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Abstract--An mpC language designed specifically for programming high-performance computations on het- 
erogeneous networks is described. An mpC program explicitly defines an abstract computing network and dis- 
tributes data, computations, and communications over it. At runtime, the mpC programming environment uses 
this information and that about the actual network to distribute the processes over the actual network so as to 
execute the program in the most efficient way. Experience in using mpC for solving problems on local networks 
consisting of heterogeneous workstations is discussed. 

1. INTRODUCTION 

Several years ago, only the so-called supercomput- 
ers were classified as high-performance parallel com- 
puter systems (they were divided into symmetrical 
multiprocessors (SMP) and massively parallel proces- 
sors (MPP)). Parallel computing on networks consist- 
ing of workstations and personal computers were use- 
less, since they could not speed up the process of solv- 
ing most problems that were due to the low 
performance of standard network hardware. However, 
beginning with the 1990s, the rate of performance 
growth of the network hardware became greater than 
that of processors (see l, pp. 6-7]. Modem network 
technologies, such as Fast Ethemet, ATM, Myrinet, and 
others allow data exchange between computers at the 
rate of hundreds of megabits, or even several gigabits 
per second. In this situation, not only parallel comput- 
ers, but also conventional local and even wide area net- 
works can be used as systems for high-performance 
parallel computing. The strategic initiative announced 
by the US president and supported by leading telecom- 
munications and computer companies aimed to 
increase the rate of data exchange on the Intemet a 
thousand-fold marks a tendency to networked high-per- 
formance parallel computing. 

Thus, computer networks are presently the most 
available and widespread parallel architecture; often, 
they make it possible to speed up the process of solving 
certain problems without having to purchase a more 
powerful computer, but through the use of available 
computers connected in a network by modem hard- 
ware. Networked parallel computing is retarded only 
by the absence of the proper software. The point is that, 
in contrast to supercomputers, networks are inherently 
heterogeneous: they include various computers with 
different performance levels, and the network hardware 

is often diversified as well. Thus, the rate of data 
exchange between different processors is not the same. 
As a rule, a program written for a (homogeneous) 
supercomputer is executed on a heterogeneous network 
with the same speed as it would be on a homogeneous 
network consisting of processors that are equivalent (in 
terms of performance) to the slowest processor of the 
heterogeneous network and the number of which is the 
same as the number of processors in the heterogeneous 
network. This is due to the fact that parallel programs 
distribute data, computations, and communications 
over the network without regard for differences in the 
performance of processors and communication links. 
As a result, networks are rarely used for high-perfor- 
mance parallel computing. 

At the present time, the most widespread tools for 
parallel programming for networks are MPI (Message 
Passing Interface) [2], PVM (Parallel Virtual Machine) 
[3], and HPF (High Performance Fortran) [4]. 

PVM and MPI are libraries designed for passing 
messages; in essence, they provide tools for low-level 
(Assembler) parallel programming. For this reason, 
developing real (useful and complex rather than model) 
programs is very difficult and requires highly qualified 
programmers. In addition, these libraries were not 
designed for developing adaptable parallel programs 
(i.e., programs that can distribute computations and 
communications depending on input data and specific 
features of a particular heterogeneous network). Cer- 
tainly, due to the low level of these libraries, it is possi- 
ble to develop a specialized runtime system that can 
make a program adaptable; however, such a system is 
often too complex and its development is beyond the 
capabilities of most users. 

HPF (High Performance Fortran) is a parallel high- 
level language designed for programming (homoge- 
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neous) supercomputers. The only parallel architecture 
available in HPF is a homogeneous multiprocessor with 
very fast communication links between its processors. 
HPF supports neither irregular and inhomogeneous 
data distribution nor middle-sized block parallelism. A 
typical compiler translates an HPF program into PVM 
or MPI, and the programmer cannot balance processes 
in the target message-passing program. Besides, HPF is 
very difficult to compile. Even the best HPF compilers 
produce a code that is 2 or 3 times slower than the man- 
ually written MPI program when executed on homoge- 
neous clusters of workstations (see proceedings of the 
conference of HPF users [5], held in June 1998 in 
Porto, Portugal). For these reasons, HPF is not very 
well suited for programming networked parallel com- 
puting. 

Thus, new specially designed tools are required to 
efficiently use available heterogeneous networks as 
parallel distributed memory computer systems. 

In this paper, we describe the first language (and the 
corresponding programming environment) specifically 
designed for programming heterogeneous networks, 
which we called mpC. It is an extension of ANSI C. 
Similarly to HPF, it includes a vector subset [6]. The 
available languages for parallel programming are 
designed for programming regular parallel architec- 
tures. These architectures can be described by a small 
number of parameters. Due to regularity, the target 
architecture can be implicitly built in these languages. 
This conventional approach is not suitable for design- 
ing a parallel language for developing programs to be 
executed on heterogeneous networks, since this archi- 
tecture has no regular structure. The basic idea of mpC is 
to provide language constructs that make it possible for 
the user to define an abstract heterogeneous parallel 
machine that is best suited for executing a specific algo- 
rithm. This information, together with information about 
the actual parallel system, is used by the mpC program- 
ming environment to efficiently execute the correspond- 
ing program on the particular parallel system. 

The paper is organized as follows. Section 2 con- 
tains an introduction to mpC. Section 3 gives a brief 
description of implementation principles. In Section 4, 
problems of evaluating characteristics of the parallel 
computer system on which the program is to be exe- 
cuted are discussed. Section 5 presents the experience 
in developing real applications in mpC. Section 6 
describes related works, and Section 7 contains conclu- 
sions. 

2. INTRODUCTION TO MPC 

The mpC language includes a notion of computing 
space that is defined as a set of available virtual proces- 
sors of various performance characteristics; the proces- 
sors are connected by communication links of various 
transmission rates. 

The concept of a network object or just a network is 
fundamental for mpC. The network comprises virtual 
processors of various performances; the processors are 
connected by communication links of various transmis- 
sion rates. The network is a domain in the computing 
space that can be used for evaluating expressions and 
executing various statements and instructions. 

Allocating and de-allocating network objects in the 
computing space is done similarly to allocating and de- 
allocating data objects in memory in the C language. 
From the conceptual point of view, the creation of a 
new network is initiated by a processor of the existing 
network. This processor is called the parent of the net- 
work to be created. The parent always belongs to the 
created network. The only processor that is defined 
from the beginning to the end of the program execution 
is a predefined virtual host processor. 

Every network object declared in the program 
belongs to a certain type. The type specifies the num- 
ber, types, and performance characteristics of the pro- 
cessors, communication links between them, transmis- 
sion rates over those links, and the network parent. For 
example, the following declaration declares the net- 
work type Rectangle, describing networks consisting of 
four virtual processors of different performances con- 
nected in a rectangle by undirected links of the standard 
transmission rate. 

/* Line 1 */ nettype Rectangle { 

/* Line 2*/ coord I=4; 

/* Line 3"/ node { I>=0 : I+l; }; 

/* Line 4*/ link { 

/* Line 5*/ I>O: [I]<->[I-l]; 

/* Line 6*/ I==0: [I]<->[3]; 

/* Line 7"/ }; 

/* Line 8*/ parent [0]; 

/* Line 9"/ }; 

Here line 1 contains the header (name) of the net- 
work type declaration. 

Line 2 contains the declaration of the reference 
frame for processors. It introduces the integer coordi- 
nate variable I that can take values in the range from 0 
to 3. 

Line 3 declares the processor nodes. It defines the 
location of the processors in the reference frame 
defined and declares their types and performances. 
Line 3 corresponds to the predicate "for all 1 < 4, if I > 
0, then the virtual processor located at the node [I] has 
the performance I + 1 "' The expression I + 1 is called 
the performance specifier. Greater numbers correspond 
to greater performances. In our example, the virtual 
processor 0 is two times as slow as processor 1, three 
times as slow as processor 2, and four times as slow as 
processor 3. For any network of this type, the informa- 
tion given in the declaration makes it possible to assign 
to each virtual processor a weight normalized relative 
to the parent node. 
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Lines 4-7 contain the declaration of links between 
the processors. Line 5 corresponds to the predicate "for 
all ! < 4, if ! > 0, then there exists an undirected link of 
the normal transmission rate between the processors 
located at the points [/] and [ I -  1 ]." Line 6 corresponds 
to the predicate "for all I < 4, if I ==0, then there exists 
an undirected link of the normal transmission rate 
between the processors located at the points [/] and 
[3]." Note that if no link between two processors is 
explicitly specified, then it is assumed that there exists 
a link between them with a minimal (for this network) 
transmission rate. 

Line 8 contains the declaration of the parent; it spec- 
ifies that the parent processor be located at the point [0] 
of the network created. 

Having declared a network type, we may declare an 
identifier of the corresponding type. For example, the 
declaration 

net Rectangle rl; 

declaresrl as the network object of type Rectangle. 
The concept of a distributed object is defined in the 

style of the languages C* [7] and Dataparallei C [8]. By 
definition, a data object distributed over a domain of the 
computing space consists of conventional (not distrib- 
uted) objects of the same type (called the components 
of the distributed data object) located at the processor 
nodes of this domain so that every processor node 
stores exactly one component. For example, the decla- 
rations 

net Rectangle rl; 
int [*]Derror, [r2]Da[lO]; 
float [host]f, [r2:I<2]Df; 
repl [*]di; 

declare the following variables: 
�9 the integer variable Derror distributed over the 

entire computing space; 
�9 the array Da of ten integers distributed over the 

network rl;  
�9 the nondistributed floating point variable f stored 

on the node of the virtual host processor; 
�9 the floating point variable D f  distributed over a 

subnetwork of the network rl;  
�9 the integer variable di replicated over the entire 

computing space. A distributed object is called repli- 
cated if its components are equal to each other. 

