
Partitioning for Parallel Matrix-Matrix Multiplication with Heterogeneous
Processors: The Optimal Solution

Ashley DeFlumere, Alexey Lastovetsky, Brett A. Becker
School of Computer Science and Informatics

University College Dublin
Belfield, Dublin 4, Ireland

ashley.deflumere@ucdconnect.ie, {alexey.lastovetsky, brett.becker}@ucd.ie

Abstract—The problem of matrix partitioning for parallel
matrix-matrix multiplication on heterogeneous processors has
been extensively studied since the mid 1990s. During this
time, previous research focused mainly on the design of
efficient partitioning algorithms, optimally or sub-optimally
partitioning matrices into rectangles. The optimality of the
rectangular partitioning shape itself has never been studied
or even seriously questioned. The accepted approach is that
consideration of non-rectangular shapes will not significantly
improve the optimality of the solution, but can significantly
complicate the partitioning problem, which is already NP-
complete even for the restricted case of rectangular shapes.
There is no published research, however, supporting this
approach. The shape of the globally optimal partitioning,
and how the best rectangular partitioning compares with this
global optimum, are still wide open problems. Solution of these
problems will decide if new partitioning algorithms searching
for truly optimal, and not necessarily rectangular, solutions are
needed.

This paper presents the first results of our research on the
problem of optimal partitioning shapes for parallel matrix-
matrix multiplication on heterogeneous processors. Namely,
the case of two interconnected processors is comprehensively
studied. We prove that, depending on performance charac-
teristics of the processors and the communication link, the
globally optimal partitioning will have one of just two well-
specified shapes, one of which is rectangular and the other is
non-rectangular. The theoretical analysis is conducted using an
original mathematical technique proposed in the paper. It is
shown that the technique can also be applied in the case of
arbitrary numbers of processors. While comprehensive analysis
of the cases of three and more processors is more complicated
and the subject for future work, the paper does prove the
optimality of some particular non-rectangular partitioning
shapes for some combinations of performance characteristics of
heterogeneous processors and communication links. The paper
also presents experimental results demonstrating that the opti-
mal non-rectangular partitioning can significantly outperform
the optimal rectangular one on real-life heterogeneous HPC
platforms.

Keywords-Parallel Matrix Multiplication; Matrix Partition-
ing; Heterogeneous Computing; High Performance Computing

I. INTRODUCTION

Parallel Matrix-Matrix Multiplication (MMM) is a well
studied problem on sets of homogenous processors. The

optimal solutions and their corresponding data partition
shapes are well known, and implemented in the form of
mathematical software [1]. As heterogeneous systems have
emerged as high performance computing platforms, the tra-
ditional homogenous algorithms have been adapted to these
heterogeneous environments [2]. Although heterogeneous
systems have been in use for some time, it remains an open
problem of how to optimally partition data on heterogeneous
processors to minimize computation, communication, and
execution time.

Previous research has focused mainly on designing par-
titioning algorithms to find the optimal solution based on
rectangles. Many solutions to accomplish this task efficiently
have been proposed. Each of these solutions is based on
different heuristics and models, but they all create partitions
with a rectangular shape, i.e. one where each processor is
assigned a rectangular portion of the matrix to compute [3]
[4] [5] [6] [7]. However, finding the optimal rectangular
partitioning efficiently is difficult. Indeed, to do so for an
arbitrary number of processors has been shown to be NP-
complete [8]. Despite all the research devoted to finding
these optimal rectangular partitions, no body of research ex-
ists which compares these partitions to the global optimum.
Indeed, the optimality of the rectangular partitioning shape
itself has never been studied or even seriously questioned.
The accepted thinking is that non-rectangular shapes will
not significantly improve the solution, and that they can
even significantly complicate the problem. How the optimal
rectangle-based solution compares to the globally optimal
solution, and the general shape of such a global optimum,
remain wide open problems. These open problems, when
solved, will decide if new partitioning algorithms are needed
to search for globally optimal, and not necessarily rectangu-
lar, solutions.

As this is an initial foray into the subject, an open
problem which to the best of our knowledge has not been
previously studied, we begin with the fundamental case of
two processors. We use this case as a test-bed to develop our
novel mathematical technique, which is presented here as the
central contribution of this paper. With this original method
it is possible to analyze all partitions and mathematically

prove what are the optimal partition shapes. Central in devel-
oping this technique was the requirement that it be applicable
beyond the two processor case. In the future, it will be used
to comprehensively study three and more processors. In this
work, the technique is employed to show that the optimal
shape of a data partition for two processors may be non-
rectangular, depending on the performance characteristics of
the processors and the communication link. Specifically the
optimal partition will take either one of two shapes, one of
which is rectangular and the other non-rectangular. As part
of this two processor work, the mathematical technique pro-
vided some low hanging fruit in the case of three and more
processors. These initial results are discussed, proving for
arbitrary numbers of processors the optimal partition shape
is non-rectangular, for some performance characteristics of
computation and communication.

For two processors, the only way to create a rectangular
partition is the Straight-Line approach. The matrices are
divided into two rectangles of areas proportional to processor
speed. The other, non-rectangular, partition will be called the
Square-Corner, in which a small square is assigned to the
slower processor and the non-rectangular remainder of the
matrix is assigned to the faster processor. These partition
types are depicted in Figure 1.

The idea of a two processor partition composed of a small
square and the non-rectangular remainder of the matrix is
discussed previously in [9] and [10]. In this paper, however,
we approach this not as a problem of whether the Square-
Corner partition is superior to the rectangular under certain
configurations, but what is the optimal partition shape. We
also improve upon these works by considering a variety of
algorithms to compute the MMM as opposed to one. The
non-rectangular partition has also been extended to three
processors in [11], and we will build on this and explore
extending these results to arbitrary numbers of processors.

To validate and corroborate this theoretical work, included
are a number of experimental results. These results, for
both two and three processors, are obtained both on indi-
vidual processors and clusters on the large geographically
distributed grid platform Grid’5000. This work can also
be easily adapted to other high performance heterogeneous
systems. One common concept of heterogeneity today is
a number of CPUs with a GPU accelerator, and the case
of optimally partitioning between relatively slow processors
(i.e. CPUs) and one faster processor (i.e. GPU) is discussed
and solved for some performance values in this paper.

This paper is comprised of the comprehensive results of
the initial study of two abstract processors. We analyze five
different algorithms to compute MMM on two processors,
beginning with the most simplistic and building up to the
most realistic for use on todays systems. Even the basic
algorithms are of importance, however, as they can be
used to characterize other application types beyond simply
parallel MMM.

Figure 1. 1. A Straight-Line partition 2. An arbitrary partition 3. A Square-
Corner partition

The first two algorithms place a barrier between com-
munication and computation. Once the communication has
completed, and both processors have all data required to
compute their assigned portions of the result matrix, the
computation proceeds. These algorithms are called Serial
Communication with Barrier (SCB), and Parallel Commu-
nication with Barrier (PCB).

The final three algorithms use methods of overlapping
communication and computation. Serial Communication
with Overlap (SCO) and Parallel Communication with
Overlap (PCO) allow communication to occur while any
subsections of the partition not requiring communication
are computed. Finally, there is Parallel Interleaving Overlap
(PIO), in which all communications and computations are
overlapped, a single row and column at a time.

