
Programming and Computer Software, Vol. 26, No. 4, 2000, pp. 216-236.
Original Russian Text Copyright �9 2000 by Lastovetslo; Kalinov, Ledovskikh, Arapov, Posypkin.

A Language and Programming Environment
for High-Performance Parallel Computing

on Heterogeneous Networks
A. L. Lastovetsky, A. Ya. Kalinov, I. N. Ledovskikh, D. M. Arapov, and M. A. Posypkin

Institute of System Programming, ul. Bol'shaya Kommunisticheskaya 25, Moscow, 109004 Russia

Abstract--An mpC language designed specifically for programming high-performance computations on het-
erogeneous networks is described. An mpC program explicitly defines an abstract computing network and dis-
tributes data, computations, and communications over it. At runtime, the mpC programming environment uses
this information and that about the actual network to distribute the processes over the actual network so as to
execute the program in the most efficient way. Experience in using mpC for solving problems on local networks
consisting of heterogeneous workstations is discussed.

1. INTRODUCTION

Several years ago, only the so-called supercomput-
ers were classified as high-performance parallel com-
puter systems (they were divided into symmetrical
multiprocessors (SMP) and massively parallel proces-
sors (MPP)). Parallel computing on networks consist-
ing of workstations and personal computers were use-
less, since they could not speed up the process of solv-
ing most problems that were due to the low
performance of standard network hardware. However,
beginning with the 1990s, the rate of performance
growth of the network hardware became greater than
that of processors (see l, pp. 6-7]. Modem network
technologies, such as Fast Ethemet, ATM, Myrinet, and
others allow data exchange between computers at the
rate of hundreds of megabits, or even several gigabits
per second. In this situation, not only parallel comput-
ers, but also conventional local and even wide area net-
works can be used as systems for high-performance
parallel computing. The strategic initiative announced
by the US president and supported by leading telecom-
munications and computer companies aimed to
increase the rate of data exchange on the Intemet a
thousand-fold marks a tendency to networked high-per-
formance parallel computing.

Thus, computer networks are presently the most
available and widespread parallel architecture; often,
they make it possible to speed up the process of solving
certain problems without having to purchase a more
powerful computer, but through the use of available
computers connected in a network by modem hard-
ware. Networked parallel computing is retarded only
by the absence of the proper software. The point is that,
in contrast to supercomputers, networks are inherently
heterogeneous: they include various computers with
different performance levels, and the network hardware

is often diversified as well. Thus, the rate of data
exchange between different processors is not the same.
As a rule, a program written for a (homogeneous)
supercomputer is executed on a heterogeneous network
with the same speed as it would be on a homogeneous
network consisting of processors that are equivalent (in
terms of performance) to the slowest processor of the
heterogeneous network and the number of which is the
same as the number of processors in the heterogeneous
network. This is due to the fact that parallel programs
distribute data, computations, and communications
over the network without regard for differences in the
performance of processors and communication links.
As a result, networks are rarely used for high-perfor-
mance parallel computing.

At the present time, the most widespread tools for
parallel programming for networks are MPI (Message
Passing Interface) [2], PVM (Parallel Virtual Machine)
[3], and HPF (High Performance Fortran) [4].

PVM and MPI are libraries designed for passing
messages; in essence, they provide tools for low-level
(Assembler) parallel programming. For this reason,
developing real (useful and complex rather than model)
programs is very difficult and requires highly qualified
programmers. In addition, these libraries were not
designed for developing adaptable parallel programs
(i.e., programs that can distribute computations and
communications depending on input data and specific
features of a particular heterogeneous network). Cer-
tainly, due to the low level of these libraries, it is possi-
ble to develop a specialized runtime system that can
make a program adaptable; however, such a system is
often too complex and its development is beyond the
capabilities of most users.

HPF (High Performance Fortran) is a parallel high-
level language designed for programming (homoge-

0361-7688/00/2604-0216525.00 �9 2000 MAIK "Nauka / Interperiodica"

A LANGUAGE AND PROGRAMMING ENVIRONMENT 217

neous) supercomputers. The only parallel architecture
available in HPF is a homogeneous multiprocessor with
very fast communication links between its processors.
HPF supports neither irregular and inhomogeneous
data distribution nor middle-sized block parallelism. A
typical compiler translates an HPF program into PVM
or MPI, and the programmer cannot balance processes
in the target message-passing program. Besides, HPF is
very difficult to compile. Even the best HPF compilers
produce a code that is 2 or 3 times slower than the man-
ually written MPI program when executed on homoge-
neous clusters of workstations (see proceedings of the
conference of HPF users [5], held in June 1998 in
Porto, Portugal). For these reasons, HPF is not very
well suited for programming networked parallel com-
puting.