The concept of the distributed value is defined sim- 
ilarly to that of the distributed data object. 

In addition to a simple network type, it is possible to 
declare a parameterized family of network types, called 

a topology or parameterized network type. For exam- 
ple, the following declaration declares the topology 
Ring describing networks comprising n virtual proces- 
sors connected in a ring by undirected links of the nor- 
mal transmission rate. 

/* Line 1 */ nettype Ring (n, pfn]) { 

/* Line 2*/ coord I=n; 

/* Line 3"/ node [ 

/* Line 4*/ I>=0: p[I]; 

/* Line 5*/ }; 

/* Line 6*/ link [ 

/* Line 7*/ I>O: [I]<->[I-l]; 

/* Line 8*/ I==O: [I]<->[n-l]; 

/* Line 9"/ }; 

/* Line I0"/ parent [0]; 

/* Line ii*/ }; 

Line 1 contains the header of the declaration: it 
declares the integer parameter n and the vector param- 
eter p consisting of n integers. The coordinate variable 
I runs through values from 0 to n - 1. Line 4 corre- 
sponds to the predicate "for all 1 < n, if 1 >= 0, then the 
virtual processor with the relative performance p[/] is 
located at the point [/]" and so on. 

Having declared a topology, we can declare an iden- 
tifier of the network object of this type. For example, 
the fragment 

repl [*]m, [*]n[lO0]; 

/* Computation m, n[O] ..... n[m-l] */ 

net Ring(re, n) rr; 

declares the identifier rr of the network object; the type 
of this object is completely defined only at runtime. The 
network rr consists of m virtual processors; the relative 
performance of the ith processor is defined by the value 
ofn[i]. 

Every network object is characterized by the class of 
the computing space that is allocated to it; this class 
determines the lifetime of the object. The computing 
space can be allocated statically or dynamically. The 
computing space for a static network is allocated only 
once. Being created, the network exists up to the termi- 
nation of the program. If a network is declared as auto- 
matic, a new instance is created every time the program 
execution reaches the block in which the network is 
declared and destroyed when this block is exited. 

Consider a simple mpC program that calculates the 
product of two dense square matrices X and Y; the pro- 
gram uses several virtual processors, each of which cal- 
culates a part of the rows of the resulting matrix Z. 

/* 1 */ #include <stdio.h> 
/* 2*/ #include ~stdlib.h> 
/* 3*/ #include <mpc.h> 
/* 4*/ #define N 1000 
/* 5*/ void [host]Input(), [host]Output(); 
/* 6*/ nettype Star(m, n[m]) { 
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/* 7*/ coord I=m; 
/* 8*/ node { I>=O: n[I]; }; 
/* 9*/ link { I>O: [O]<->[I]; }; 
/* i0"/ }; 
/* ii*/ void [*]main() 
/* 12"/ { 
/* 13"/ double [host]x[N][N], [host]y[N][N], [host]z[N][N]; 
/* 14"/ repl int nprocs; 
/* 15"/ repl double *powers; 

/* 16"/Input (x, y) ; 
/* 17*/ MPC_Processors (&nprocs, &powers) ; 
/* 18"/ { 
/* 19"/ repl int ns [nprocs]; 
/* 20*/ MPC_Partition_Ib(nprocs, powers, ns, N); 
/* 21"/ { 
/* 22*/ net Star(nprocs, ns) w; 
/* 23*/ int [w]myn; 
/* 24*/ myn=([w]ns)[I coordof myn]; 
/* 25*/ { 
/* 26*/ repl int [w]i, [w]j; 
/* 27*/ double [w]dx[myn] [N], [w]dy[N] [N], [w]dz[myn] [N]; 
/* 28*/ dy[]=y[]; 
/* 29*/ dx[]=::x[]; 
/* 30*/ for(i=O; i<myn: i++) 
/* 31"/ for(j=O; j<N; j++) 
/* 32*/ dz[i] [j]=[+] (dx[i] []*(double[*] [N:N]) (dy[O]+j) []); 
/* 33*/ z[]::=dz[]; 
/* 34*/ ] 
/* 35*/ ] 
/* 36*/ Output(z); 
/* 37*/ } 
/* 38*/ } 

The program includes five functions: main, speci- 
fied in the above fragment; Input and Output, specified 
in a different source file; and library functions 
MPC_Processors and MPC_Partition_lb. The func- 
tions Input and Output are declared in line 5, and 
MPC_Processors and MPC_Partition_lb are declared 
in the file mpc.h. 

In general, mpC admits three classes of functions. In 
our example, functions of all three classes are used: 
main falls into the class basic functions, Input and Out- 
put to the class of network functions, and 
MPC_Processors and MPC_Partition_Ib to the class 
of nodal functions. 

The call to a basic function is always a total expres- 
sion (i.e., it is calculated on the entire computing space; 
no other computations can be performed concurrently 
with the calculation of a total expression). Its argu- 
ments (if any) either belong to the host processor or are 
distributed over the entire computing space, and the 
return value (if any) is distributed over the entire com- 
puting space. In contrast to functions of other types, 
basic functions can include declarations of networks. 
The construct [*] in line I 1 placed before the identifier 

main indicates that this is the identifier of a basic func- 
tion. 

A nodal function can be completely executed on a 
single processor of the computing space. In a nodal 
function, only local data objects of the virtual processor 
where this function belongs can be created; in addition, 
components of external data objects belonging to this 
processor can be used. The declaration of a nodal func- 
tion identifier does not require any additional specifica- 
tions. From the mpC point of  view, all normal C func- 
tions belong to this class. 

Generally, a network function is called and executed 
on a domain of the computing space, and the arguments 
and the return value of this function (if any) are also 
distributed over the same domain. Two network func- 
tions can be executed concurrently if the domains in 
which they are called do not overlap. The functions 
Input and Output are examples of the simplest form of 
network functions that can only be called on a statically 
defined domain of the computing space. They are 
declared in line 5 as network functions that can only be 
called on the virtual host processor (this is indicated by 
the construct [host] that appears before the function 
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identifiers). Thus, the calls to these functions in lines 16 
and 36 are performed on the virtual host processor. 

Lines 11 trough 38 contain the definition of the 
function main. In line 13, the arrays x, y, and z located 
at the virtual host processor are declared. 

Line 14 declares the integer variable nprocs repli- 
cated over the entire computing space. Its distribution 
is set by default, without using the construct [*]. In gen- 
eral, the default distribution is defined by the distribu- 
tion of the smallest block that contains the declaration 
in question and has an explicit distribution specifica- 
tion. The declaration in line 14 appears in the body of 
the function main, for which the distribution over the 
entire computing space is explicitly specified. 

Line 15 declares the variable powers as a pointer to 
a floating point number distributed over the entire com- 
puting space. This declaration specifies that all distrib- 
uted data objects referenced by powers are replicated. 

In line 17, the library function MPC_Processors is 
called on the entire computing space. This function 
returns the number of physical processors and their per- 
formances (the mechanism used to evaluate the perfor- 
mance of processors is described in Section 4). Thus, 
after this function is executed, the replicated variable 
nprocs contains the actual number of physical proces- 
sors, and the replicated array powers contains their per- 
formances. 

Line 19 declares the dynamic integer array ns repli- 
cated over the entire computing space. All components 
of this array consist of the same number of elements 
nprocs. 

The library nodal function MPC_Partition_Ib is 
called on the entire computing space. This function 
uses the performance characteristics of the physical 
processors to evaluate the number of rows of the result- 
ant matrix that will be calculated by each of the physi- 
cal processors. Thus, after the execution of this func- 
tion, ns[i] contains the number of rows to be calculated 
by the ith physical processor. MPC_Partition_Ib 
divides the given integer (N in our example) into parts 
in the given proportion. 

In line 22, an automatic network w consisting of 
nprocs virtual processors is declared. The relative per- 
formance of the ith virtual processor is determined by 
ns[i]. Thus, the type of this network is completely 
defined only at runtime. This network, which performs 
the remaining computations and data exchange, is 
defined so as to assign a greater number of rows to be 
calculated to more powerful virtual processors. The 
mpC programming environment makes an optimal 
mapping of the virtual processors constituting the net w 
onto the set of processes that constitute the computing 
space. Thus, exactly one process of all processes exe- 
cuted by each physical processor will participate in 
multiplying matrices, and the more powerful the pro- 
cessor, the greater the number of rows that will be cal- 
culated by this processor. 

Line 23 declares the variable myn distributed over w. 

The result of the binary operation coordofin line 24 
is an integer value distributed over w; every component 
of this value is the coordinate ! of the virtual processor 
where this component resides. The right-hand operand 
of this operation is not calculated, but is used to specify 
the domain of the computing space. Note that the coor- 
dinate variable I is interpreted as an integer variable 
distributed over the computation domain. Thus, after 
the execution of the statement in line 24, every compo- 
nent of myn contains the number of rows of the result- 
ing matrix that are calculated by the virtual processor 
where this component resides. 

Line 26 declares the integer variables i and j repli- 
cated over the network w. 

Line 27 declares three arrays distributed over the 
network w. The type dy is declared statically as an array 
of N arrays consisting of N floating point numbers each. 
The types dx and dz are declared dynamically as arrays 
of myn arrays consisting of N floating point numbers 
each. We note that the dimension myn of dx and dz is 
different for different components of these arrays. 