The contributions of this paper are three-fold. First, we do
an exhaustive study of the problem of data partitioning for
parallel MMM with two processors and find the optimal so-
lution of this problem, which is different from the traditional
one. Second, we show how this optimal solution may be ex-
tended to the case of an arbitrary number of processors. Last
but not least, we develop original mathematical techniques
in order to prove the optimality of the found solution.

The rest of this paper is outlined as follows: Theoretical
results for each algorithm are contained in sections II - VII.
Section IX presents experimental results. Section X presents
our conclusions and future work.

II. THEORETICAL RESULTS

In this section we will prove that a non-rectangular parti-
tioning is optimal compared to all other MMM partitioning
shapes for
• all processor power ratios when bulk overlapping com-

munication and computation
• some processor power ratios when placing a barrier

between them or using interleaving overlap.

A. Mathematical Model and Technique

Throughout, we will make several assumptions, as fol-
lows:

1) Matrices A, B and C are square, of size N × N ,
and identically partitioned between Processor P , rep-
resented in figures as white, and Processor Q, repre-
sented in figures as black

2) Processor P computes faster than Processor Q by
ratio, r : 1

3) The number of elements in the partition for Processor
Q will be factorable, i.e. it will be possible to form a
rectangle with them

B. MMM Computation

As the kij algorithm is well-known and used by such
software as ScaLAPACK [1] to compute MMM, assume it
is the manner of computation for all algorithms presented in
this paper. The kij algorithm for MMM is a variant of the
triply nested loop algorithms. The three for loops are nested
and iterate over the line C[i, j] = A[i, k] * B[k, j] + C[i
,j]. The k variable represents a “pivot” row and column as
shown in Figure 2. For each iteration of k, every element of
the result matrix C is updated, incrementally obtaining the
final value. An element in the pivot column k of matrix A,

Figure 2. Pivot row and column, k, of the kij algorithm. Every element
of C is updated before k is moved to the next row and column.

will be used to calculate every element in its row, i, in matrix
C. Similarly, an element in the pivot row k of matrix B, will
be used to calculate every element in its column, j, in matrix
C. If the processor assigned to calculate these elements of
matrix C has not also been assigned the element in the pivot
column or row, that element must be communicated to the
processor.

Here we define a partition to provide a basis for our
performance models. Formally, each element of an N ×N
matrix is of the form (i, j) and a partition is a function,
ϕ(i, j), such that,

ϕ(i, j) =

{
0 if (i, j) ∈ P, the faster processor
1 if (i, j) ∈ Q, the slower processor

C. Partition Metrics

To measure a partitioning scheme, we use metrics of
which parts of each matrix do not require communication. If
a row of Matrix A, or a column of Matrix B, does not need
to be communicated between the processors it is considered
to be clean. A row or column is dirty if it contains elements
belonging to both processors, and therefore requires commu-
nication. We need both the total number of clean rows and
columns, and a way to determine if a given row or column

is clean or dirty.

‖ ϕ ‖x = # of clean rows in ϕ
‖ ϕ ‖y = # of clean columns in ϕ

r(ϕ, i) =

{
0 if (i, ·) of ϕ is clean
1 if (i, ·) of ϕ is dirty

c(ϕ, j) =

{
0 if (·, j) of ϕ is clean
1 if (·, j) of ϕ is dirty

III. SERIAL COMMUNICATION WITH BARRIER - SCB

In this first algorithm, communication is done serially;
Processor P first sends data to Processor Q, and upon
completion of receiving, Processor Q sends data to Processor
P . Finally, each processor computes its portion of the matrix
in parallel. Communication is modeled using the linear
Hockney Model [12], and all computation is done with the
kij algorithm. For all partitioning shapes,

Texe = Tcomm+ Tcomp (1)

Tcomm = 2N2 −N(‖ ϕ ‖x + ‖ ϕ ‖y) (2)

Tcomp = max (#P × Sp,#Q× Sq) (3)

where #X = elements in processor X,

and Sx = computation speed of processor X

Note that the computation time, (3), does not depend
on the partitioning shape, ϕ, and therefore to minimize
execution time, we must minimize communication time (2).

First we will show that no arbitrary partition’s commu-
nication time is superior to either the Straight-Line or the
Square-Corner communication time. The optimal partition-
ing shape, either Straight-Line or Square-Corner, depends
on the ratio of computational processing power between the
two processors. When this ratio, r, is less than 3 : 1 the
Straight-Line partitioning provides the minimum volume of
communication. However, when r is greater than 3 : 1,
Square-Corner partitioning minimizes communication time.
At r = 3 : 1, the two partitioning shapes are equivalent.

Theorem 3.1 (Arbitrary Partition): For SCB, there exists
no arbitrary partition with a lower volume of communication
than either the Straight-Line or the Square-Corner partition.

This is the central theorem of this paper. Presented below
are a number of component theorems and their proofs, which
provide the basis of proof for this central theorem. First,
we present the original mathematical technique, called a
push. This technique takes any arbitrary starting partition
and alters it in such a way that we may guarantee the
communication time of the resulting shape is better, or
at least not worse, than the starting partition. The basic
component to the push technique is the enclosing rectangle
placed around all elements of Processor Q, as seen in Figure
3. The enclosing rectangle is strictly large enough to contain

all elements belonging to Processor Q, and when a push is
done to a side of this rectangle, the other three sides are
stationary. In this way, the enclosing rectangle condenses
all the elements of Q into this smaller area, and, when
applied repeatedly, eventually creates one of a defined set
of resulting partition shapes. These resulting shapes may
divided into three classes of shapes, one rectangular and
two non-rectangular, and the canonical shape for each class
is given. One non-rectangular shape, the Square-Corner, is
shown to be better than the other non-rectangular shape in
all circumstances. Analyzing the remaining two canonical
shapes, Straight-Line and Square-Corner, we may determine
for what performance characteristics each is optimal.

Here, we describe the ↓ direction of the push operator.
The ↑,← and→ directions are similar, and a full description
may be found in [13].

Figure 3. An arbitrary partition, ϕ, between Processor P (white) and
Processor Q (black), with an enclosing rectangle (dashed line) around
elements of Processor Q.

The push ↓ technique creates a new partition from the
existing one by cleaning the top row of the enclosing
rectangle, ktop, assigning elements in Q to the rows below.
The reassigned elements are filled into the rows below in
typewriter fashion, i.e. in the first available suitable slot from
left to right and top to bottom. A slot is suitable if it is not
in a clean column, is of P in the input partition ϕ, and
is within the enclosing rectangle of Q. Consider the sides
of the enclosing rectangle, in clockwise order, to be called
ktop, kright, kbottom and kleft. Formally, ↓ (ϕ) = ϕ1 where,

Initialize ϕ1 ← ϕ
(g, h)← (ktop + 1, kleft)
for j = kleft → kright do

if ϕ(ktop, j) = 1 then
ϕ1(ktop, j)← 0 {Element was dirty, clean it}
(g, h)← find (g, h) {Function defined below}
ϕ1(g, h)← 1 {Put displaced element in new spot}

end if
j ← j + 1

end for
find(g, h) {Look for a suitable slot to put element}
for g → kbottom do

for h→ kright do
if ϕ1(g, h) = 0 && ϕ(g, h) = 0 && c(ϕ, h) = 1
then

Figure 4. An arbitrary partition, ϕ, between Processor P (white) and
Processor Q (black), and partition, ϕ1, showing how the elements of row
k = 1 have been pushed by the ↓ operation

return (g, h)
end if
h← h+ 1

end for
h← kleft
g ← g + 1

end for
return ϕ1 = ϕ {No free slots, no more push possible in
this direction}

It is important to note that if no suitable ϕ(g, h) can be
found for each element in the row being cleaned that requires
rearrangement, then ϕ is considered fully condensed from
the top and all further ↓ (ϕ) = ϕ.