Thus, new specially designed tools are required to
efficiently use available heterogeneous networks as
parallel distributed memory computer systems.

In this paper, we describe the first language (and the
corresponding programming environment) specifically
designed for programming heterogeneous networks,
which we called mpC. It is an extension of ANSI C.
Similarly to HPF, it includes a vector subset [6]. The
available languages for parallel programming are
designed for programming regular parallel architec-
tures. These architectures can be described by a small
number of parameters. Due to regularity, the target
architecture can be implicitly built in these languages.
This conventional approach is not suitable for design-
ing a parallel language for developing programs to be
executed on heterogeneous networks, since this archi-
tecture has no regular structure. The basic idea of mpC is
to provide language constructs that make it possible for
the user to define an abstract heterogeneous parallel
machine that is best suited for executing a specific algo-
rithm. This information, together with information about
the actual parallel system, is used by the mpC program-
ming environment to efficiently execute the correspond-
ing program on the particular parallel system.

The paper is organized as follows. Section 2 con-
tains an introduction to mpC. Section 3 gives a brief
description of implementation principles. In Section 4,
problems of evaluating characteristics of the parallel
computer system on which the program is to be exe-
cuted are discussed. Section 5 presents the experience
in developing real applications in mpC. Section 6
describes related works, and Section 7 contains conclu-
sions.

2. INTRODUCTION TO MPC

The mpC language includes a notion of computing
space that is defined as a set of available virtual proces-
sors of various performance characteristics; the proces-
sors are connected by communication links of various
transmission rates.

The concept of a network object or just a network is
fundamental for mpC. The network comprises virtual
processors of various performances; the processors are
connected by communication links of various transmis-
sion rates. The network is a domain in the computing
space that can be used for evaluating expressions and
executing various statements and instructions.

Allocating and de-allocating network objects in the
computing space is done similarly to allocating and de-
allocating data objects in memory in the C language.
From the conceptual point of view, the creation of a
new network is initiated by a processor of the existing
network. This processor is called the parent of the net-
work to be created. The parent always belongs to the
created network. The only processor that is defined
from the beginning to the end of the program execution
is a predefined virtual host processor.

Every network object declared in the program
belongs to a certain type. The type specifies the num-
ber, types, and performance characteristics of the pro-
cessors, communication links between them, transmis-
sion rates over those links, and the network parent. For
example, the following declaration declares the net-
work type Rectangle, describing networks consisting of
four virtual processors of different performances con-
nected in a rectangle by undirected links of the standard
transmission rate.

/* Line 1 */ nettype Rectangle {

/* Line 2*/ coord I=4;

/* Line 3"/ node { I>=0 : I+l; };

/* Line 4*/ link {

/* Line 5*/ I>O: [I]<->[I-l];

/* Line 6*/ I==0: [I]<->[3];

/* Line 7"/ };

/* Line 8*/ parent [0];

/* Line 9"/ };

Here line 1 contains the header (name) of the net-
work type declaration.

Line 2 contains the declaration of the reference
frame for processors. It introduces the integer coordi-
nate variable I that can take values in the range from 0
to 3.

Line 3 declares the processor nodes. It defines the
location of the processors in the reference frame
defined and declares their types and performances.
Line 3 corresponds to the predicate "for all 1 < 4, if I >
0, then the virtual processor located at the node [I] has
the performance I + 1 "' The expression I + 1 is called
the performance specifier. Greater numbers correspond
to greater performances. In our example, the virtual
processor 0 is two times as slow as processor 1, three
times as slow as processor 2, and four times as slow as
processor 3. For any network of this type, the informa-
tion given in the declaration makes it possible to assign
to each virtual processor a weight normalized relative
to the parent node.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

218 LASTOVETSKY et al.

Lines 4-7 contain the declaration of links between
the processors. Line 5 corresponds to the predicate "for
all ! < 4, if ! > 0, then there exists an undirected link of
the normal transmission rate between the processors
located at the points [/] and [I - 1]." Line 6 corresponds
to the predicate "for all I < 4, if I ==0, then there exists
an undirected link of the normal transmission rate
between the processors located at the points [/] and
[3]." Note that if no link between two processors is
explicitly specified, then it is assumed that there exists
a link between them with a minimal (for this network)
transmission rate.

Line 8 contains the declaration of the parent; it spec-
ifies that the parent processor be located at the point [0]
of the network created.