Line 28 includes an unusual unary postfix operator 
[]. The point is that, strictly speaking, mpC is an exten- 
sion of the vector extension of ANSI C called C[] [14], 
where the concept of a vector considered as an ordered 
sequence of a certain type of values was introduced. In 
contrast to an array, a vector is a new type of value 
rather than a data object. In particular, the value of an 
array is a vector. The operator [] was introduced to 
access the array as a whole. The operand of this opera- 
tion is of the type "array," and it blocks the transforma- 
tion of the operand to the pointer type. Thus, y[] desig- 
nates the array y as a single object, and dy[] designates 
the distributed array dy as a single object. 

The statement in line 28 sends the matrix Yfrom the 
parent of the network w to all its virtual processors. As 
a result, every component of the distributed array refer- 
enced by dy will contain this matrix. Generally, if the 
left-hand side operand of the statement = is distributed 
over a certain domain of the computing space R, the 
value of the right-hand side operator belongs to a 
domain of the computing space that includes R and the 
assignment can be performed without type casting, then 
the execution of the statement consists in sending the 
value of the right-hand side operand to every virtual pro- 
cessor of the domain R where it is assigned to the corre- 
sponding component of the left-hand side operand. 

The statement in line 29 sends the matrix X from the 
virtual host processor to all virtual processors of the 
network w. As a result, every component of dx contains 
the corresponding portion of the matrix X. 

In the general case, the first operand of the four- 
place operation =:: must be an array distributed over a 
certain domain R consisting of NP virtual processors. 
The remaining operands (the second and the third oper- 
ands are optional) are not distributed and belong to the 
same processor. The second operand is optional; if it is 
present, then it must either point to the initial element 
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of an integer array consisting of NP elements or to an 
integer array consisting of NP elements. The third oper- 
and is optional; if it is present, then it must either point 
to the pointer to the initial element of an integer array 
consisting of NP elements such that the value of its ith 
element is not greater than the number of elements of 
the ith component of the first operand, or point to an 
array of this type. The fourth operand must be an array 
consisting of elements of a type that can be assigned to 
any elements of any component of the first operand 
without type casting. 

Execution of the operation el = e2:e3:e4 consists in 
cutting from the array e4 subarrays consisting of NP 
elements (maybe overlapping) and sending the value of 
the ith subarray to the ith virtual processor of the 
domain R, where it is assigned to the corresponding 
component of the distributed array el .  The offset of the 
ith subarray relative to the initial element of e4 is spec- 
ified by the value of the ith element of e2 and its length 
is specified by the value of the ith element of e3. 

If e3 points to the NULL pointer, then the operation 
is performed as if *e3 pointed to the initial element of 
the N-element integer array with the ith element equal 
to the length of the ith component of the distributed 
array el.  Moreover, in this case, such an array is actu- 
ally created as a result of the execution of the operation, 
and the pointer to its initial element as assigned to *e3. 

If e2 points to the NULL pointer, then the operation 
is performed as if *e2 pointed to the initial element of 
the N-element integer array with the 0th element equal 
to 0 and the ith element equal to the sum of the value of 
its (i - l)th element and the value of the ith element of 
e3. Moreover, in this case, such an array is actually cre- 
ated as a result of the operation being executed, and the 
pointer to its initial element as assigned to *e2. 

The second operand can be omitted. In this case, the 
operation is performed as if e2 pointed to the NULL 
pointer. The only difference is in that the NP-element 
array created in the process of execution is freed. 

The third operand can be omitted. In this case, the 
operation is performed as if e3 pointed to the NULL 
pointer. The only difference is that the N-element array 
created in the process of execution is freed. 

Thus, the statement dx[] =:: x[] in line 29 results in 
dividing the N-element array x consisting of arrays of N 
floating point numbers into nprocs subarrays such that 
the length of the ith subarray equals the value of the 
component of myn belonging to the ith virtual proces- 
sor (i.e., it is equal to [w: I == i]myn). The same opera- 
tion will be performed more quickly if it is written in 
the form dx =: &ns : x, which makes it possible to avoid 
additional (and redundant in this case) data transmis- 
sion and computations necessary for the formation of 
the omitted operands. 

The asynchronous fragment in lines 30-32 (i.e. the 
set of statements that do not require data exchange 
between the virtual processors) concurrently calculates 

the corresponding portion of the resulting matrix Z on 
every virtual processor of the net w. 

Finally, the statement in line 33 collects these por- 
tions on the virtual host processor forming the resultant 
array z with the help of the assembly statement ::=. This 
4-place operation corresponds to the sending operation 
and performs the inverse communication operations in 
the similar fashion. 

3. IMPLEMENTATION OF MPC 

At the present time, the mpC programming environ- 
ment includes a compiler, a runtime support system, a 
library, and a command-line user interface. 

The compiler translates the source code in mpC into 
an ANSI C program that includes calls to functions of 
the runtime support system. Either the SPMD model of 
the target code is used, in which all processes constitut- 
ing the parallel program execute the same code, or the 
quasi-SPMD model in which the source mpC code is 
translated into two different programs---one for the vir- 
tual host processor and the other for all other virtual 
processors. 

The runtime support system manages the computing 
space, which consists of several processes executing on 
the target distributed memory computer system (for 
example, on a network consisting of PCs and worksta- 
tions), and communications. It encapsulates a particu- 
lar communication package (currently, MPI 1.1) and 
ensures that the compiler is independent of the particu- 
lar target platform. 

The library consists of functions that support pro- 
gram debugging, provide access to the characteristics 
of the computing space and to efficient low-level func- 
tions. 

The command-line user interface includes com- 
mands for creating a virtual machine with distributed 
memory and executing mpC programs on it. When the 
virtual parallel machine is created, its topology (in par- 
ticular, the number and performance of processors and 
characteristics of the communication links between the 
processors) is determined automatically by executing a 
special benchmark program; the information obtained 
is saved in a file that is used by the runtime support sys- 
tem. 

3.1. Model o f  the Target Program 

All processes that constitute the executing target 
program are divided into two groups: a special process, 
called dispatcher, that controls the computing space, 
and normal processes, called nodes, that act as virtual 
processors of the computing space. The dispatcher 
functions as the server receiving requests from the 
nodes. It does not belong to the computing space. 

In the target program, every network or subnetwork 
of the initial mpC program is represented by a set of 
nodes called the domain. At any moment, when the tar- 
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get program is executed, every node is either free or 
included in one or more domains. The node included in 
a domain is called busy. The dispatcher is responsible 
for including nodes in domains and freeing them. The 
only exception is the so-called host node that acts as the 
virtual host processor. Immediately after the initializa- 
tion, the computing space is represented by the host and 
the set of free nodes. 

The main difficulty in managing processes is in 
including them in domains and freeing them. The solu- 
tion to this problem determines the structure of the tar- 
get code and forms requirements for the functions of 
the runtime support system. 

To create a domain that represents a network (a net- 
work domain), the parent node evaluates (if necessary) 
topological characteristics of the network and sends to 
the dispatcher the request for creating the domain. The 
request includes the number of nodes and their relative 
performances. In turn, the dispatcher possesses infor- 
mation about the target network of computers that 
includes the number of physical processors, their rela- 
tive performances, and the number of nodes on the 
physical processors. Using this topological informa- 
tion, the dispatcher selects a set of free nodes that are 
most suitable for the network domain being created (the 
algorithm used by the dispatcher is described in Sub- 
section 3.3 in more detail). Then, the dispatcher sends 
a message to all free nodes informing them whether or 
not they are in the new domain. 

To free a network domain, its parent node sends a 
corresponding request to the dispatcher. Note that the 
parent node remains in the parent network domain of 
the domain being freed. All other nodes of the freed 
domain become free and wait for other commands from 
the dispatcher. 

Every node can determine if it is busy. The node is 
busy if the function MPC Is busy() called when it 
returns 1; it is free if this function returns 0. 

Every node can determine whether or not it is busy 
in a certain domain. A domain can be accessed through 
its handler. If rd is the handler of a domain, then a node 
of the computing space belongs to this domain if and 
only if the function MPC Is member(&rd) called at 
this node returns 1. In this case, the node can obtain 
information about the domain through its handler rd 
and identify itself within this domain. 

When a free node is included in a network domain, 
the dispatcher must inform it of the handler of the 
domain it was included in. The simplest method--  
sending the pointer to the handler from the parent 
node--is inapplicable for computer systems with dis- 
tributed memory, which have no common address 
space. For this reason, we need an additional identifier 
of the network being created that has the same value on 
the parent node and free nodes and has a form that 
makes it possible to send it from the parent node to the 
free ones via the dispatcher. 

In the source mpC program, every network has a 
name that is a normal identifier and obeys the conven- 
tional scope rules of C. Thus, the name of the network 
cannot be used as its unambiguous identifier even 
within the same file. We can enumerate all networks 
within a file and use this number as an unambiguous 
identifier of the network within this file. However, this 
identifier will not be unique within the entire program, 
since the program can include several files. However, 
this identifier can be used to create the network if all 
nodes that participate in the creation execute the code 
corresponding to one and the same source file of the 
mpC program. This is this scheme that is used by our 
compiler. All networks in the file are enumerated, and 
the structure of the program guarantees that when a net- 
work is created, all the nodes participating in the pro- 
cess execute the code from the same file. 