Theorem 3.2 (push): The push algorithm output parti-
tion, ϕ1, will have lower, or at worst equal, communication
time compared to the algorithm input partition, ϕ.

Proof: First we observe several axioms related to the
push algorithm.

Axiom 1: ↓ and ↑, create a clean white row, k, and may
create at most one dirty row in ϕ1 that was clean in ϕ.
No more than one row can be made dirty, as a row that was
clean will have enough suitable slots for all elements moved
from the single row, k.

Axiom 2: ↓ and ↑ are defined to not create a dirty column,
j, in ϕ1 that was clean in ϕ. However, they may create addi-
tional clean column(s), if the row k being cleaned contains
elements that are the only elements of Q in their column,
and there are sufficient suitable slots in other columns.

Axiom 3: → and ← create a clean column, k, and may
create at most one dirty column in ϕ1 that was clean in ϕ.

Axiom 4: → and ← will never create a dirty row in ϕ1

that was clean in ϕ, but may create additional clean rows.

From (2) we observe as (‖ ϕ ‖x + ‖ ϕ ‖y) increases,
Tcomm decreases.

push ↓ and ↑ on ϕ create ϕ1 such that:

For row k being cleaned,
If there exists some row i that was clean, but is now dirty:

r(ϕ, i) = 0 and r(ϕ1, i) = 1

then by Axiom 1:
‖ ϕ1 ‖x = ‖ ϕ ‖x

else
‖ ϕ1 ‖x = ‖ ϕ ‖x +1

and by Axiom 2:
‖ ϕ1 ‖y ≥ ‖ ϕ ‖y

push→ and ← on ϕ create ϕ1 such that:

For column k being cleaned,
If there exists some column j that was clean,

but is now dirty:
c(ϕ, j) = 0 and c(ϕ1, j) = 1

then by Axiom 3:
‖ ϕ1 ‖y = ‖ ϕ ‖y

else
‖ ϕ1 ‖y = ‖ ϕ ‖y +1

and by Axiom 4:
‖ ϕ1 ‖x ≥ ‖ ϕ ‖x

By these definitions of all push operations we observe
that for any push operation, (‖ ϕ1 ‖x + ‖ ϕ1 ‖y) ≥ (‖
ϕ ‖x + ‖ ϕ ‖y). Therefore, we conclude that all push
operations will either decrease communication time (2) or
leave it unchanged.

By repeatedly performing this operation, push, we incre-
mentally lower the communication time, and each resulting
output partition is better than the input. If we apply the
push until it can no longer alter the partition, we get the
resulting partitions which minimize communication time.
The optimal partition will have all of the possible push
operations performed, as leaving one unperformed may lead
to larger communication time and will certainly never lead
to a smaller communication time.

Theorem 3.3 (Resulting Partitions): Applying the push
algorithm until all 4 directions return as output, ϕ1, such
that ϕ1 = ϕ, the input results in one of 15 partitions.

Proof: We have defined our problem to be limited
only to numbers of elements which can be made to form
a rectangle of some kind. The partitions are given in Figure
5.

The partition shapes fall into two main forms, rectangu-
lar and non-rectangular. The rectangular shapes have one
dimension of the enclosing rectangle of Q equal to N , the

Figure 5. The result of applying operations ↓, ↑, ←, and →, until the
stopping point has been reached. Row 1 shows the result of applying just
a single transformation. Row 2 shows the result of applying a combination
of two transformations. Row 3 shows the possible results of applying
three transformations, and Row 4 shows the result of applying all four
transformations.

full length of the matrix. The non-rectangular shapes have
an enclosing rectangle of Q in which both dimensions are
less than N .

Theorem 3.4 (Canonical Forms): Partition shapes which
have enclosing rectangles of Q of the same dimensions
are equivalent regardless of the location of the enclosing
rectangle within the overall matrix.

Proof: The location of the enclosing rectangle of Q
within the overall matrix does not affect the total communi-
cation time necessary [13], and therefore is unimportant in
minimizing execution time. We reduce these partition shapes
to canonical forms, to allow for easy comparison between
forms. These canonical forms are Straight-Line, Rectangle-
Corner and Square-Corner, as shown in Figure 6.

Figure 6. Canonical forms of possible partitions resulting from the push
operation. 1. Straight-Line 2. Rectangle-Corner 3. Square-Corner

Theorem 3.5 (Square-Corner vs. Rectangle-Corner): Of
all shapes with enclosing rectangles of dimensions less than
N , the Square-Corner minimizes communication time.

Proof: Previous work has shown the optimal partition
shape of a rectangle of width less than N , to minimize
communication time, is a square [9].

From any arbitrary partition we have created a partition
of the Square-Corner or Straight-Line shape. These are
guaranteed to have lower, or equal, time of communication
than any other possible partition. There exists no arbitrary
partition with a lower communication time.

Now that we have eliminated partitioning shapes other
than Straight-Line and Square-Corner, we focus on which
of these is optimal in the given scenarios. The Straight-Line
shape is understood to be N × x in dimension, and the
Square-Corner shape is understood to be q × q.

Theorem 3.6 (SCB): For serial communication with a
barrier between communication and computation, Square-
Corner partitioning is optimal for all computational power
ratios, r, greater than 3 : 1, and Straight-Line partitioning is
optimal for all ratios less than 3 : 1.

Proof: The Straight-Line partitioning shape has con-
stant total volume of communication, always equal to N2.
The Square-Corner partitioning shape has a total volume of
communication equal to 2Nq. We state that 2Nq < N2

subject to the conditions N, q > 0. The optimal value of q
is given by q = N√

r+1
. Substituting this in, yields:

2N2

√
r + 1

< N2

2 <
√
r + 1

4 < r + 1

r > 3

We conclude that the Square-Corner shape is optimal for all
r > 3 : 1, and Straight-Line is optimal for all r < 3 : 1.

IV. PARALLEL COMMUNICATION WITH BARRIER - PCB

This algorithm takes place in two steps. First, communi-
cation is done, with Processor P sending to Processor Q,
and Q sending to P , in parallel. Once the communication
completes, both processors compute their portion of the
MMM in parallel. Again, the optimal partitioning scheme
depends on the computational power ratio, r, between the
two processors. For ratios less than 2 : 1, the Straight-Line
partitioning minimizes the communication time. However,
when r is greater than 2 : 1, Square-Corner partitioning
minimizes the communication time.

Texe = Tcomm+ Tcomp (4)
Tcomm = max(P → Q,Q→ P) (5)
Tcomp = max (#P × Sp,#Q× Sq) (6)

Theorem 4.1 (Arbitrary Partition): For PCB, there exists
no arbitrary partition with a lower communication time than
the Straight-Line or Square-Corner partition.
The proof of this is similar to the proof for SCB and follows
the same techniques. The full proof may be found in [13].

Theorem 4.2 (PCB): For parallel communication with a
barrier between communication and computation, Square-
Corner partitioning is optimal for all computational power
ratios, r, greater than 2 : 1, and Straight-Line partitioning is
optimal for all ratios less than 2 : 1.