Having declared a network type, we may declare an
identifier of the corresponding type. For example, the
declaration

net Rectangle rl;

declaresrl as the network object of type Rectangle.
The concept of a distributed object is defined in the

style of the languages C* [7] and Dataparallei C [8]. By
definition, a data object distributed over a domain of the
computing space consists of conventional (not distrib-
uted) objects of the same type (called the components
of the distributed data object) located at the processor
nodes of this domain so that every processor node
stores exactly one component. For example, the decla-
rations

net Rectangle rl;
int [*]Derror, [r2]Da[lO];
float [host]f, [r2:I<2]Df;
repl [*]di;

declare the following variables:
�9 the integer variable Derror distributed over the

entire computing space;
�9 the array Da of ten integers distributed over the

network rl;
�9 the nondistributed floating point variable f stored

on the node of the virtual host processor;
�9 the floating point variable D f distributed over a

subnetwork of the network rl;
�9 the integer variable di replicated over the entire

computing space. A distributed object is called repli-
cated if its components are equal to each other.

The concept of the distributed value is defined sim-
ilarly to that of the distributed data object.

In addition to a simple network type, it is possible to
declare a parameterized family of network types, called

a topology or parameterized network type. For exam-
ple, the following declaration declares the topology
Ring describing networks comprising n virtual proces-
sors connected in a ring by undirected links of the nor-
mal transmission rate.

/* Line 1 */ nettype Ring (n, pfn]) {

/* Line 2*/ coord I=n;

/* Line 3"/ node [

/* Line 4*/ I>=0: p[I];

/* Line 5*/ };

/* Line 6*/ link [

/* Line 7*/ I>O: [I]<->[I-l];

/* Line 8*/ I==O: [I]<->[n-l];

/* Line 9"/ };

/* Line I0"/ parent [0];

/* Line ii*/ };

Line 1 contains the header of the declaration: it
declares the integer parameter n and the vector param-
eter p consisting of n integers. The coordinate variable
I runs through values from 0 to n - 1. Line 4 corre-
sponds to the predicate "for all 1 < n, if 1 >= 0, then the
virtual processor with the relative performance p[/] is
located at the point [/]" and so on.

Having declared a topology, we can declare an iden-
tifier of the network object of this type. For example,
the fragment

repl [*]m, [*]n[lO0];

/* Computation m, n[O] n[m-l] */

net Ring(re, n) rr;

declares the identifier rr of the network object; the type
of this object is completely defined only at runtime. The
network rr consists of m virtual processors; the relative
performance of the ith processor is defined by the value
ofn[i].

Every network object is characterized by the class of
the computing space that is allocated to it; this class
determines the lifetime of the object. The computing
space can be allocated statically or dynamically. The
computing space for a static network is allocated only
once. Being created, the network exists up to the termi-
nation of the program. If a network is declared as auto-
matic, a new instance is created every time the program
execution reaches the block in which the network is
declared and destroyed when this block is exited.

Consider a simple mpC program that calculates the
product of two dense square matrices X and Y; the pro-
gram uses several virtual processors, each of which cal-
culates a part of the rows of the resulting matrix Z.

/* 1 */ #include <stdio.h>
/* 2*/ #include ~stdlib.h>
/* 3*/ #include <mpc.h>
/* 4*/ #define N 1000
/* 5*/ void [host]Input(), [host]Output();
/* 6*/ nettype Star(m, n[m]) {

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

A LANGUAGE AND PROGRAMMING ENVIRONMENT 219

/* 7*/ coord I=m;
/* 8*/ node { I>=O: n[I]; };
/* 9*/ link { I>O: [O]<->[I]; };
/* i0"/ };
/* ii*/ void [*]main()
/* 12"/ {
/* 13"/ double [host]x[N][N], [host]y[N][N], [host]z[N][N];
/* 14"/ repl int nprocs;
/* 15"/ repl double *powers;

/* 16"/Input (x, y) ;
/* 17*/ MPC_Processors (&nprocs, &powers) ;
/* 18"/ {
/* 19"/ repl int ns [nprocs];
/* 20*/ MPC_Partition_Ib(nprocs, powers, ns, N);
/* 21"/ {
/* 22*/ net Star(nprocs, ns) w;
/* 23*/ int [w]myn;
/* 24*/ myn=([w]ns)[I coordof myn];
/* 25*/ {
/* 26*/ repl int [w]i, [w]j;
/* 27*/ double [w]dx[myn] [N], [w]dy[N] [N], [w]dz[myn] [N];
/* 28*/ dy[]=y[];
/* 29*/ dx[]=::x[];
/* 30*/ for(i=O; i<myn: i++)
/* 31"/ for(j=O; j<N; j++)
/* 32*/ dz[i] [j]=[+] (dx[i] []*(double[*] [N:N]) (dy[O]+j) []);
/* 33*/ z[]::=dz[];
/* 34*/]
/* 35*/]
/* 36*/ Output(z);
/* 37*/ }
/* 38*/ }

The program includes five functions: main, speci-
fied in the above fragment; Input and Output, specified
in a different source file; and library functions
MPC_Processors and MPC_Partition_lb. The func-
tions Input and Output are declared in line 5, and
MPC_Processors and MPC_Partition_lb are declared
in the file mpc.h.