Thus, when a domain representing a network (a net- 
work domain) is created, the parent node, the dis- 
patcher, and all free nodes participate in this process. 
The parent node calls the function 

MPC_Net_create(MPC_Name name, MPC_Net* net); 

where name contains the unique identifier (within the 
file) of the network being created and net points to the 
corresponding handler of the domain. The function calcu- 
lates all the necessary topological characteristics and 

sends to the dispatcher a request for creating the network. 
Meanwhile, the free nodes wait for the command 

from the dispatcher at the so-called wait point by call- 
ing the function 

MPC_Offer(MPC_Names* names, MPC_Net** nets_voted, int voted_count); 

where names is the array of the numbers of networks 
that can be created at this wait point, nets_voted is the 
array of pointers to the handlers of the domains that can 
be created at this wait point, and voted_count contains 
the number of such domains. 

The correspondence between the network number 
and the handler of the domain is set as follows. If a free 

node receives a message informing it that it was 
included in the network with the number names[i], then 
it is included in the network domain with the handler 
nets_voted[ i]. 

The free nodes leave the wait function MPC_Offer 
either after they have been included in the network 
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domain or when they receive from the dispatcher the 
command to leave the wait point. 

3.2. The Structure of the Target Code of an mpC Block 
In the general case, there are two wait points in the 

code of the target block containing network declara- 
tions. At the first point, called the creating wait point, 
free nodes wait for dispatcher commands related to 
the creation of network domains; at the second point, 
called the freeing point, they wait for commands 

related to freeing. Between these points, free nodes 
can execute the code unrelated to creating and freeing 
networks declared in the source mpC block; namely, 
they can take part in total computations and/or in cre- 
ating and freeing the networks declared in nested 
mpC blocks. The first statement in the source mpC 
block that requires free nodes for its execution is 
called the break statement of the wait point. Thus, in 
the general case, the target block has the following 
structure. 

declarations corresponding to the declarations of variables 
in the source mpC block 
{ 

if(!MPC Is busy()) { 

the target code executed by free nodes 
for creating network domains for the networks 
declared in the source mpC block 

} 

if(MPC Is busy()) { 

the target code executed by busy nodes 
for creating network domains for the networks and subnetworks 
declared in the source mpC block; 

the target code for the statements 
that precede the break statement of the wait point 

} 

epilogue of the creating wait point 
} 

the target code for the statements of the source 
mpC block that begin with the break statement of the wait point 
{ 

the target code executed by busy nodes for 
freeing the networks and subnetworks declared in the source mpC block 

label of the freeing wait point: 

if(!MPC Is busy()) { 

the target code executed by free nodes for 
freeing network domains for the networks 
declared in the source mpC block 

) 

epilogue of the freeing wait point 

If the source mpC block does not include the 
break statement of the wait point (i.e., if it (and the 
nested blocks) does not contain total operations or 
nested blocks with network declarations), then it is 

possible to merge the creating and freeing wait 
points into a single wait point in the target block. In 
this case, the target block has the following struc- 
ture. 

declarations corresponding to the declarations of variables 
in the source mpC block 
{ 

prologue of the common wait point 
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label of the common wait point: 

if 

} 

if 

) 

(!MPC Is busy()) { 
the target code executed by free nodes for 
creating and freeing network domains for the 
declared in the source mpC block 

networks 

(MPC Is busy()) { 

the target code executed by busy nodes for 
creating and freeing network domains for the networks and subnetworks 
declared in the source mpC block; 

the target code for the statements of the source mpC block 
} 
epilogue of the common wait point 

To ensure that all participating nodes execute the 
code from the same file while creating the network 
domain, the compiler includes a global barrier in the 
epilogue of the wait point. 

The coordinated arrival of the nodes is ensured by 
the following scenario in the epilogue of the wait point: 

�9 the host makes sure that all other busy nodes that 
could send a creating or freeing request that is awaited 
at the wait point have already reached the epilogue; 

�9 the host sends a message to the dispatcher inform- 
ing it that there are no remaining creating or freeing 
requests that are awaited at the wait point; then, it 
reaches the epilogue; 

�9 having received this message, the dispatcher sends 
the command to all free nodes to leave the wait point; 

�9 having received this command, all free nodes com- 
plete the wait function and reach the epilogue. 

3.3. The Mapping Algorithm 

We have already mentioned that to create a network 
domain, the dispatcher selects free nodes that are best 
suited for the domain created. In this section, we 
describe how the dispatcher performs this selection. 

For every network type that occurs in the source 
mpC program, the compiler generates six topological 
functions that are used at runtime to evaluate various 
topological characteristics of the network object of this 
type. The first function returns the total number of 
nodes in the network object. Since the runtime support 
system uses the linear numeration of nodes from 0 to 
n - 1, where n is the total number of nodes, there are 
two functions (the second and the third ones) that trans- 
form the coordinates of the nodes into the linear num- 
ber and vice versa. The fourth function returns the lin- 
ear number of the parent node. The fifth function 
returns the relative performance of the given node. At 
last, the sixth function returns the length of the directed 
link connecting the given pair of nodes. 

When the dispatcher maps the virtual processors of 
the network created into the set of free nodes, it first 
calls the corresponding topological functions to evalu- 
ate the relative performance of the virtual processors 
and the length of the links between them. The relative 
performance of a virtual processor in the network cre- 
ated is described by a positive real number normalized 
to the performance of the parent virtual processor 
(which is assumed to be 1). Then, the dispatcher evalu- 
ates the absolute performance of each virtual processor 
in the network created by multiplying it by the absolute 
performance of the parent virtual processor, 

On the other hand, the dispatcher supports the map 
of the computing space that represents its topological 
characteristics. The initial state of this map is formed 
when the dispatcher is initialized and contains the fol- 
lowing information: 

�9 the number of physical processors constituting the 
computer system with distributed memory and the per- 
formance of those processors; 

�9 the number of nodes (processes) of the computing 
space residing on every physical computation node; 

�9 for every pair of physical nodes, the initialization 
time and the transmission time of one byte of informa- 
tion; 

�9 for every physical node, the initialization time of 
message exchange and the transmission time of one 
byte of information between two processes that are exe- 
cuted on this physical node. 

On the whole, the performance of a physical com- 
puter node is characterized by two attributes. The first 
attribute specifies the speed of a process execution on 
the given physical computer node; the second one spec- 
ifies the maximal number of noninteracting processes 
that can be simultaneously executed on the given com- 
puter node without loss of speed (i.e., this attribute 
specifies the scalability of the physical computer node). 
For example, if a multiprocessor is used as a physical 
computer node, then the value of the second attribute is 
the number of processors. 
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Presently, the procedure of selecting nodes of the 
computing space to allocate virtual processors of the 
network created is based on the following simplest 
scheme. 

The dispatcher assigns a weight (a positive real 
number) to every virtual processor of the network being 
allocated in such a way that 

�9 the more powerful the virtual processor, the more 
is its weight; 

�9 the shorter the communication links outgoing the 
virtual processor, the greater its weight. 

The weights are normalized so as to make the 
weight of the virtual host processor equal to unity. 

Similarly, the dispatcher modifies the map of the 
computing space so as to assign to every physical com- 
puter node a weight (a positive real number) that char- 
acterizes its computation and communication power 
when executing a single process. 

The dispatcher selects free nodes of the computing 
space to allocate virtual processors successively, begin- 
nmg with the virtual processor with the maximum 
weight. For this virtual processor, the dispatcher 
assigns the most powerful free node. For this purpose, 
the dispatcher evaluates the performance of the free 
node for every physical computer node using the fol- 
lowing algorithm. Let w be the weight of the physical 
computer node P and N be its scalability. Let the set H 
of busy nodes connected with P be decomposed into N 
subsets h~ . . . . .  hN, and let vo be the weight of the virtual 
processor that is currently located at thejth node of the 
set h i. Then, the estimate of the performance of the free 
node connected with P is evaluated by the formula twJ 

max . 

V+ ~Vi] 
] 

Thus, the dispatcher selects one of the free nodes of 
the physical computer node that has the maximal per- 
formance estimate, places the next virtual processor on 
it (the most powerful among unallocated ones), and 
adds this node to the set hk of the set of busy nodes of 
the corresponding computer node; the value of k is 
determined by the relation 

w _ maxl w t"  

v+~v,j [v+~vi] 
J J 

The procedure described yields sufficiently good 
results for networks of workstations and personal com- 
puters and ensures the optimal allocation if exactly one 
node of the computing space is connected with every 
physical processor. 

4. EVALUATING PERFORMANCE 

As was shown above, mpC gives the programmer an 
opportunity to define an abstract heterogeneous net- 
work that is best suited for executing a particular paral- 
lel algorithm; the mpC programming environment 
maps the abstract network into a physical computer net- 
work. The mapping is performed at runtime and is 
based on the information about the relative perfor- 
mance of the processors and communication links in 
the physical network. The efficiency of using the poten- 
tial performance of the available network by a parallel 
program directly depends on the quality of this map- 
ping, which, in turn, depends on the accuracy of the 
performance estimates for the processors and network 
hardware. 

Initially, only one method for evaluating the perfor- 
mance of processors and network hardware was sup- 
ported. The evaluation was performed by executing a 
special benchmark program and was a part of the exe- 
cution of a command of the user interface external with 
respect to mpC. 

The principal disadvantage of this method is that it 
is based on a static integral estimate of the hardware 
performance. This estimate is independent of the pro- 
gram code and remains the same during its execution. 
However, the parallel code executed on every network 
is often considerably different from the mixture of 
statements in the benchmark program. This difference 
is not very important when the performance of micro- 
processors of the same architecture is evaluated; how- 
ever, for microprocessors with a different architecture, 
performance estimates obtained with the help of a mix- 
ture of statements can differ considerably. As a result, 
this estimate may become rather inaccurate, which 
leads to an unbalanced workload of the processors and 
to a decreased efficiency of the program execution. 