Proof: For all power ratios, the communication volume
for Straight-Line partitioning is N2 − Nx, where x is the
dimension of Processor Q’s portion and is given by x =
N
r+1 . The total volume of communication for Square-Corner
partitioning depends on whether communication from P to
Q, V P = 2Nq − 2q2 or Q to P , V Q = 2q2, dominates.
V P > V Q when r > 3 : 1. Therefore, we compare Square-
Corner’s V Q to Straight-Line. For the conditions N, q, x >
0:

N2 −Nx < 2q2

N2 −N N

r + 1
< 2(

N√
r + 1

)2

N2 − N2

r + 1
< 2

N2

r + 1
r < 2

V. SERIAL COMMUNICATION WITH BULK OVERLAP -
SCO

We now consider the scenarios where we use overlap,
meaning we do communication and some computation in
parallel. Due to the layout of a Square-Corner partition, there
is a section belonging to Processor P that does not require
communication in order to compute. This section of P , of
size (N−q)2, will be computed while communication takes
place first in one direction, and then the other. Only once the
communication has completed does the computation begin
on the other sections of P and on Processor Q.

By taking advantage of this feature of the Square-Corner
partitioning shape, the Square-Corner partition can be made
to have a lower total execution time than the Straight-Line
partitioning shape for all power ratios. Execution time using
this algorithm is given by,

Texe = max(max(Tcomm,P1)+(P2+P3), (Tcomm+Q))
(7)

where P1, P2, P3, Q are the time taken to compute that
section.

Theorem 5.1 (Arbitrary Partition): For SCO, there exists
no arbitrary partition with a lower volume of communication
than the Straight-Line or Square-Corner partition.
This proof is the same as that for SCB, as they both use
serial communication. See above.

As the faster processor, P , gets a jump start on com-
puting its section of the matrix, we will want to adjust the
proportion of the total matrix it receives, making it larger.
Therefore, the optimal value for the size of Processor Q, q,
will decrease. To determine this optimal value of q, the Texe

Figure 7. A partition divided between Processors P and Q. P1 is the
subsection of P that does not need to be communicated to Processor Q.
Both P2 and P3 require communication.

equation must be put in terms of q. A single unit of compu-
tation is considered to be C[i, j] = A[i, k]∗B[k, j]+C[i, j].

Tcomm = # of elements ∗ β = ((2Nq − 2q2) + 2q2)β

= 2Nqβ

Sp = Speed of Processor P, units of computation/ second
Sq = Speed of Processor Q, units of computation/ second
y = units of computation/ matrix element = N

β = transfer time / matrix element

Each portion of the matrix is therefore equal to V ∗y
S , the

volume of that section times N , divided by the speed of the
processor. Substituting all these, we find Texe is,

Texe = max(max

(
2Nqβ,

N (N − q)2

Sp

)

+ 2
Nq (N − q)

Sp
, 2Nqβ +

Nq2

Sq
) (8)

This equation will be easier to analyze and compare by
factoring out the large constant, N3β, and normalizing q as a
proportion of N, q

N , so that q is understood to be 0 ≤ q ≤ 1.
Also introduced is the variable c, given by c = Sp∗β, which
represents a ratio between computation and communication
speeds.

Texe
N3β

= max(max

(
2

N
q,

(1− q)2

c

)

+ 2

(
q − q2

)
c

,
2

N
q +

q2

c
r

) (9)

The optimal value of q is the minimum of this function
on the interval of {0, 1}. However, since a value of q = 1
would indicate that Processor Q has been assigned the entire
matrix, the interval of possible q values can be made more
specific. The largest q will be without overlap is when r =
1 : 1, and therefore q = 1√

2
. We have already established

that overlap will decrease the area assigned to Q, so it can
certainly be said that the optimal value of q is the minimum
of Texe on the interval {0, 1√

2
}.

Figure 8. Graph of 3 possible functions of execution time for a sample N
= 3000, Processor Ratio (r) = 5:1 and Communication/Computation ratio
(c) = .05.

There are 3 functions that comprise the Texe equation.
These functions and what they represent are as follows,

y =
2

N
q + 2

q − q2

c
: Tcomm+ (P2 + P3) (10)

y =
(1− q)2

c
+ 2

q − q2

c
: P1 + (P2 + P3) (11)

y =
2

N
q +

q2r

c
: Tcomm+Q (12)

The first observation to make is that (10) is always less
than (11) on the interval {0, 1√

2
}. Therefore for possible

values of q, it will never dominate the max function and can
be safely ignored. Focusing on (11) and (12), we note that
(11) is concave down and (12) is concave up, and therefore
the minimum on the interval will be at the intersection of
these two functions.

11 ∩ 12

(1− q)2

c
+ 2

q − q2

c
=

2

N
q +

q2r

c

0 =q2(r + 1) + q(
2c

N
)− 1

q =

−c
N +

√
c2

N2 + r + 1

r + 1

Theorem 5.2 (SCO): For serial communication with a
bulk overlap between communication and P1 computation,
the Square-Corner partitioning shape is optimal, with a lower
total execution time than the Straight-Line partitioning shape
for all processor power ratios.

Proof: The Straight-Line partitioning has an execution
time, once the constant N3β is removed and x is normalized,
given by Texe, SL = 1

N +max(1−xc , rxc). Because the layout
of the Straight-Line shape does not allow for this type of

easy overlap, its optimal x is still given by x = 1
r+1 .

Straight-Line Execution > Square-Corner Execution
1

N
+

1− x
c

>
(1− q)2

c
+ 2

q − q2

c

q2 > x− c

N

(

−c
N +

√
c2

N2 + r + 1

r + 1
)2 >

1

r + 1
− c

N

(
−c
N

+

√
c2

N2
+ r + 1)2 > (r + 1)− c

N
(r + 1)2

c2

N2
− 2c

N

√
c2

N2
+ r + 1 +

c2

N2
+ r + 1 >

r + 1− c

N
(r + 1)2

2c

N
+ (r + 1)2 > 2

√
c2

N2
+ r + 1

4c

N
(r + 1)2 + (r + 1)4 > 4(r + 1)

4c

N
+ r3 + 3r2 + 3r > 3

(always positive for c,N ≥ 0) + (> 3 for r ≥ 1) > 3

SL has a greater execution time for all c,N ≥ 0 and r ≥ 1

Therefore, by taking advantage of the overlap ready layout
of the Square-Corner partitioning shape, the Square-Corner
partitioning becomes optimal for all processor ratios.

VI. PARALLEL COMMUNICATION WITH BULK OVERLAP
- PCO

In this algorithm, communication occurs in both directions
in parallel while Processor P is also computing its sub-
section, P1, which does not require communication. Once
the communication is complete, Processor P computes the
remainder of its portion, while Processor Q computes in
parallel. Square-Corner execution time with this algorithm
is the same as (7) where Tcomm = max(V P, V Q). Again,
computation of each portion of the matrix is V ∗y

S , the volume
times N , divided by processor speed. Substituting these,
total execution time is given by,

Texe = max(max(max(2Nqβ−2q2β, 2q2β), N(N − q)2

Sp
)

+ 2
Nq(N − q)

Sp
,max(2Nqβ − 2q2β, 2q2β) +

Nq2

Sq
)

(13)

Theorem 6.1 (Arbitrary Partition): For PCO, there exists
no arbitrary partition with a lower volume of communication
than the Straight-Line or Square-Corner partition.
The proof of this is similar to the proof for SCB and follows
the same techniques. The full proof may be found in [13].