In general, mpC admits three classes of functions. In
our example, functions of all three classes are used:
main falls into the class basic functions, Input and Out-
put to the class of network functions, and
MPC_Processors and MPC_Partition_Ib to the class
of nodal functions.

The call to a basic function is always a total expres-
sion (i.e., it is calculated on the entire computing space;
no other computations can be performed concurrently
with the calculation of a total expression). Its argu-
ments (if any) either belong to the host processor or are
distributed over the entire computing space, and the
return value (if any) is distributed over the entire com-
puting space. In contrast to functions of other types,
basic functions can include declarations of networks.
The construct [*] in line I 1 placed before the identifier

main indicates that this is the identifier of a basic func-
tion.

A nodal function can be completely executed on a
single processor of the computing space. In a nodal
function, only local data objects of the virtual processor
where this function belongs can be created; in addition,
components of external data objects belonging to this
processor can be used. The declaration of a nodal func-
tion identifier does not require any additional specifica-
tions. From the mpC point of view, all normal C func-
tions belong to this class.

Generally, a network function is called and executed
on a domain of the computing space, and the arguments
and the return value of this function (if any) are also
distributed over the same domain. Two network func-
tions can be executed concurrently if the domains in
which they are called do not overlap. The functions
Input and Output are examples of the simplest form of
network functions that can only be called on a statically
defined domain of the computing space. They are
declared in line 5 as network functions that can only be
called on the virtual host processor (this is indicated by
the construct [host] that appears before the function

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

220 LASTOVETSKY et al.

identifiers). Thus, the calls to these functions in lines 16
and 36 are performed on the virtual host processor.

Lines 11 trough 38 contain the definition of the
function main. In line 13, the arrays x, y, and z located
at the virtual host processor are declared.

Line 14 declares the integer variable nprocs repli-
cated over the entire computing space. Its distribution
is set by default, without using the construct [*]. In gen-
eral, the default distribution is defined by the distribu-
tion of the smallest block that contains the declaration
in question and has an explicit distribution specifica-
tion. The declaration in line 14 appears in the body of
the function main, for which the distribution over the
entire computing space is explicitly specified.

Line 15 declares the variable powers as a pointer to
a floating point number distributed over the entire com-
puting space. This declaration specifies that all distrib-
uted data objects referenced by powers are replicated.

In line 17, the library function MPC_Processors is
called on the entire computing space. This function
returns the number of physical processors and their per-
formances (the mechanism used to evaluate the perfor-
mance of processors is described in Section 4). Thus,
after this function is executed, the replicated variable
nprocs contains the actual number of physical proces-
sors, and the replicated array powers contains their per-
formances.

Line 19 declares the dynamic integer array ns repli-
cated over the entire computing space. All components
of this array consist of the same number of elements
nprocs.

The library nodal function MPC_Partition_Ib is
called on the entire computing space. This function
uses the performance characteristics of the physical
processors to evaluate the number of rows of the result-
ant matrix that will be calculated by each of the physi-
cal processors. Thus, after the execution of this func-
tion, ns[i] contains the number of rows to be calculated
by the ith physical processor. MPC_Partition_Ib
divides the given integer (N in our example) into parts
in the given proportion.

In line 22, an automatic network w consisting of
nprocs virtual processors is declared. The relative per-
formance of the ith virtual processor is determined by
ns[i]. Thus, the type of this network is completely
defined only at runtime. This network, which performs
the remaining computations and data exchange, is
defined so as to assign a greater number of rows to be
calculated to more powerful virtual processors. The
mpC programming environment makes an optimal
mapping of the virtual processors constituting the net w
onto the set of processes that constitute the computing
space. Thus, exactly one process of all processes exe-
cuted by each physical processor will participate in
multiplying matrices, and the more powerful the pro-
cessor, the greater the number of rows that will be cal-
culated by this processor.

Line 23 declares the variable myn distributed over w.

The result of the binary operation coordofin line 24
is an integer value distributed over w; every component
of this value is the coordinate ! of the virtual processor
where this component resides. The right-hand operand
of this operation is not calculated, but is used to specify
the domain of the computing space. Note that the coor-
dinate variable I is interpreted as an integer variable
distributed over the computation domain. Thus, after
the execution of the statement in line 24, every compo-
nent of myn contains the number of rows of the result-
ing matrix that are calculated by the virtual processor
where this component resides.

Line 26 declares the integer variables i and j repli-
cated over the network w.