We examined four approaches to improving the 
accuracy of the processor performance evaluation. The 
first approach is based on a classification of mpC appli- 
cations and the use of a special benchmark program for 
every class. This approach was rejected, since experi- 
ments showed that a processor performance could be 
quite different even for applications of the same class. 
For example, consider two fragments of C programs: 

for(k=O; k<500; k++) { 

for(i=k, ikk=sqrt(a[k] [k]); i<500; i++) 
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a [i] [k]/=ikk; 
for(j=k+l; j<500; j++) 

for(i=j; i<500; i++) 
a [i] [j]-=a[i] [k]*a [j] [k] ; 

} 

and 
for(k=O; k<500; k++) { 

for(j=k, ikk=sqrt (a[k] [k]) ; j<500; j++) 
a [k] [j]/=ikk; 

for(i=k+l; i~500; i++) 
for(j=i; j<500; j++) 

a[i] [j]-=a[k] [j] *a [k] [i] 
} 

Both fragments implement the Cholesky factoriza- 
tion for the matrix of the dimension 500 x 500. If these 
fragments are used as benchmark programs, then the 
first one evaluates the relative performance of SPARC- 
station-5 and SPARCstation-20 as 10 : 9, whereas the 
second fragments yields the estimate 10 : 14. Note that 
the function dpotf2 included in the LAPACK package 
and solving the same problem estimates the relative 
performance of these processors as 10 : 10. 

The second approach consists in using a special 
benchmark code for every mpC application. In particu- 
lar, we considered the problem of the automatic gener- 
ation of a benchmark code by the source code of the 
application. This approach considerably complicates 
the mpC programming environment, but it does not 
work if the problem solved by the program splits into 
several subproblems, each of which is solved on a sep- 
arate network. In this case, the estimate of processor 
performance is obtained by averaging the estimates 
obtained for different parallel parts of the program and 
can be inaccurate as with the first approach. 

The third approach consists in the automatic gener- 
ation, for every mpC program, of a benchmark code 
that could produce a vector estimate of processor per- 
formances. With this approach, every parallel part of 
the program that is executed on a separate network is 
characterized by a specific estimate used when this net- 
work is created. This approach is very difficult to 
implement and does not work in the case when the 
actual network is also used for other computations. In 
this case, from the standpoint of the mpC program, the 
actual processor performance is a function of time. 

Thus, the use of any static estimate that is not modified 
in the course of the program execution often leads to 
the inaccurate estimation of processor performance 
and, consequently, to decreased speed of the program 
execution. 

In our implementation of mpC, we used the fourth 
approach. We introduced a new language construct that 
allows the programmer to update the estimate of pro- 
cessor performances during the program execution 
using the most suitable (from his point of view) bench- 
mark. The new construct is as follows: 

recon benchmark 

Here benchmark is either an empty statement con- 
sisting of a semicolon or a generic type statement dis- 
tributed over the entire computing space that executes 
the same piece of code on all virtual processors without 
specifying the communication between them. This con- 
struct makes it possible to update information about the 
relative performance of the processors in the network. 
If the benchmark is an empty statement, then a standard 
benchmark is used; otherwise, the routine specified by 
the benchmark is used. 

In addition, the library of standard functions 
includes several functions that make it possible to 
obtain the current estimate of processor performances 
and set this estimate explicitly (without executing the 
benchmark program). 

The recon statement and the corresponding library 
functions are not difficult to use and implement. To 
demonstrate the use of this statement, consider the fol- 
lowing subroutine. 

/*I*/ #define N 100 
/*2*/ nettype Grid(P, Q) { 
/*3*/ coord I=P, J=Q; 
/*4*/ }; 
/*5*/ int [net Grid(p, q) v] 
/*6*/ void [*]Cholesky(repl 
1"7"I ( 
/*8*/ int n = N, info; 
/*9*/ double a[N] [N] ; 

mpC2bl acs_gri dini t ( int *, char*) ; 
int P, repl int Q) { 
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/*I0"/ init(a); 

/*Ii*/ recon dpotf2_("U", &n, a, &n, &info); 

/'12"/ } 

/'13"/ { 
/'14"/ net Grid(P, Q) w; 

/'15"/ [w] : { 
/'16"/ int ConTxt; 

/'17"/ ([(P, Q)w])mpC2Cblacs_gridinit(&ConTxt, 
/'18"/ pdlltdriverl_ (&ConTxt) ; 

/ "19 */ mpC2Cblacs_gridexi t (ConTxt) ; 

/*20*/ } 

/'21"/ } 

/*22*/ } 

"R" ) ; 

This subroutine performs the Cholesky factorization 
of a square matrix. Here, the heterogeneous breakdown 
of the computation processes between processors is 
done by mpC and the parallel Cholesky factorization is 
performed by the means provided by the ScaLAPACK 
package [ 10]. 

The recon statement that occurs in line II deter- 
mines the performance of actual processors by execut- 
ing the program dpotrf included in the package 
LAPACK. The code of this program is a good approxi- 
mation of the code that will be executed by every node. 
Thus, the information about the performance of proces- 
sors is updated at runtime by executing the program 
dpotrf2 as a benchmark. 

The network w that executes the parallel computa- 
tions is declared in line 14 (its type is declared in lines 
2--4). This network consists of P x Q virtual processors 
(by default, they have an identical performance). The 
parent of this network (the virtual host processor) is 
located at the point I = 0, J = 0. At runtime, this decla- 
ration of w leads to such a mapping of its virtual pro- 
cessors onto the processes of the parallel program that 
the number of the processes that participate in the com- 
putation at each actual processor is proportional to its 
performance that was estimated earlier in the program. 

A slightly modified test driver of the ScaLAPACK 
package performing the Cholesky factorization is 
called on the network w (lines 15-20). This driver reads 
the parameters of the problem from a file (the size of 
the matrix and blocks), constructs the test matrix, and 
factors it. 

The mpC language includes three types of func- 
tions: basic, network, and nodal functions. 

Basic functions are called and executed on the entire 
computing space. Networks can only be created within 
those functions. The Cholesky function provides an 
example of a basic function. This is indicated by the 
construct [*] in line 6 placed directly before the func- 
tion name. 

Network functions are executed on the network (an 
example is provided by mpC2Cblacs_gridinit defined 
in lin 5). They have three specific parameters: v, p, and 
q. The so-called network formal parameter v indicates 

the network on which the function is executed. The 
parameters p and q are considered as integer variables 
replicated over the network ~ They are parameters of 
the network type Grid(p, q) of the network ~ In line 17, 
this function is called for the network w and the corre- 
sponding actual parameters P and Q. 

A nodal function may be executed on any single vir- 
tual processor. Conventional C functions are consid- 
ered as node functions in mpC. 

If a variable is declared without a special distribu- 
tion attribute, then it is considered distributed over the 
entire computing space in basic functions; in network 
functions, it is considered distributed over the corre- 
sponding network. The distribution attribute [w] in line 
15 specifies the network that executes the compound 
operator in lines 15-20. 

5. EXPERIENCE IN USING MPC 

The first implementation of mpC was released at the 
end of 1996. It has been available on the Internet for 
over two years (http://www.ispras.ru). During this time, 
over 400 installations have been made all over the 
world, mpC is mainly used for scientific computations 
on networks consisting of workstations and PCs. Typi- 
cal applications include multiplying matrices, solving 
the multibody problem, linear algebra (LU decomposi- 
tion, Cholesky factorization, and so on), numerical 
integration, simulating oil extraction, analyzing con- 
structions for stresses and strains, and many others. The 
experience shows that mpC allows for developing por- 
table modular parallel programs that considerably 
speed up the solution of both regular and irregular prob- 
lems on heterogeneous networks. In addition, mpC 
makes it possible to solve irregular problems on homo- 
geneous networks much more quickly than by using 
traditional methods. 

In this section, we present several typical applica- 
tions developed in mpC. 
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5.1. Irregular Applications Developed in mpC 
As an example of an irregular problem, we consider 

simulating the evolution of a stellar system in a galaxy 
(or a set of galaxies) under gravitational attraction 
force. 

We assume that the system to be simulated consists 
of a certain number of large groups of bodies. It is well 
known that, since the gravitational interaction quickly 
decreases with distance, the effect of a large group of 
bodies may be approximated by the effect of a single 
equivalent body if this group of bodies is located suffi- 
ciently far from the point where its effect is analyzed. 
We suppose that this assumption is true in our case; i.e., 
let the groups of bodies under consideration be located 
sufficiently far from each other. 

This problem allows for a natural parallelization. 
Our simulating mpC program will use several virtual 
processors each of which will update the data concern- 
ing one group of bodies. Every virtual processor must 
store the attributes of all bodies included in the corre- 
sponding group and the masses and centers of gravity 
of all other groups. Every body is described by its coor- 
dinates, velocity, and mass. 

Finally, let the number of groups and the number of 
bodies in each group become available only when the 
program is executed. 

The mpC program designed for solving this prob- 
lem is structured as follows. 

Initialize the galaxy on the virtual host processor 
Create the network for future computations and data exchange 
Send the groups of bodies to the virtual processors in the network 

Compute (concurrently) the masses of groups 
Exchange information about the masses of groups between the virtual processors 

while (I) { 
Visualize the galaxy on the virtual host processor 
Compute (concurrently) the masses of gravity for the groups 
Exchange information about the centers of gravity of groups between the virtual 

processors 
Update group attributes (concurrently) 
Collect the groups on the virtual host processor 

) 

The corresponding mpC programs is as follows. 

