
/*11*/ MPC-Net* MPC-nets [I] ; 
/*12*/ MPC-nets CO1 =&MPC-Netn-6; 
/*13*/ MPC-Offer(MPC-names,MPC-nets, 1) : 
/*Id*/ 3 
/*15*/ if (MPC-Isbusyo) 
/*16*/ if (MPC-Is-member (&MPC-Net-host) ) 
/*17*/ MPC-Net-create(6,&MPC-Net-n-6) ; 

/*18*/ 1 
/*19*/ if (MPC-Is-host 0) { 
/*20*/ MPC-Host-out 0 ; 

The following target code 

MPC-Name MPC-names [ll =I63 : 

/*21*/ 3 
/*22*/ 1 
/ * 2 3  * / 
/*24*/ 1 
/*25*/ / *  implementation of in=ih. * /  
/*26*/ I 
/*27*/ int MPC-Net-nn-7-coord[ll; 
/*28*/ MPC-Parameters 
/*29*/ MPC-Net-nn-7qarams [I] : 
/*30*/ MPC-Net MPC-Net-nn-7={ . . .  
/*31*/ /*initialization list*/}; 
/*32*/ /*target code for declarations of 
/ * 3 3 * /  the source nested block*/ 

MPC-Wai tingsoint-end ( ) ; 

/*34*/ I 
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/*41*/ 1 
/ * 4 2 * /  if (MPC- 
/*43*/  if (MPC ember (&MPC_Net-n-6 ) ) I 

PC-Net-nn-7-params; 

/*58*/  3 

/*64*/ 3 

/*67*/ 3 
/ * 6 8 * /  if(MP ember (&MPC-Net-n-6) ) I 
/*69*/ MPC ee ( &MPC-Ne t-I--6 ) : 

/*72*/ 3 

/*79*/ 3 

es the one-element array 

MPC-Net-n-G-coord to hold the coordinates of nodes 
of the region. Lines 3-4 define and initialize the one-ele- 
ment array MPC-Net_n-G_params in such a way that 
its only element holds integer value 2 as an argument of 
topology T establishing the type of network n (namely, the 
network type T ( 2 ) ). Lines 5-6 define the region descrip- 
tor MPC-Net-n-6 and initialize all such its members, 
values of which can be computed in compile time. 

The target code in lines 10-13 is executed by all free 
nodes to create the region represented the network n. Line 
10 defines and initializes the one-element array 
MPC-names containing the number of the network the 
creation of which is expected at the first waiting point. 
Line 11 defines the one-element array MPC-ne t s to hold 
a pointer to the region descriptor the creation of which is 
expected at the first waiting point, and line 12 assigns the 
proper value to its only element. Line 13 calls to the wait- 
ing function MPC-Of f er. A free node leaves the fbnction 
either after it becomes hired in region MPC-Ne t-n-6, or 
after the dispatcher sends to all free nodes the command to 
leave this waiting point. 

The target code in lines 16-24 is executed by all hired 
nodes to create the region for network n and to reach coor- 
dinately the epilogue of the creating waiting point. 

Lines 16-18 call to the function MPC-Net-create on 
the host to form the corresponding creation request and to 
send it to the dispatcher. The host is accessible via descrip- 
tor MPC-Net-hos t. Any node is detect itself as the host 
if the function call 
MPC-I s-member ( &MPC-Ne t-hos t ) or the function 
call MPC-I s-hos t ( ) return 1 on the node. 

Lines 19-21 call to the function MPC-Hos t-out on the 
host to send the dispatcher a message saying that all free 
nodes must leave the waiting point. Since in our example 
the host is the only node, that can send a creation request 
expected in the waiting point, it knows that all creation 
requests expected in the waiting point have already been 
sent, and it may send the message to the dispatcher. 

The statement in line 23 calls to the function 
MPC-Waitingaoint-end. It is an epilogue of the 
first waiting point. The call provides a global barrier syn- 
chronization and does not let any node to continue until all 
nodes constituting the entire computing space reach it. 