Line 27 declares three arrays distributed over the
network w. The type dy is declared statically as an array
of N arrays consisting of N floating point numbers each.
The types dx and dz are declared dynamically as arrays
of myn arrays consisting of N floating point numbers
each. We note that the dimension myn of dx and dz is
different for different components of these arrays.

Line 28 includes an unusual unary postfix operator
[]. The point is that, strictly speaking, mpC is an exten-
sion of the vector extension of ANSI C called C[] [14],
where the concept of a vector considered as an ordered
sequence of a certain type of values was introduced. In
contrast to an array, a vector is a new type of value
rather than a data object. In particular, the value of an
array is a vector. The operator [] was introduced to
access the array as a whole. The operand of this opera-
tion is of the type "array," and it blocks the transforma-
tion of the operand to the pointer type. Thus, y[] desig-
nates the array y as a single object, and dy[] designates
the distributed array dy as a single object.

The statement in line 28 sends the matrix Yfrom the
parent of the network w to all its virtual processors. As
a result, every component of the distributed array refer-
enced by dy will contain this matrix. Generally, if the
left-hand side operand of the statement = is distributed
over a certain domain of the computing space R, the
value of the right-hand side operator belongs to a
domain of the computing space that includes R and the
assignment can be performed without type casting, then
the execution of the statement consists in sending the
value of the right-hand side operand to every virtual pro-
cessor of the domain R where it is assigned to the corre-
sponding component of the left-hand side operand.

The statement in line 29 sends the matrix X from the
virtual host processor to all virtual processors of the
network w. As a result, every component of dx contains
the corresponding portion of the matrix X.

In the general case, the first operand of the four-
place operation =:: must be an array distributed over a
certain domain R consisting of NP virtual processors.
The remaining operands (the second and the third oper-
ands are optional) are not distributed and belong to the
same processor. The second operand is optional; if it is
present, then it must either point to the initial element

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

A LANGUAGE AND PROGRAMMING ENVIRONMENT 221

of an integer array consisting of NP elements or to an
integer array consisting of NP elements. The third oper-
and is optional; if it is present, then it must either point
to the pointer to the initial element of an integer array
consisting of NP elements such that the value of its ith
element is not greater than the number of elements of
the ith component of the first operand, or point to an
array of this type. The fourth operand must be an array
consisting of elements of a type that can be assigned to
any elements of any component of the first operand
without type casting.

Execution of the operation el = e2:e3:e4 consists in
cutting from the array e4 subarrays consisting of NP
elements (maybe overlapping) and sending the value of
the ith subarray to the ith virtual processor of the
domain R, where it is assigned to the corresponding
component of the distributed array el . The offset of the
ith subarray relative to the initial element of e4 is spec-
ified by the value of the ith element of e2 and its length
is specified by the value of the ith element of e3.

If e3 points to the NULL pointer, then the operation
is performed as if *e3 pointed to the initial element of
the N-element integer array with the ith element equal
to the length of the ith component of the distributed
array el. Moreover, in this case, such an array is actu-
ally created as a result of the execution of the operation,
and the pointer to its initial element as assigned to *e3.

If e2 points to the NULL pointer, then the operation
is performed as if *e2 pointed to the initial element of
the N-element integer array with the 0th element equal
to 0 and the ith element equal to the sum of the value of
its (i - l)th element and the value of the ith element of
e3. Moreover, in this case, such an array is actually cre-
ated as a result of the operation being executed, and the
pointer to its initial element as assigned to *e2.

The second operand can be omitted. In this case, the
operation is performed as if e2 pointed to the NULL
pointer. The only difference is in that the NP-element
array created in the process of execution is freed.

The third operand can be omitted. In this case, the
operation is performed as if e3 pointed to the NULL
pointer. The only difference is that the N-element array
created in the process of execution is freed.

Thus, the statement dx[] =:: x[] in line 29 results in
dividing the N-element array x consisting of arrays of N
floating point numbers into nprocs subarrays such that
the length of the ith subarray equals the value of the
component of myn belonging to the ith virtual proces-
sor (i.e., it is equal to [w: I == i]myn). The same opera-
tion will be performed more quickly if it is written in
the form dx =: &ns : x, which makes it possible to avoid
additional (and redundant in this case) data transmis-
sion and computations necessary for the formation of
the omitted operands.

The asynchronous fragment in lines 30-32 (i.e. the
set of statements that do not require data exchange
between the virtual processors) concurrently calculates

the corresponding portion of the resulting matrix Z on
every virtual processor of the net w.

Finally, the statement in line 33 collects these por-
tions on the virtual host processor forming the resultant
array z with the help of the assembly statement ::=. This
4-place operation corresponds to the sending operation
and performs the inverse communication operations in
the similar fashion.

3. IMPLEMENTATION OF MPC

At the present time, the mpC programming environ-
ment includes a compiler, a runtime support system, a
library, and a command-line user interface.