Again, for analysis and comparison we factor out the large
constant, N3β, and normalize q as a proportion of N, q

N , so

Figure 9. Graph of 5 possible parabolas for square corner partitioning
with parallel communication and overlap. Equations 15 and 16, and 18
and 19 are nearly identical, respectively, and appear as a single curve.
Given problem parameters N=3000, Processor Ratio = 5:1, and Commu-
nication/Computation Ratio = .05.

that q is understood to be 0 ≤ q ≤ 1. Also introduced is the
variable c, given by c = Sp ∗ β, which represents the ratio
between computation and communication speeds.

Texe
N3β

= max(max(max(
2q

N
− 2q2

N
,
2q2

N
),
(1− q)2

c
)

+ 2
(q − q2)

c
,max(

2q

N
− 2q2

N
,
2q2

N
) +

rq2

c
) (14)

In order to compare this with Straight-Line partitioning, the
optimal value of q must be found on the interval {0, 1√

2
}.

There are 5 functions that comprise (14). These functions
and what they represent are as follows,

y =
2q

N
− 2q2

N
+ 2

(q − q2)
c

: V P + (P2 + P3) (15)

y =
2q2

N
+ 2

(q − q2)
c

: V Q+ (P2 + P3) (16)

y =
(1− q)2

c
+ 2

(q − q2)
c

: P1 + (P2 + P3) (17)

y =
2q

N
− 2q2

N
+
rq2

c
: V P +Q (18)

y =
2q2

N
+
rq2

c
: V Q+Q (19)

Both (15) and (16) are less than (17) on the interval
{0, 1√

2
}, and can be safely ignored. Of the remaining 3

equations, (17) is concave down and both (18) and (19)
are concave up on the interval. The optimal value of q,
the minimum, is therefore at the intersection of (17), and
whichever other function dominates. For q < 1

2 , (18)
dominates and for q > 1

2 (19) dominates. We have already
established that Square-Corner is optimal for ratios greater
than 2 : 1 using parallel communication. Ratios less than
and equal to 2 : 1, will have q values greater than 1

2 , so the

optimal value of q for the comparison is at (17) ∩ (19).

17 ∩ 19

(1− q)2

c
+ 2

(q − q2)
c

=
2q2

N
+
rq2

c

q =
1√

r + 1 + 2c
N

Theorem 6.2 (PCB): For parallel communication with a
bulk overlap between communication and P1 computation,
the Square-Corner partitioning shape is optimal, having a
lower total execution time than Straight-Line partitioning for
all processor power ratios.

Proof: The Straight-Line partitioning has an execution
time, once the constant N3β is removed and x is normalized,
given by Texe, SL = max(1

N −
x
N ,

x
N) + max(1−xc , rxc).

Of the 4 functions which comprise this equation, only two
dominate when x < 1

2 , which must always be true for
Straight-Line partitioning. Of these two functions, one is
of negative slope, and the other of positive slope, so the
minimum on the interval is at their intersection. Again, this
intersection is at x = 1

r+1 .

Straight-Line Execution > Square-Corner Execution
1

N
− x

N
+

1− x
c

>
1− q2

c

q2 +
c

N
> x+

cx

N
1

r + 1 + 2c
N

+
c

N
>

1

r + 1
+

c

N(r + 1)

1 +
c(r + 1 + 2c

N)

N
>
r + 1 + 2c

N

r + 1
+
c(r + 1 + 2c

N)

N(r + 1)

cr2

N
+
cr

N
+

2c2r

N2
>

2c

N

r + 1− 2

r
> −2c

N
is ≥ 0 when r ≥ 1 > is < 0

Therefore, for all c,N > 0 and r ≥ 1, the Square-Corner
partitioning shape is optimal when taking advantage of the
communication/computation overlap on the faster processor.

VII. PARALLEL INTERLEAVING OVERLAP - PIO

The bulk overlap operation is not the only way in which
to overlap communication and computation. The parallel
kij algorithm we use to compute the matrices allows each
processor to incrementally update the entire result matrix
as it receives the necessary data. We will refer to this as
interleaving overlap. It occurs as described in the following
algorithm.
k ← 1
Send data corresponding to row and column k
for k = 1→ (N − 1) do

In Parallel:
Send data corresponding to row and column k + 1
Processor P updates C with data from row and column
k
Processor Q updates C with data from row and column
k

end for
Processors P and Q update C with data from row and
column N
For any given step k, the total amount of data being

sent using this algorithm on a Square-Corner partition will
be q. We define the execution time of the Square-Corner
partitioning to be given by,

Texe = 2βq + (N − 1)×max(2βq,
N2 − q2

Sp
,
q2

Sq
)

+ max(
N2 − q2

Sp
,
q2

Sq
) (20)

Similarly, we may use this algorithm for the Straight-Line
partitioning, where the amount of data sent at each step k
will be N . We define the execution time of the Straight-Line
partitioning to be given by,

Texe = Nβ + (N − 1)×max(Nβ,
N(N − x)

Sp
,
Nx

Sq
)

+ max(
N(N − x)

Sp
,
Nx

Sq
) (21)

Because there is no bulk overlap, the optimal size for the
smaller partition is the same as for SCB and PCB, 1

r+1 for
Straight-Line and 1√

r+1
for Square-Corner.

Theorem 7.1 (Arbitrary Partition): For PIO, there exists
no arbitrary partition with a lower volume of communication
than either the Straight-Line or the Square-Corner partition.
The proof of this is similar to the proof for SCB and follows
the same techniques. The full proof may be found in [13].

Theorem 7.2 (PIO): For parallel interleaving overlap,
Square-Corner is optimal for computational power ratios,
r, greater than 3 : 1, and Straight-Line is optimal for ratios
less than 3 : 1.

Proof: We begin by giving these equations the same
treatment as previously, removing the constant N3β and
normalizing x, q to x

N and q
N respectively. First we consider

the values of c where communication dominates. This occurs
at c > N(1 − x) for Straight-Line and c > N

2 (
1
q − q)

for Square-Corner. Practically, these are large values of
c which would indicate a relatively small communication
bandwidth compared to the computational resources. When
communication dominates our function, the formulas are,

Texe, SC =
2q

N
+

1− q2

c
(22)

Texe, SL =
1

N
+

1− x
c

(23)

We begin by stating that for the given optimal values of x
and q, Straight-Line is greater than Square-Corner,

SL > SC

1

N
+

1− x
c

>
2q

N
+

1− q2

c

1

N
+

1− (1
r+1)

c
>

2(1√
r+1

)

N
+

1− (1√
r+1

)2

c

1 > 2(
1√
r + 1

)

r + 1 > 4

r > 3

Therefore, when c is such that communication dominates,
Straight-Line is optimal for ratios less than 3 : 1, and Square-
Corner is optimal for ratios greater than 3 : 1.

When c is such that computation dominates, the formulas
are,

Texe, SC =
2q

N2
+

1− q2

c
(24)

Texe, SL =
1

N2
+

1− x
c

(25)

We state that for the given optimal values of x and q,
Straight-Line is greater than Square-Corner,

SL > SC

1

N2
+

1− x
c

>
2q

N2
+

1− q2

c

1

N2
+

1− (1
r+1)

c
>

2(1√
r+1

)

N2
+

1− (1√
r+1

)2

c

1 > 2(
1√
r + 1

)

r + 1 > 4

r > 3

Therefore, when c is such that computation dominates,
Straight-Line is optimal for ratios less than 3 : 1 and Square-
Corner is optimal for ratios greater than 3 : 1.