#define MaxGs 30 /* the maximal number of groups */ 
#define MaxBs 600 /* the maximal number of bodies in a group */ 
typedef double Triplet [3] ; 
typedef struct {Triplet pos; Triplet v; double m;} Body; 

int [host]M; /* the number of groups */ 
int [host]N[MaxGs] ; / *array of the number of bodies in groups */ 

repl dM, dn [MaxGs] ; 
double [host]t; /* the galaxy clock */ 

/* the array of the body attributes in the galaxy */ 

Body (* [host ]Galaxy[MaxGs] [MaxBs] ; 

nettype GalaxyNet(m, n[m]) { 

coord I=m; 
node { I>=O: n[I]*n[I];}; 

}; 

void [host]Input (), UpdateGroup() , [host]VisualizeGalaxy() ; 

void [*]Nbody(char *[host]infile) 
( 

Input(infile); /* initializing Galaxy, M, and N */ 
dM=M; /* sending the number of groups */ 
/* sending the array containing the number of bodies in the groups */ 

dN[]: N[]; { 
/* creating the network g */ 
net GalaxyNet (dM, dN) g; 
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} 
} 
} 

void 
{ 

int [g]myN, [g]mycoord; 
Body [g]Group [MaxBs] ; 
Triplet [g]Centers [MaxGs] ; 
double [g]Masses [MaxGs] ; 
repl [g]i; 
void [net GalaxyNet (m, n[m]) ]Mint (double (*) [MaxGs]) ; 
void [net GalaxyNet (m, n[m] ) ]Cint (Triplet (*) [MaxGs] ) ; 
mycoord = I coordof body_count; 
myN = dN[mycoord] ; 
for (i=0; i<[g]dM; i++) /* sending groups */ 

[g:I==i]Group[] = (*Galaxy[i]) []; 
for (i=0; i<myN; i++) 

Masses [mycoord] += Group[i ] .m; 
( [ ( [g] dM, [g] dN) g] )Mint (Masses) ; 
while(l) { 

VisualizeGalaxy() ; 
Centers [mycoord] [] = O. O; 
for(i=O; i<myN; i++) 

Centers [mycoord] [] += 
(Group [ i ] . m/Masses [mycoo rd ] ) * (Group [ i ] . pos ) [ ] ; 

( [ ( [g]dM, [g]dN) g] )Cint (Centers) ; 
( [g] UpdateGroup) (Centers, Masses, Group, [g]dM) ; 
for (i=O; i<[g]dM; i++) /* collecting groups */ 

(*Galaxy[i]) [] = [g:I==i]Group[]; 

[net GalaxyNet (m, n[m]) p]Mint (double 

double MassOfMyGroup; 
repl i, j; 
MassOfMyGroup = (*Masses) [I coordof i] ; 
for(i=O; i<m; i++) 

for(j=O; j<m; j++) 
[p:I==i] (*Masses) [j] = 

[p : I==j ]MassOfMyGroup; 
} 

void 
{ 

[net GalaxyNet (m, n[m] ) p]Cint (Triplet 

Triplet MyCenter; 
repl i, j; 
MyCenter = (*Centers) [I coordof i] []; 
for(i=O; i<m; i++) 

for(j=O; j<m; j++) 
[p:I==i] (*Centers) [j] [] = 

[p : I==j ] MyCenter [ ] ; 

(*Masses)[MaxGs]) 

(*Centers) [MaxGs] ) 

This program contains the following external decla- 
rations: 

�9 declarations of the variables M, and t, and arrays N 
and Galaxy located at the virtual host processor; 

�9 declarations of  the variable dM and array dN repli- 
cated over the entire computing space; 

�9 declaration of the network type GalaxyNet; 

�9 declaration of  the basic function Nbody with a sin- 
gle formal parameter infile located at the virtual host 
processor; 

�9 declaration of  the network functions Mint and 
Cint. 

Generally, the network function is called and exe- 
cuted on a certain network or subnetwork; its argu- 
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ments and the return value (if any) are also distributed 
over the same network or subnetwork. The header of 
the declaration of the network function either specifies 
an identifier (within the scope of the file) of a static net- 
work or subnetwork or declares the identifier of the net- 
work that is a special formal parameter of the function. 
In the first case, the function may be called only on the 
network or subnetwork specified; in the second case, it 
may be called on any network or subnetwork of the 
proper type. In any case, no other networks, except for 
that specified in the header of the declaration, can be 
created and used in the body of the network function. 
Only data objects that are located on the network or 
subnetwork associated with a function can be created 
within its body. In addition, the function may use com- 
ponents of external data objects that are located within 
the corresponding domain of the computing space. In 
contrast to basic functions, network (as well as nodal) 
functions can be called concurrently. 

In the program above, the nodal functions Input, 
VisualizeGalaxy, and UpdateGroup are specified; the 
first two of them are associated with the virtual host 
processor. 

The automatic network g, which performs the 
greater part of the computations and communications, 
includes M virtual processors with the relative perfor- 
mances characterized by the square of the number of 
the bodies in the groups that will be analyzed by those 
processors. 

Thus, a more powerful virtual processor will ana- 
lyze a larger group of bodies. Using this information, 
the programming environment builds a suitable map- 
ping of the virtual processor included in the network g 
onto the processors of the computing space. Since this 
is done at runtime, the program does not need to be 
recompiled before executing it on another network. 

The call of ([g]UpdateGroup)(...) initiates concur- 
rent execution of the nodal function UpdateGroup on 
every virtual processor of g. This means that the func- 
tion name UpdateGroup is transformed into the pointer 
to the function distributed over the entire computing 
space, and the operator [g] cuts from this pointer a 
pointer distributed over g. Thus, the value of the expres- 
sion [g]UpdateGroup is a pointer to the function dis- 
tributed over g, and the expression ([g]Update- 
Group)(...) designates a distributed call of the set of 
undistributed functions. 

The network functions Mint and Cint have three 
special formal parameters. The parameter p indicates 
the network on which the function is to be executed. 
The parameter m is treated as an integer variable repli- 
cated over p. The parameter n is treated as a pointer to 
the first element of the array of read-only integers rep- 
licated overp. The actual parameters that correspond to 
these formal parameters are specified by the construct 
([([g]dM, [g]dN)g)] placed on the left of the name of 
the function when it is called from Nbody. 

The execution time of the mpC program was com- 
pared with the execution time of a similar (thoroughly 
written) MPI program. The network consisted of three 
workstations SPARCstation-5 (gamma), SPARCclassic 
(omega), and SPARCstation-20 (alpha) connected by 
10 Mbits Ethernet. In addition to these three, the seg- 
ment of the local network included about 23 more 
workstations. LAM MPI version 5.2 [12] was used as 
the communication platform. 

The computing space consisted of 15 processors: 5 
on each workstation. The dispatcher was executed on 
the gamma station and used the following relative per- 
formances obtained automatically when the virtual 
machine was created: 1150 (gamma), 331 (omega), and 
1662 (alpha). 

The program in MPI was designed so as to minimize 
the communication burden. In all the experiments, nine 
groups of bodies were used. Three processes of the MPI 
program were run on gamma, one process on omega, 
and five on alpha. This mapping is optimal if the num- 
ber of bodies in all groups is the same. 

Two experiments were conducted. In the first one, 
the performance of the mpC and MPI programs were 
compared for homogeneous input data when the num- 
ber of bodies in all groups was approximately the same. 
In essence, this experiment showed how much we pay 
for using mpC instead of MPI. It turned out that the 
execution time of the MPI program was about 95% that 
of the mpC program. That is, in this case, we only lose 
about 5% of the performance. 

In the second experiment, we compared the same 
programs for heterogeneous input data. The groups 
consisted of 10, 10, 10, 100, 100, 100, 600, 600, and 
600 bodies. The execution time of the mpC program is 
independent of the order of these numbers. In all cases, 
the dispatcher maps 

�9 four processes for the virtual processors of the net- 
work g into gamma; these processes compute the data 
for two groups of 10 bodies, one group of 100 bodies, 
and one group of 600 bodies; 

�9 three processes for the virtual processors of the 
network g into omega; these processes compute the 
data for one group of 10 bodies and two groups of 100 
bodies; 

�9 two processes for the virtual processors of the net- 
work g into alpha; these processes compute the data for 
two groups of 600 bodies. 

The simulation time of 15 hours of the galaxy evo- 
lution by the mpC program was 94 s. 

The execution time of the MPI program depends 
heavily on the order of the number of bodies in the 
groups: it varies from 88 s to 391 s when simulating 
15 hours of the galaxy evolution. The figure shows the 
ratio of the execution time of the MPI and mpC programs 
for various permutations of these numbers. All permuta- 
tions can be decomposed into 24 disjoined subsets of the 
same cardinality such that two permutations belong 
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to the same subset if the execution time for them is the 
same. We assume that these subsets are numbered in 
such a manner that the subset with a greater number 
corresponds to the permutations that require a longer 
execution time of the MPI program. In the figure, every 
subset is represented by a column with the height 
equivalent to the ratio of the execution times tMptltmpc. 

It is seen that the execution time of the MPI program 
exceeds (often, substantially) that of the mpC program 
for almost all input data. 