The compiler translates the source code in mpC into
an ANSI C program that includes calls to functions of
the runtime support system. Either the SPMD model of
the target code is used, in which all processes constitut-
ing the parallel program execute the same code, or the
quasi-SPMD model in which the source mpC code is
translated into two different programs---one for the vir-
tual host processor and the other for all other virtual
processors.

The runtime support system manages the computing
space, which consists of several processes executing on
the target distributed memory computer system (for
example, on a network consisting of PCs and worksta-
tions), and communications. It encapsulates a particu-
lar communication package (currently, MPI 1.1) and
ensures that the compiler is independent of the particu-
lar target platform.

The library consists of functions that support pro-
gram debugging, provide access to the characteristics
of the computing space and to efficient low-level func-
tions.

The command-line user interface includes com-
mands for creating a virtual machine with distributed
memory and executing mpC programs on it. When the
virtual parallel machine is created, its topology (in par-
ticular, the number and performance of processors and
characteristics of the communication links between the
processors) is determined automatically by executing a
special benchmark program; the information obtained
is saved in a file that is used by the runtime support sys-
tem.

3.1. Model o f the Target Program

All processes that constitute the executing target
program are divided into two groups: a special process,
called dispatcher, that controls the computing space,
and normal processes, called nodes, that act as virtual
processors of the computing space. The dispatcher
functions as the server receiving requests from the
nodes. It does not belong to the computing space.

In the target program, every network or subnetwork
of the initial mpC program is represented by a set of
nodes called the domain. At any moment, when the tar-

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

222 LASTOVETSKY et al.

get program is executed, every node is either free or
included in one or more domains. The node included in
a domain is called busy. The dispatcher is responsible
for including nodes in domains and freeing them. The
only exception is the so-called host node that acts as the
virtual host processor. Immediately after the initializa-
tion, the computing space is represented by the host and
the set of free nodes.

The main difficulty in managing processes is in
including them in domains and freeing them. The solu-
tion to this problem determines the structure of the tar-
get code and forms requirements for the functions of
the runtime support system.

To create a domain that represents a network (a net-
work domain), the parent node evaluates (if necessary)
topological characteristics of the network and sends to
the dispatcher the request for creating the domain. The
request includes the number of nodes and their relative
performances. In turn, the dispatcher possesses infor-
mation about the target network of computers that
includes the number of physical processors, their rela-
tive performances, and the number of nodes on the
physical processors. Using this topological informa-
tion, the dispatcher selects a set of free nodes that are
most suitable for the network domain being created (the
algorithm used by the dispatcher is described in Sub-
section 3.3 in more detail). Then, the dispatcher sends
a message to all free nodes informing them whether or
not they are in the new domain.

To free a network domain, its parent node sends a
corresponding request to the dispatcher. Note that the
parent node remains in the parent network domain of
the domain being freed. All other nodes of the freed
domain become free and wait for other commands from
the dispatcher.

Every node can determine if it is busy. The node is
busy if the function MPC Is busy() called when it
returns 1; it is free if this function returns 0.

Every node can determine whether or not it is busy
in a certain domain. A domain can be accessed through
its handler. If rd is the handler of a domain, then a node
of the computing space belongs to this domain if and
only if the function MPC Is member(&rd) called at
this node returns 1. In this case, the node can obtain
information about the domain through its handler rd
and identify itself within this domain.

When a free node is included in a network domain,
the dispatcher must inform it of the handler of the
domain it was included in. The simplest method--
sending the pointer to the handler from the parent
node--is inapplicable for computer systems with dis-
tributed memory, which have no common address
space. For this reason, we need an additional identifier
of the network being created that has the same value on
the parent node and free nodes and has a form that
makes it possible to send it from the parent node to the
free ones via the dispatcher.

In the source mpC program, every network has a
name that is a normal identifier and obeys the conven-
tional scope rules of C. Thus, the name of the network
cannot be used as its unambiguous identifier even
within the same file. We can enumerate all networks
within a file and use this number as an unambiguous
identifier of the network within this file. However, this
identifier will not be unique within the entire program,
since the program can include several files. However,
this identifier can be used to create the network if all
nodes that participate in the creation execute the code
corresponding to one and the same source file of the
mpC program. This is this scheme that is used by our
compiler. All networks in the file are enumerated, and
the structure of the program guarantees that when a net-
work is created, all the nodes participating in the pro-
cess execute the code from the same file.