VIII. THREE AND MORE PROCESSORS

While a full study of our mathematical technique on three
and more processors is outside the scope of this work,
some quick and simple extensions to the two processor case
will yield both three processor, and arbitrary number of
processor, optimal partitions for some performance values.
Although traditional algorithms partition data for arbitrary
numbers of processors into rectangles, it is proved here that,
in general, the optimal solution can be non-rectangular.

The optimal partition shape for three processors is non-
rectangular for many performance characteristic values.
Consider two processors, one fast and one slow, such that the
ratio between their computational power, r, is greater than
3. It has already been shown for all 5 MMM algorithms

the Square-Corner is the optimal partition shape in this
situation. Now consider a second slow processor, also having
a ratio greater than 3 with the fast processor. The optimal,
minimum, amount of communication is given by the Square-
Corner partition if this second slow processor can be added
to the two processors already partitioned without increasing
communication above a Square-Corner partition with just the
fast processor and the second slow processor. This means if
we can guarantee that the two slower processors won’t need
to communicate, i.e. their ratios are such that they don’t
overlap as in Figure 10, we have optimal partitioned all three
processors. The formal proof of this is presented below.

Figure 10. Layout of 3 processors of ratios r > 3, optimally partitioned.

Theorem 8.1 (3 Processors): Square-corner partitioning
minimizes communication time between 3 processors in
partition ϕ, if both the ratio between processors 1 and 2,
and the ratio processors 1 and 3, are greater than 3 : 1.

Proof: Consider 3 processors in a fully connected
topology. Their ratios are as follows:

r12 > 3 =
S1

S2
: ratio of processor 1 to processor 2

r13 > 3 =
S1

S3
: ratio of processor 1 to processor 3

We define the communication time between these processors
as:

Tcomm, serial = T12 + T13 + T23

Tcomm, parallel = max(T12, T13, T23)

where, T12 = Comm time for Processors 1 and 2
T13 = Comm time for Processors 1 and 3
T23 = Comm time for Processors 2 and 3

We minimize both Tcomm, serial and Tcomm, parallel
by minimizing all 3 terms, T12, T13, T23. We already
know that using the Square-Corner partition will minimize
T12, T13. So we simply define the ratios of Processor 2
and 3 such that they can fit in opposite corners without
overlapping. Therefore, they do not need to communicate
and T23 = 0, and is thereby minimized. The ratios to achieve

this are defined as follows:

r2 =
S1 + S3

S2
: ratio of Processor 2 to rest of the partition

r3 =
S1 + S2

S3
: ratio of Processor 3 to rest of the partition

q2 =
N√
r2 + 1

: size of side of square for Processor 2

q3 =
N√
r3 + 1

: size of side of square for Processor 3

Since r12 > 3 and r13 > 3,

then by definition r2 > 3 and r3 > 3

therefore, q2 <
N

2
and q3 <

N

2
and since q2 + q3 < N

there is a position in which 2 and 3 will not overlap

This concept also applies to n processors, so long as their
ratios are such that the sum of their q lengths is ≤ N ,
i.e. so long as the smaller partitions will not overlap with
each other, as seen in Figure 11. For space considerations,
the full proof is not presented here, but it is similar to the
above 3 processor proof, showing that for the given ratios
the optimal partition shape for any number of processors is
non-rectangular.

Figure 11. Layout of n processors, optimally partitioned.

IX. EXPERIMENTAL RESULTS

To validate these theoretical results, we provide some
simple experimental results. First experiments on a small
cluster using individual processors for each MMM algorithm
in the two processor case are described. Next to be presented
are the results for three processors on the same small cluster
using individual processors. Finally, are some larger scale
experiments on Grid’5000, using an entire cluster as a
“processor”.

A. Experimental Setup

To corroborate the results, we implemented the Square-
Corner and Straight-Line algorithms using MPI. The local
matrix multiplications use ATLAS [14]. All experiments
were carried out on two identical machines. The ratio of
computational speeds between the two nodes was altered
by slowing down a single node using a program for limiting
CPU time available to a process. This program forces a given

process to sleep when a specified percentage of CPU time
has been achieved, using the /proc filesystem — the same
information available to a program like top. When enough
time has passed, the process is woken and runs normally.
This provides fine grained control over the CPU power
available to each process. These results were achieved on
two identical Dell Poweredge 750 machines with 3.4 Xeon
processors, 1 MB L2 cache and 256 MB of RAM.

It is important to note that because varying processor
power ratios was achieved by lowering the capacity of a
single processor, the higher the ratio, the lower the overall
computational power.

B. Serial Communication with Barrier
When running with a barrier between communication and

computation, we focus on the communication time, as we
expect the Square-Corner to have a lower total volume of
communication for power ratios greater than 3 : 1. In Figure
12 we present the theoretical curves for the communication
time for both Square-Corner and Straight-Line, for com-
parison to the experimentally found results. We can see
the constant volume of communication for Straight-Line,
and the exponentially decreasing communication volume for
Square-Corner.

2 

4 

6 

8 

10 

12 

14 

1  3  5  7  9  11  13  15  17  19  21  23  25 

Straight‐Line Communica<on Time 

Square‐Corner Communica<on Time 

Figure 12. Straight-Line and Square-Corner theoretical serial communi-
cation time using the SCB algorithm.

We ran both the Square-Corner and Straight-Line par-
titioning schemes for computational power ratios, r, from
1 to 25. In Figure 13 we show the comparison of the

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

1  3  5  7  9  11  13  15  17  19  21  23  25 

Straight‐Line Communica=on Time 

Square‐Corner Communica=on Time 

Figure 13. Straight-Line and Square-Corner serial communication time,
using SCB, in seconds by power ratio. N=3000.

communication times. The results follow the theory, with

the communication times crossing at r = 3 : 1, and
with Square-Corner vastly improving on the Straight-Line
communication time for the larger ratios.

C. Parallel Communication with Barrier

For PCB we also focus on the communication time. The
theoretical results suggest that Square-Corner should best
Straight-Line’s communication time when r > 2 : 1. In
Figure 14 we depict the theoretical curves for both Straight-
Line and Square-Corner communication times.

3 

4 

5 

6 

7 

8 

9 

1  3  5  7  9  11  13  15  17  19  21  23  25 

Straight‐Line Communica;on Time 

Square‐Corner Communica;on Time 

Figure 14. Square-Corner and Straight-Line theoretical parallel commu-
nication times using PCB.

The experimental results for ratios, r, from 1 to 25 can be
seen in Figure 15. As expected for small ratios, Straight-Line
is optimal. As the ratio grows, the communication time drops
significantly for the Square-Corner, making it the optimal
solution.

0.05 

0.15 

0.25 

0.35 

0.45 

0.55 

0.65 

1  3  5  7  9  11  13  15  17  19  21  23  25 

Straight‐Line Communica<on Time 
Square‐Corner Communica<on Time 

Figure 15. Square-Corner and Straight-Line parallel communication times,
using PCB, in seconds by power ratio. N=3000.