5.2 Regular Applications Developed in mpC 

A salient feature of irregular problems is that they 
can be naturally decomposed into a small number of 
subproblems requiring a different number of computa- 
tions. In turn, this natural decomposition leads to natu- 
ral parallelism in solving the problem: the program can 
be executed as a small number of interacting concurrent 
processes, each of them solving a separate subproblem. 
An example of the irregular problem was considered in 
the preceding section (simulating the galaxy evolution). 

A salient feature of regular problems is that they can 
be naturally decomposed into a relatively large number 
of small homogeneous subproblems that require the 
same amount of computations. Such a decomposition 
leads to natural parallelism in solving the problem: the 
program can be executed as a large number of identical 
small programs running concurrently and interacting 
by means of data exchange. An example of a regular 
problem is that of multiplying dense matrices consid- 
ered in Section 2. The basic idea of solving a regular 
problem on a heterogeneous computer network is in 
reducing it to an irregular problem with the structure 
dependent on the topology of the computer network, 
rather than the natural topology of the problem. This is 
achieved by merging small homogeneous subproblems 
into larger ones; the number of new problems does not 
exceed the number of the available physical processes 
and the amount of computations is proportional to the 
power of those processors. Since mpC makes it possi- 
ble to determine the topology of the computer system at 
runtime, the corresponding program can be written so 
as to execute efficiently on any heterogeneous com- 
puter network without modifying its source code or 
even recompilation. 

In this section, we give an example of solving a 
complex regular applied problem using heterogeneous 
computer networks; more precisely, we present our 
experience in porting an application written in FOR- 
TRAN 77 using PVM (about 3000 lines of source code) 
for the Parsytec PowerXpiorer supercomputer to a net- 
work of heterogeneous workstations. This the problem 
of simulating oil extraction. 

The process of oil extraction under flooding was 
modeled by the following system of differential equa- 
tions [12]: 

tMPI/tmt,C 

4 

0 
5 

I I 

10 15 20 
permutation set 

Speedup obtained for various combinations of the number 
of bodies in groups. 

aSw 
m--~- + div(uw) = qw, 

q+ x Fw(S)--for  sources 

qw = ~ q_ x Fw(Sw)--for sinks 
I 

[ 0---outside of wells. 

(I) 

where 

div(K(S)gradP) = q, (2) 

K(s) -- -k(k'(s) + 
~, lal la2 ] 

(3) 

kl(S)llal 
F(S) = (4) 

kt(S)llaj + k2(S)lla 2" 

The initial values are specified (on the entire oil bed) as 
follows: 

S~,l,=0 = _S, el ,=0 = P0. (5) 

/)Sw = 0, = 0. (6) 
On r 

Here S~,, is the index of water saturation, S O is the 
index of oil saturation, S is the index of bound water 

saturation, S is the index of critical water saturation, uw 
and u o are the filtering rates of water and oil, respec- 
tively, m is the porosity coefficient, k is the absolute 
permeability of the porous medium, k~,(Sw) is the coef- 
ficient of the relative phase permeability of water, 
k,,(S,.) is the coefficient of the relative phase permeabil- 
ity of oil (the relative phase permeabilities are experi- 
mentally obtained functions of the saturation of the dis- 
placing phase), Fw(S w) is the Buckley-Leverette func- 
tion for the displacing phase, law and /-to are the 
coefficients of the dynamic viscosity of water and oil, 
respectively, q (q_ and q. are distinguished) are the vol- 
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Table 1, Performance of the parallel FORTRAN program implementing the implicit algorithm for solving the oil extraction 
problem executed on the multiprocessor system Parsytec PowerXplorer in the PARIX programming environment 

Number of processors to Number of iterations Time (in s) Speedup Efficiency 

1 

2 

4 

8 

1.197 

1.2009 

1.208 

1 .22175  

205 

211 

214 

226 

120 

64 

38 

26 

1 

1.875 

3.158 

4.615 

100% 

94% 

79% 

58% 

ume sources and sinks of liquid (q_ is the volume of liq- 
uid extracted from the production well in the unit time 
and q§ is the volume of liquid pumped in the injection 
well; outside the wells, q = 0), qw is the source (sink) of 
water saturation, qo is the source (sink) ofoil saturation, 
t is the time, and P is the pressure in the bed (identical 
for both phases, since capillary forces are not taken into 
account). 

Equations (1), (2) provide a model for the filtration 
of two-phase liquid (consisting of oil and water) 
through a porous medium in the water pressure mode. 
Equation (1) describes the transport of water saturation, 
and (2) is the diffusion (elliptic) equation for the pres- 
sure in the bed. This system of equations is solved for 
Sw (the water faction in the two-phase liquid) and the 
pressure P. 

The numerical solution was sought in a symmetrical 
domain cut from the infinite homogeneous oil bed; on 
the boundary of this domain, the natural condition of 
zero flows is set. The numerical algorithm is based on 
explicit methods; namely, equation (1) was solved by 
the iterative secant method; equation (2) was solved by 
the iterative (r 13) algorithm [12]. To improve the con- 
vergence rate of the (ct - [3) algorithm, a relaxation 
parameter was included in the equations for certain 
sweep method coefficients. 

The parallel implementation of the algorithm for 
executing on homogeneous multiprocessor systems 
was based on the decomposition of the computational 
domain (data parallelism): the domain was decom- 
posed into subdomains of identical size along the Y- 
coordinate, and the computations for every subdomain 
were conducted concurrently by different processors of 
the supercomputer. This decomposition turned out to be 
more efficient than the decomposition along the X- 
coordinate and than the decomposition along both 
coordinates, since it requires a less intensive data 
exchange between the processors. In every subdomain, 
the system of equations (1), (2) was solved as follows. 

Table 2. Relative performance of workstations 

Number of the workstation 1 2 3-4 5-7 8-9 
Performance 1150 575 460 325 170 

For every time layer, water saturation was obtained by 
solving equation (1) using the values of the pressure 
obtained for the preceding time layer. This value of 
water saturation was then used to calculate the new 
value of the pressure for the current time layer by solv- 
ing equation (2). Then, this procedure was repeated for 
the next time layer. 

The main difficulty of this parallel algorithm lay in 
determining the optimal relaxation parameter for the 
(ix - 13) algorithm, since this parameter depends on the 
number of subdomains in the decomposition. The use 
of nonoptimal values of the relaxation parameter 
resulted in a considerable increase in the number of 
iterations, and even in the loss of convergence of the 
algorithm. The optimal value of the relaxation parame- 
ter for various numbers of subdomains in the decompo- 
sition was found by numerous experiments. 

This algorithm was implemented in FORTRAN 77 
with the use of the communication library PVM. It 
demonstrated remarkable scalability, speedup, and effi- 
ciency of parallelization when executed on the parallel 
computer Parsytec PowerXplorer--a multiprocessor 
system based on PowerPC-601 processors used as 
computation nodes and transputers T800 as communi- 
cation nodes (a T800 transputer transfers data at the 
rate of 20 Mbit/s via 4 bi-directional links). 

Table 1 presents the computation results for the first 
time layer. The efficiency of parallelization was deter- 
mined as (Sreal/Sideal) * 100%, where S,~a t is the actual 
speedup due to parallelization and Sidea t is the ideal 
speedup that might be achieved on the parallel com- 
puter system. The latter was determined as the ratio of 
the sum of the performances of the processors of the 
system to the performance of the base processor. The 
speedup was calculated relative to the execution time of 
the basic sequential program on the base processor. 
Note that the efficiency of parallelization is greater the 
faster the communication links and the slower the pro- 
cessors are. 

The program under discussion was designed as a 
part of a portable software system able to work both on 
supercomputers and local networks of heterogeneous 
computers. Thus, a portable version of the program was 
needed to simulate oil extraction using computer net- 
works. 
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Table 3. Performance of the parallel FORTRAN/PVM program modeling the oil extraction process run on subnetworks of 
workstations 

Subnetwork 
(numbers of 

workstations) 

12,51 

{5,6} 

12,5-7] 

{2-71 

/2,3,5-81 

{I-81 

(o 

1.2009 

1.2(X)9 

1.208 

1.21485 

1.21485 

1.22175 

Number of iterations 

211 

211 

214 

216 

216 

226 

Time (s) 

46 

47 

36 

32 

47 

46 

Ideal speedup 

1.57 

2.0 

2.7 

4.3 

3.8 

3.3 

Actual speedup 

0.88 

1.52 

1.13 

1.27 

0.87 

0.41 

Efficiency 

0.56 

0.76 

0.42 

0.30 

0.23 

0.12 

Table 4. Execution time of the sequential program simulating oil extraction when run on different workstations 

Ultra SPARC SPARC SPARC SPARC 
Processor SPARC- I 20 station 4 5 classic 

8 9 Workstation 

Iterations 

Time (s) 

2 3 4 5 ] 6 7 

205 

18 .5  4 0 . 7 1 5 1 . 2  51.2 71.4 ] 71.4 71.4 133 133 

As the first step of the development, the available 
FORTRAN/PVM program was ported (without any 
modifications) to the local network based on 10 Mbits 
Ethernet and consisting of 9 single-processor SUN 
workstations. To compare the performance of this net- 
work with the performance PowerPC-601 used in Par- 
sytec PowerXplorer note that the least powerful work- 
station (SPARCclassic) executes the sequential pro- 
gram a bit more slowly than PowerPC-601, and the 
most powerful workstation (UltraSPARC- 1 ) executes it 
more than six times as fast. The relative performances 
of the workstations (for the oil extraction problem) are 
presented in Table 2 (the workstations are assigned 
numbers used in the following tables). 