Thus, when a domain representing a network (a net-
work domain) is created, the parent node, the dis-
patcher, and all free nodes participate in this process.
The parent node calls the function

MPC_Net_create(MPC_Name name, MPC_Net* net);

where name contains the unique identifier (within the
file) of the network being created and net points to the
corresponding handler of the domain. The function calcu-
lates all the necessary topological characteristics and

sends to the dispatcher a request for creating the network.
Meanwhile, the free nodes wait for the command

from the dispatcher at the so-called wait point by call-
ing the function

MPC_Offer(MPC_Names* names, MPC_Net** nets_voted, int voted_count);

where names is the array of the numbers of networks
that can be created at this wait point, nets_voted is the
array of pointers to the handlers of the domains that can
be created at this wait point, and voted_count contains
the number of such domains.

The correspondence between the network number
and the handler of the domain is set as follows. If a free

node receives a message informing it that it was
included in the network with the number names[i], then
it is included in the network domain with the handler
nets_voted[i].

The free nodes leave the wait function MPC_Offer
either after they have been included in the network

PROGRAMMING AND COMPUTER SOFI'WARE Vol. 26 No. 4 2000

A L A N G U A G E AND P R O G R A M M I N G ENVIRONMENT 223

domain or when they receive from the dispatcher the
command to leave the wait point.

3.2. The Structure of the Target Code of an mpC Block
In the general case, there are two wait points in the

code of the target block containing network declara-
tions. At the first point, called the creating wait point,
free nodes wait for dispatcher commands related to
the creation of network domains; at the second point,
called the freeing point, they wait for commands

related to freeing. Between these points, free nodes
can execute the code unrelated to creating and freeing
networks declared in the source mpC block; namely,
they can take part in total computations and/or in cre-
ating and freeing the networks declared in nested
mpC blocks. The first statement in the source mpC
block that requires free nodes for its execution is
called the break statement of the wait point. Thus, in
the general case, the target block has the following
structure.

declarations corresponding to the declarations of variables
in the source mpC block
{

if(!MPC Is busy()) {

the target code executed by free nodes
for creating network domains for the networks
declared in the source mpC block

}

if(MPC Is busy()) {

the target code executed by busy nodes
for creating network domains for the networks and subnetworks
declared in the source mpC block;

the target code for the statements
that precede the break statement of the wait point

}

epilogue of the creating wait point
}

the target code for the statements of the source
mpC block that begin with the break statement of the wait point
{

the target code executed by busy nodes for
freeing the networks and subnetworks declared in the source mpC block

label of the freeing wait point:

if(!MPC Is busy()) {

the target code executed by free nodes for
freeing network domains for the networks
declared in the source mpC block

)

epilogue of the freeing wait point

If the source mpC block does not include the
break statement of the wait point (i.e., if it (and the
nested blocks) does not contain total operations or
nested blocks with network declarations), then it is

possible to merge the creating and freeing wait
points into a single wait point in the target block. In
this case, the target block has the following struc-
ture.

declarations corresponding to the declarations of variables
in the source mpC block
{

prologue of the common wait point

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

224 LASTOVETSKY et al.

label of the common wait point:

if

}

if

)

(!MPC Is busy()) {
the target code executed by free nodes for
creating and freeing network domains for the
declared in the source mpC block

networks

(MPC Is busy()) {

the target code executed by busy nodes for
creating and freeing network domains for the networks and subnetworks
declared in the source mpC block;

the target code for the statements of the source mpC block
}
epilogue of the common wait point

To ensure that all participating nodes execute the
code from the same file while creating the network
domain, the compiler includes a global barrier in the
epilogue of the wait point.

The coordinated arrival of the nodes is ensured by
the following scenario in the epilogue of the wait point:

�9 the host makes sure that all other busy nodes that
could send a creating or freeing request that is awaited
at the wait point have already reached the epilogue;

�9 the host sends a message to the dispatcher inform-
ing it that there are no remaining creating or freeing
requests that are awaited at the wait point; then, it
reaches the epilogue;

�9 having received this message, the dispatcher sends
the command to all free nodes to leave the wait point;

�9 having received this command, all free nodes com-
plete the wait function and reach the epilogue.

3.3. The Mapping Algorithm

We have already mentioned that to create a network
domain, the dispatcher selects free nodes that are best
suited for the domain created. In this section, we
describe how the dispatcher performs this selection.

For every network type that occurs in the source
mpC program, the compiler generates six topological
functions that are used at runtime to evaluate various
topological characteristics of the network object of this
type. The first function returns the total number of
nodes in the network object. Since the runtime support
system uses the linear numeration of nodes from 0 to
n - 1, where n is the total number of nodes, there are
two functions (the second and the third ones) that trans-
form the coordinates of the nodes into the linear num-
ber and vice versa. The fourth function returns the lin-
ear number of the parent node. The fifth function
returns the relative performance of the given node. At
last, the sixth function returns the length of the directed
link connecting the given pair of nodes.