D. Serial Communication with Bulk Overlap

Using SCO, the theory predicts that the Square-Corner
should have a lower execution time for all power ratios, r.
The experiments match this result. For small ratios, r < 3 :!,
where previously Straight-Line performed significantly bet-
ter, the Square-Corner now has the better execution time.
The overlap has allowed the Square-Corner partition to
overtake the Straight-Line in those ratios where it originally
performed worse, so it is optimal for all ratios, r. The
SCO results for the small ratios, r < 3 : 1, can be seen
in Figure 16. For larger ratios, where Square-Corner had

5.5 

6.5 

7.5 

1  2  3 

Straight‐Line Execu8on Time 

Square‐Corner Execu8on Time 

Figure 16. Square-Corner and Straight-Line execution times, using SCO,
for small ratios r < 3 : 1, in seconds by power ratio. N=3000.

already outperformed the Straight-Line when using SCB,
by using SCO the Square-Corner partition increases its lead
over the Straight-Line partition. The experimental results for
ratios larger than three can be found in Figure 17.

8.4 

8.9 

9.4 

9.9 

4  6  8  10  12  14  16  18  20  22  24 

Straight‐Line Execu9on Time 

Square‐Corner Execu9on Time 

Figure 17. Square-Corner and Straight-Line execution times, using SCO,
for large ratios r > 3 : 1, in seconds by power ratio. N=3000.

E. Parallel Communication with Bulk Overlap

The theoretical results predicted that Square-Corner
should be optimal for all power ratios when using PCO.
Recall when using PCB that Straight-Line was optimal for
ratios two and under by a significant margin. Using PCB on
the Square-Corner partition has closed that gap. In Figure
18, the result for ratios r ≤ 3 : 1 are shown. The parallel
communication aspect of the PCO algorithm gives less time
to compute the overlapped portion, therefore it would be
expected that less speedup can be gained while using PCO
than SCO. However, using PCO the Square-Corner partition
still manages to outperform the Straight-Line. As the ratio
increased between the processors, the benefit of overlapping
communication and computation became more marked. In
Figure 19, we show the results from r ≥ 4 : 1 as Square-
Corner outperforms Straight-Line as expected..

F. Parallel Interleaving Overlap

The experimental results for PIO support the theoretical
results that Square-Corner partitioning has a lower execution
time for power ratios, r, greater than three. For ratios smaller
than that, the Straight-Line partition has the lower execution
time.

5.4 

5.8 

6.2 

6.6 

7 

7.4 

7.8 

1  2  3 

Straight‐Line Execu:on Time 

Square‐Corner Execu:on Time 

Figure 18. Square-Corner and Straight-Line execution times, using PCO,
for ratios r ≤ 3 : 1 in seconds by power ratio. N=3000.

8.3 

8.7 

9.1 

9.5 

9.9 

4  6  8  10  12  14  16  18  20  22  24 

Straight‐Line Execu<on Time 

Square‐Corner Execu<on Time 

Figure 19. Square-Corner and Straight-Line execution times, using PCO,
for ratios r ≥ 4 : 1 in seconds by power ratio. N=3000.

45 

50 

55 

60 

65 

70 

75 

80 

85 

90 

95 

1  2  3  4  5  6 

Straight‐Line Execu;on Time 

Square‐Corner Execu;on Time 

Figure 20. Square-Corner and Straight-Line execution times, using PIO,
when the communication-compuation ratio, c, is such that computation
dominates for all ratios in seconds by power ratio. N=3000. The two
partitions are equivalent.

G. Three Processors - PCB and PCO

The three processor case has been explored for the PCB
and PCO algorithms. These results were obtained on the
same cluster as the previous two processor experiments. As
displayed in the theory section, a fully connected network
topology is used. For simplicity, the relative speeds of the
two smaller processors, S2 and S3, are assumed to be equal.
The sum of all speeds, S1, S2 and S3 is taken to be 100.
The graphs are presented with relative speed of S2, S3 on
the x-axis; the relative speeds range from 5 to 25. When
the relative speed is 25, then S2 + S3 = 50 and since S1 =
100 - S2 + S3, this means a ratio of 50 : 50 or 1 : 1. We
also note that the often important ratio of 3 : 1 would be
a relative speed, on these graphs, of 12.5. In other words,

1400 

1600 

1800 

2000 

2200 

2400 

2600 

2800 

1  2  3  4  5  6 

Straight‐Line Execu9on Time 

Square‐Corner Execu9on Time 

Figure 21. Square-Corner and Straight-Line execution times, using PIO,
when the communication-compuation ratio, c, is such that communication
dominates for all ratios in seconds by power ratio. N=3000. The Straight-
Line partition is superior for power ratios, r, less than 3 : 1, and Square-
Corner partition is superior for power ratios, r, greater than 3 : 1.

heterogeneity, the ratio of computational power, decreases
moving along the graph left to right.

24 

26 

28 

30 

32 

34 

36 

38 

40 

5  10  15  20  25 

Straight‐Line Communica:on Time 

Square‐Corner Communica:on Time 

Figure 22. Square-Corner and Straight-Line communication times for 3
processors, using PCB, in seconds by relative speed of S2, S3. Note that
for more heterogeneous environments, on the left of the graph, the Square-
Corner has the lower communication time. The lines cross at approximately
12.5, which is equivalent to a 3 : 1 ratio in the two processor case. N=5000.

75 

80 

85 

90 

95 

100 

105 

110 

115 

120 

125 

5  10  15  20  25 

Straight‐Line Execu8on Time 

Square‐Corner Execu8on Time 

Square‐Corner Overlap Execu8on Time 

Figure 23. Square-Corner and Straight-Line execution times for 3
processors, using PCB, in seconds by relative speed of S2, S3. For the more
heterogeneous the environments, on the left of the graph, the Square-Corner
is optimal. For less heterogeneous environments, the rectangular partition
is optimal. Also, the Square-Corner execution time for 3 processors using
PCO is optimal for a wider range of ratios than the regular Square-Corner
using PCB. N=5000.

H. Grid’5000 Experimental Results

For further validation, we include more substantial ex-
periments performed on Grid’5000, a large grid system

spread across nine sites in France [15]. These results are
obtained on two types of machines in Bordeaux. The first
are IBM x4355 dual-processor nodes with AMD Opteron
2218 2.6GHz Dual Core Processors with 2MB L2 Cache
and 800MHz Front Side Bus. Each node has 4GB of RAM
(2GB per processor, 1GB per core). The second are IBM
eServer 325 dual-processor nodes with AMD Opteron 248
2.2GHz single core processors with 1MB L2 Cache. Each
node has 2GB of Ram (1GB per processor). The problem
size is N = 15, 000. Unlike the earlier experiments, where
total computational power decreased with higher ratios, these
experiments attempt to have a similar computation power
across all ratios. The computational power ratios are varied
from 1 : 1 to 1 : 8 by varying the number of CPUs in each
cluster.

45 

50 

55 

60 

65 

70 

75 

1  2  3  4  5  6  7  8 

Straight‐Line Communica;on Time 

Square‐Corner Communica;on Time 

Figure 24. Square-Corner and Straight-Line communication times on
Grid’5000 for computational power ratios, r, from 1 : 1 to 1 : 8. Network
bandwidth is 1Gb/s and N = 15000.

132 

134 

136 

138 

140 

142 

144 

146 

1  2  3  4  5  6  7  8 

Straight‐Line Execu:on Time 

Square‐Corner Execu:on Time 

Figure 25. Square-Corner and Straight-Line execution times on Grid’5000
for computational power ratios, r, from 1 : 1 to 1 : 8. Network bandwidth
is 1Gb/s and N = 15000.