Table 3 presents the results obtained when executing 
the FORTRAN/PVM program for a single time layer 
on different subnetworks of the network consisting of 
two, four, six, and eight workstations. The results 
include the value of the relaxation parameter and the 
corresponding number of 13-iterations, the execution 
time, the ideal and actual speedup, and the efficiency of 
using the subnetwork. The speedup was calculated rel- 
ative to the execution time of the sequential program on 
the most powerful workstation of the subnetwork (the 
execution time of the sequential program on different 
workstations is presented in Table 4). The noticeable 
decrease in the efficiency of parallelization as com- 
pared to Parsytec PowerXplorer is due to three reasons: 
slower communication lines, more powerful proces- 
sors, and unbalanced workload of processors of differ- 
ent performance. 

The modified algorithm is very difficult to imple- 
ment in portable form using PVM. The cause is that 
PVM, much like other message-passing libraries and 
HPF, does not support means for creating groups of 
processes depending on their relative performance. For 
this reason, the algorithm for simulating the oil extrac- 
tion process was developed in mpC. This program 
determines (at runtime) the number and relative perfor- 
mance of the available processors, creates a group of 
processes such that every process is run by a separate 

While the first two reasons are inevitable, the third 
one can be worked around by modifying the parallel 
algorithm underlying the FORTRAN/PVM program. 
Namely, to achieve the optimal workload of the proces- 
sors, the computational domain is decomposed into 
subdomains of different size proportional to the perfor- 
mance of the processors that do the computation for 
them. More precisely, as a result of this decomposition, 
every subdomain contains the same number of columns 
of the grid, but a different number of rows. As to the 
relaxation parameter, it is reasonable to assume that its 
optimal value depends on the number of rows of the 
computational grid and use a specific value for each 
subdomain: co = tO(Nrow). We experimentally found a 
sequence of optimal values of the relaxation parameter 
for certain values of Nr,,~,,. Then, for an arbitrary N~,~, 
the value of co was found by piecewise linear interpola- 
tion. Note that this approach yields a rather high con- 
vergence rate of the parallel (o~ - 13) algorithm with 
relaxation (see the column "Number of iterations in 
Table 5). 
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Table 5. Execution time of the 

Subnetwork 
(numbers of 

workstations) 

12,51 

{5,6} 

{2,5-7} 

12-7} 

12-8} 

{2-81" 

{2-9} 

Number of 
iterations 

324 

225 

LASTOVETSKY et al. 

mrallel program simulating oil extraction when run on different subnetworks of workstations 

Time (s) Actual 
speedup 

0.98 

1.84 

Efficiency 

0.63 

0.92 

Time for 205 
iter. (s) 

28.2 

36.4 

Speedup for 
205 iter. 

1.44 

1.96 

279 

245 

248 

260 

268 

41.6 

38.8 

1.57 

2.27 

2.01 

0.58 

0.54 

0.54 

26 

17.9 

20.2 

1.24 

1.94 

0.33 

0.40 

19.7 

15 

17 

26.8 

16 

2.07 

2.71 

2.39 

1.52 

2.54 

32.8 

21 

Efficiency for 
205 iter. 

0.92 

0.98 

0.77 

0.63 

0.64 

0.40 

0.53 

* The computational domain was distributed into equal subdomains. 

processor, and distributes data and computations pro- 
portionally to the relative performance of processors. 
We note that the mpC program not only suggests new 
functional capabilities, but is also three times shorter 
(in terms of the source code) compared to the original 
FORTRAN/PVM program. 

On heterogeneous computer networks, the mpC 
program demonstrates moderate speedup and effi- 
ciency of parallelization (see Table 5), which are, how- 
ever, much higher than those of the program written in 
FORTRAN/PVM (see Table 3). Despite the number of 
iterations being increased, the mpC program is exe- 
cuted more quickly thanks to the optimization of data 
exchange and, most importantly, thanks to the balanced 
workload of processors (cf. the column "Time" in 
Tables 5 and 3). To evaluate the net gain obtained by 
balancing the workload, the mpC program was exe- 
cuted on the same subnetwork consisting of the work- 
stations number 2, 3, 5, 6, 7, and 8 twice. The first time, 
data were distributed according to the relative perfor- 
mance of the processors and the second time, the data 
were distributed uniformly. In the second case, the exe- 
cution time was 1.5 times as long, and the speedup and 
efficiency of parallelization decreased correspondingly 
(marked by an asterisk in Table 5). 

The moderate efficiency of parallelization of the 
mpC program can be largely explained by particulari- 
ties of adaptation of the (t~ - 13) algorithm with relax- 
ation to heterogeneous networks. This algorithm is very 
sensitive to the accuracy of evaluating the values of 
and the approximate procedure described above yields 
reasonable, but not the best possible, result. The num- 
ber of iterations required for the convergence of the 
parallel algorithm is considerably different from that in 
the sequential algorithm. Thus, it would be interesting 
to compare the execution time required to perform 205 
iterations (this number of iterations is required for the 
13 process to converge when run by a single processor). 

The corresponding data are presented in Table 5, which 
shows that if we were able to avoid increasing the num- 
ber of iterations (e.g., by a more accurate evaluation of 
the relaxation parameters), we could achieve remark- 
able speedup and parallelization efficiency for the mpC 
program simulating oil extraction. 

6. RELATED WORKS 

To our knowledge, all software systems designed 
for developing programs to be run on networks possess 
the following common property: either the programmer 
does not have the means for describing the virtual par- 
allel system on which the program is to be run or these 
means are insufficient for determining an efficient dis- 
tribution of computations and communications over the 
target network. Even topological capabilities of MPI 
(including MPI-2 [13]) are insufficient for solving this 
problem. For this reason, to guarantee that the program 
will be efficiently executed on a particular network, the 
user must employ means that are external relative to the 
language, such as the load scheme or application 
scheme [14]. If the user knows the topology of the tar- 
get network (i.e., its structure and performance of the 
processors and communication lines) and the topology 
of the program (i.e., its parallel structure), then he can 
use configuration files to map the processes of the pro- 
gram onto the network processors so as to guarantee the 
most efficient execution. There exist systems that sup- 
port this type of static distribution [ 15]. However, if the 
topology of the program becomes known only at runt- 
ime (e.g., depends on the initial data), this approach is 
inapplicable. There exist systems [16, 17] that realize 
some functions inherent in distributed operating sys- 
tems: they try to take into account inhomogeneity of 
processor performances when managing tasks to maxi- 
mize the performance of the computer network consid- 
ered as a single computer. In contrast to these systems, 
mpC is designed to minimize the execution time of a 

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000 



A LANGUAGE AND PROGRAMMING ENVIRONMENT 235 

particular parallel program executed on a network, 
which is the most important thing for end users. 

7. CONCLUSIONS 

Computer network is the most general parallel 
architecture. The paper describes the mpC program- 
ming language and programming environment 
designed for developing efficiently portable modular 
programs to be run on computer networks. 

The most important characteristics of mpC are as 
follows: 

�9 mpC programs execute efficiently on any com- 
puter network without changes to the source code (we 
call this the efficient portability property); 

�9 mpC makes it possible to develop programs that 
can not only can adapt to the normal performance of the 
processors, but also redistribute the computations and 
communications, depending on the dynamic variations 
of the processor workload in the network. 

We have been experimenting with mpC for over two 
years and have developed a technology of using it for 
high-performance computations on heterogeneous net- 
works. This technology was applied to solving the fol- 
lowing problems. 

�9 Efficient use of available parallel software 
designed for supercomputers on heterogeneous com- 
puter networks. The interface between mpC and ScaL- 
APACK that makes it possible to use the latter on het- 
erogeneous networks provides an example (for details, 
see Section 4). The development of the interface took 
about a week, and porting a complex ScaLAPACK pro- 
gram to heterogeneous networks (using this interface) 
took several days. 

�9 Rewriting parallel programs designed for super- 
computers in mpC to be efficiently executed on hetero- 
geneous networks. An example of such a problem is 
porting the program for simulating oil extraction from 
the supercomputer Parsytec to the network of worksta- 
tions (for details, see Section 5.2). Originally, the pro- 
gram was written in FORTRAN 77 with calls of PVM. 
Developing the corresponding mpC program took 
about two weeks. This mpC program, which runs on a 
network consisting of eight workstations, is three times 
as fast as its FORTRAN/PVM analogue on this net- 
work and is twice as fast as the FORTRAN/PVM pro- 
gram that runs on the eight-processor segment of the 
supercomputer Parsytec. 

�9 Parallelization of sequential programs for running 
on heterogeneous networks. For example, a parallel 
version of the classic adaptable FORTRAN program 
for numerical integration quanc8 [13]. This program 
uses the quadrature Newton~Cotes formula of the 
eighth order. In the case of complex (in terms of numer- 
ical computation) integrand functions, this mpC pro- 
gram considerably speeds up the computation of defi- 
nite integrals using computers available in a local net- 
work. Note that this program automatically 

redistributes computations performed by computers 
depending on their current workload. The development 
of this program took two days. 

�9 Developing original mpC programs. For example, 
we developed a parallel program for simulating the 
evolution of a system of bodies under Newtonian grav- 
ity attraction force (for details, see Section 5.1). This 
program demonstrated a considerable speedup (by 
many times) as compared to a thoroughly written MPI 
program that did not take heterogeneity into account. 

We continue the work on mpC and its programming 
environment. The purpose of this work is to achieve the 
highest possible efficiency for a wide range of com- 
puter networks (including clusters of supercomputers 
and wide area networks) and to improve the program 
model. 
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