The target code for the nested block (lines 26-67) is 
related to the shared waiting point. The network nn has 
obtained number 7 as an unique identifier in the file, and 
the corresponding network region is accessible via 
descriptor MPC-Net-nn-7 (line 30). 

Line 27 defines the one-element array 
MPC-Ne t-nn-7-coord to hold the coordinates of 
nodes of the region. Lines 28-29 define the one-element 
array MPC_Net_nn_7_params to hold an argument of 
topology T establishing the type of network nn. Lines 30- 
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3 1 define the region descriptor MPC-Ne t-nn-7 and ini- 
tialize all such its members, values of which can be com- 
puted in compile time. 

The target code in lines 37-40 is similar to the target code 
in lines 10-13 and executed by all free nodes to create the 
region represented the network nn. 

The target code in lines 43-65 is executed by all hired 
nodes to create and deallocate the region for network nn, 
to execute statements of the source mpC nested block, and 
to reach coordinately the epilogue of the shared waiting 
point. 

Lines 44-50 are executed by two nodes constituting 
region MPC-Ne t-nn-6 in parallel to create two regions 
representing the distributed network nn. Lines 44-49 com- 
pute some attributes of these regions, allowing to establish 
the type of network nn, and store them in the correspond- 
ing members of the region descriptor MPC-Ne t-nn-7. 
Line 50 calls to the function MPC-Net-create to form 
two corresponding creation requests and to send them to 
the dispatcher. 

Lines 55-57 are executed on the regions representing net- 
work nn to deallocate them. Line 55 calls to the function 
MPC-Net-f ree. The function provides a local barrier 
synchronization over the deallocated regions. After all 
nodes constituting these regions reach the local barrier, 
each of two nodes constituting their parent region (that is, 
region MPC-Net-nn-6) send a message to the dis- 
patcher. These two nodes remain to be hired in region 
MPC-Ne t-nn-6. Meantime, other members of the dis- 
tributed network region become free and jump to the label 
MPC-wai tingsoint-2 of the shared waiting point 
(line 57). They begin executing the free-node code (lines 
37-40) and, eventually, join other free nodes calling the 
waiting function in line 40. 

Lines 59-64 ensure that all nodes reach the epilogue of 
the shared waiting point coordinately. Since the host is not 
the only node that can send a request expected in the wait- 
ing point, it can not pass over the local barrier in line 60 
and call to function MPC-Host-out in line 63 to send 
the dispatcher a message saying that all free nodes must 
leave the waiting point, until all other nodes able to send a 
creatioddeallocation request reach the local barrier. 

As a result, all nodes call to the epilogue function 
MPC-Wai tingsoint-end (line 66) coordinately. 

The rest of the target code generated for the function 
body (lines 68-82) is related to the deallocating waiting 
point. 

Lines 68-75 are executed by hired nodes to deallocate the 
region representing the network n and to ensure that all 
nodes reach the epilogue of the deallocating waiting point 
coordinately. The node, that becomes free after the call to 
function MPC-Net-f ree in line 69, jumps to the label 
MPC-reconf ig-point-1 of the deallocation waiting 

point (line 71) and calls to the waiting function (line 78). 
Since the host is the only node that can send a deallocation 
request expected in the waiting point, it does not need to 
synchronize its work with some other hired nodes and can 
call to the function MPC-Host-out to send the dis- 
patcher a message saying that free nodes must leave the 
deallocation waiting point. 

Lines 77-79 ensure that all free nodes will receive in time 
the command from the dispatcher to leave the waiting 
point and will reach the epilogue function (line 80) coordi- 
nately with the hired nodes. 

6. Conclusion 

The paper has presented the abstraction of network 
object introduced in the mpC language to manage pro- 
cesses constituting a message-passing program in order to 
ensure an efficient execution of mpC applications on any 
particular HNC. The main attention has been paid to the 
translation of this high-level mechanism into low-level 
notions of the target message-passing program. The pre- 
sented algorithm has overcome 2-year intensive testing 
and been incorporated into the mpC programming environ- 
ment, widely used for efficiently-portable modular parallel 
programming local networks of diverse workstations, serv- 
ers and PCs. 
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