X. CONCLUSIONS AND FUTURE WORK

We have found the general optimal solution for all matrix-
matrix multiplication problems involving two processors.
For two processors with a barrier between communication
and computation, the Square-Corner partitioning is optimal
for ratios greater than 3 : 1 with serial communication
and greater than 2 : 1 for parallel communication. The
Straight-Line partitioning is optimal for ratios less than
3 : 1 for serial communication and less than 2 : 1
for parallel communication. However, if we overlap the

computation that can be done immediately on a Square-
Corner partition with the communication, the Square-Corner
partitioning is optimal for all power ratios of processors
and communication/computation ratios for both serial and
parallel communication.

We have also found a solution for matrix-matrix multipli-
cation with n processors under certain conditions of relative
power ratios between all the processors. If the power ratios
of each processor with the fastest processor, processor 1, are
greater than 3 : 1, and the other n − 1 processors can be
arranged as non-overlapping squares, then the square-corner
partitioning will optimize communication time between the
n processors.

Throughout this work we have made various assumptions
that limit the complexity of our model. We use square
matrices, instead of arbitrary dimensions. We also use a
single bandwidth characteristic and ignore latency, not con-
sidering asymmetric communication. Finally, we assume that
all processors have sufficient memory to store the assigned
portions of matrix C and necessary portions of matrices
A and B to compute. Further work should be done to
expand the model to include these factors. For instance,
in the case of limited memory, which is likely on a GPU
machine, the algorithm would need to include the additional
communication of many smaller sections of the assigned
portion of the matrix C which will fit into local memory. The
ramifications of this algorithmic change should be explored
further.

Most importantly, however, we have found in this work
that the optimal partition shape is often non-rectangular. For
many heterogeneous systems, the current data partitioning
algorithms have been solving the wrong problem by finding
the best rectangular solution; the algorithms should be tuned
to find the non-rectangular solution when it is appropriate.
A portion of this open problem, the two processor case,
has now been thoroughly studied, however substantial work
remains to be done to solve the optimal partition shape
problem in general. The mathematical technique developed
in this paper will be applied to this case of an arbitrary
number of processors to solve this problem in the future.

ACKNOWLEDGMENT

This publication has emanated from research conducted
with the financial support of Science Foundation Ireland
under Grant Number 08/IN.1/I2054.

Experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support
from CNRS, RENATER and several Universities as well as
other funding bodies.

REFERENCES

[1] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Pe-
titet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK

Users’ Guide. Philadelphia, PA: Society for Industrial and
Applied Mathematics, 1997.

[2] A. Lastovetsky and J. Dongarra, High-performance heteroge-
neous computing. Wiley, 2009.

[3] A. Kalinov and A. Lastovetsky, “Heterogeneous distribution
of computations while solving linear algebra problems on
networks of heterogeneous computers,” in Proceedings of the
7th International Conference on High Performance Comput-
ing and Networking Europe (HPCN Europe’99), vol. 1593,
1999, pp. 191–200.

[4] R. A. Van De Geijn and J. Watts, “Summa: Scalable universal
matrix multiplication algorithm,” Concurrency: Practice and
Experience, vol. 9, pp. 225–274, 1997.

[5] O. Beaumont, V. Boudet, A. Legrand, F. Rastello, and
Y. Robert, “Heterogeneous matrix-matrix multiplication or
partitioning a square into rectangles: Np-completeness and
approximation algorithms,” in Proceedings of the 9th Euromi-
cro Workshop on Parallel and Distributed Processing (PDP
2001), 2001, pp. 298 –305.

[6] A. Kalinov and A. Lastovetsky, “Heterogeneous distribution
of computations solving linear algebra problems on networks
of heterogeneous computers,” Journal of Parallel and Dis-
tributed Computing, vol. 61, pp. 520–535, 2001.

[7] E. Dovolnov, A. Kalinov, and S. Klimov, “Natural block data
decomposition for heterogeneous clusters,” in Proceedings of
the 17th International Parallel and Distributed Processing
Symposium (IPDPS 2003), April 2003.

[8] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Matrix-
matrix multiplication on heterogeneous platforms,” IEEE
Transactions on Parallel and Distributed Systems, vol. 12,
no. 10, pp. 1033–1051, 2001.

[9] B. A. Becker and A. Lastovetsky, “Matrix multiplication
on two interconnected processors,” in Proceedings of the
8th IEEE International Conference on Cluster Computing
(Cluster 2006), IEEE Computer Society. Barcelona, Spain:
IEEE Computer Society, 25-28 Sept 2006, cd-rom/Abstracts
Proceedings.

[10] B. A. Becker, “High-level data partitioning for parallel
computing on heterogeneous hierarchical computational plat-
forms,” PhD Thesis, University College Dublin, Dublin, Ire-
land, April 2011.

[11] B. A. Becker and A. Lastovetsky, “Towards data partitioning
for parallel computing on three interconnected clusters,” in
Proceedings of the 6th International Symposium on Parallel
and Distributed Computing (ISPDC 2007), IEEE Computer
Society. Hagenberg, Austria: IEEE Computer Society, 5-8
July 2007, pp. 285–292.

[12] R. Hockney, “The communication challenge for mpp: Intel
paragon and meiko cs-2,” Parallel Computing, vol. 20, no. 3,
pp. 389–398, 1994.

[13] A. DeFlumere and A. Lastovetsky, “Theoretical results on
optimal partitioning for matrix-matrix multiplication with two
processors,” School of Computer Science and Informatics,
University College Dublin, Tech. Rep. UCD-CSI-2011-09,
September 2011.

[14] R. Whaley and J. Dongarra, “Automatically tuned linear
algebra software,” in Proceedings of the 1998 ACM/IEEE
conference on Supercomputing (SC98). IEEE Computer
Society, 1998, pp. 1–27.

[15] [Online]. Available: http://www.grid5000.fr

Ashley DeFlumere was born in Boston, Massachusetts, in 1986. She
received the B.A. degree in computer science from Mount Holyoke College,
M.A., U.S.A., in 2009. She is currently a PhD student in the School of
Computer Science and Informatics at University College Dublin (UCD),
Ireland.

She was previously an intern at the Oak Ridge National Laboratory in
T.N., U.S.A., where she was involved in performance evaluation research on
multi-core platforms. Her main research interests are models and algorithms
for high performance heterogenous and parallel computing.

Alexey Lastovetsky received a PhD degree in 1986 and a Doctor of
Science in 1997. His main research interests include algorithms, models
and programming tools for high performance heterogeneous computing.
He published over 100 technical papers in refereed journals, edited books
and proceedings of international conferences. He authored the monographs
”Parallel computing on heterogeneous networks” (Wiley, 2003) and ”High
performance heterogeneous computing” (with J. Dongarra, Wiley, 2009).

He is currently a senior lecturer in the School of Computer Science
and Informatics at University College Dublin (UCD). At UCD, he is
also the founding Director of the Heterogeneous Computing Laboratory
(http://hcl.ucd.ie/).

Brett Becker was born in New Jersey in 1976. He received the B.A.
degree in computer science and the B.A. degree in physics, both from
Drew University, N.J., U.S.A., in 2003. He received the M.Sc. degree
in computational science and the Ph.D. degree in computer science from
University College Dublin, Ireland, in 2004 and 2011, respectively.

He lectured in computer science at Griffith College Dublin, Ireland, for
six years where he is involved in pedagogical research. He has helped
organize the International Conference on Engaging Pedagogy since 2008,
having served as co-chair in 2011, and is currently a member of the steering
committee. His main areas of research interest are science education and
high performance heterogeneous and parallel computing.