When the dispatcher maps the virtual processors of
the network created into the set of free nodes, it first
calls the corresponding topological functions to evalu-
ate the relative performance of the virtual processors
and the length of the links between them. The relative
performance of a virtual processor in the network cre-
ated is described by a positive real number normalized
to the performance of the parent virtual processor
(which is assumed to be 1). Then, the dispatcher evalu-
ates the absolute performance of each virtual processor
in the network created by multiplying it by the absolute
performance of the parent virtual processor,

On the other hand, the dispatcher supports the map
of the computing space that represents its topological
characteristics. The initial state of this map is formed
when the dispatcher is initialized and contains the fol-
lowing information:

�9 the number of physical processors constituting the
computer system with distributed memory and the per-
formance of those processors;

�9 the number of nodes (processes) of the computing
space residing on every physical computation node;

�9 for every pair of physical nodes, the initialization
time and the transmission time of one byte of informa-
tion;

�9 for every physical node, the initialization time of
message exchange and the transmission time of one
byte of information between two processes that are exe-
cuted on this physical node.

On the whole, the performance of a physical com-
puter node is characterized by two attributes. The first
attribute specifies the speed of a process execution on
the given physical computer node; the second one spec-
ifies the maximal number of noninteracting processes
that can be simultaneously executed on the given com-
puter node without loss of speed (i.e., this attribute
specifies the scalability of the physical computer node).
For example, if a multiprocessor is used as a physical
computer node, then the value of the second attribute is
the number of processors.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

A L A N G U A G E AND P R O G R A M M I N G E N V I R O N M E N T 225

Presently, the procedure of selecting nodes of the
computing space to allocate virtual processors of the
network created is based on the following simplest
scheme.

The dispatcher assigns a weight (a positive real
number) to every virtual processor of the network being
allocated in such a way that

�9 the more powerful the virtual processor, the more
is its weight;

�9 the shorter the communication links outgoing the
virtual processor, the greater its weight.

The weights are normalized so as to make the
weight of the virtual host processor equal to unity.

Similarly, the dispatcher modifies the map of the
computing space so as to assign to every physical com-
puter node a weight (a positive real number) that char-
acterizes its computation and communication power
when executing a single process.

The dispatcher selects free nodes of the computing
space to allocate virtual processors successively, begin-
nmg with the virtual processor with the maximum
weight. For this virtual processor, the dispatcher
assigns the most powerful free node. For this purpose,
the dispatcher evaluates the performance of the free
node for every physical computer node using the fol-
lowing algorithm. Let w be the weight of the physical
computer node P and N be its scalability. Let the set H
of busy nodes connected with P be decomposed into N
subsets h~ hN, and let vo be the weight of the virtual
processor that is currently located at thejth node of the
set h i. Then, the estimate of the performance of the free
node connected with P is evaluated by the formula twJ

max .

V+ ~Vi]
]

Thus, the dispatcher selects one of the free nodes of
the physical computer node that has the maximal per-
formance estimate, places the next virtual processor on
it (the most powerful among unallocated ones), and
adds this node to the set hk of the set of busy nodes of
the corresponding computer node; the value of k is
determined by the relation

w _ maxl w t"

v+~v,j [v+~vi]
J J

The procedure described yields sufficiently good
results for networks of workstations and personal com-
puters and ensures the optimal allocation if exactly one
node of the computing space is connected with every
physical processor.

4. EVALUATING PERFORMANCE

As was shown above, mpC gives the programmer an
opportunity to define an abstract heterogeneous net-
work that is best suited for executing a particular paral-
lel algorithm; the mpC programming environment
maps the abstract network into a physical computer net-
work. The mapping is performed at runtime and is
based on the information about the relative perfor-
mance of the processors and communication links in
the physical network. The efficiency of using the poten-
tial performance of the available network by a parallel
program directly depends on the quality of this map-
ping, which, in turn, depends on the accuracy of the
performance estimates for the processors and network
hardware.

Initially, only one method for evaluating the perfor-
mance of processors and network hardware was sup-
ported. The evaluation was performed by executing a
special benchmark program and was a part of the exe-
cution of a command of the user interface external with
respect to mpC.

The principal disadvantage of this method is that it
is based on a static integral estimate of the hardware
performance. This estimate is independent of the pro-
gram code and remains the same during its execution.
However, the parallel code executed on every network
is often considerably different from the mixture of
statements in the benchmark program. This difference
is not very important when the performance of micro-
processors of the same architecture is evaluated; how-
ever, for microprocessors with a different architecture,
performance estimates obtained with the help of a mix-
ture of statements can differ considerably. As a result,
this estimate may become rather inaccurate, which
leads to an unbalanced workload of the processors and
to a decreased efficiency of the program execution.

We examined four approaches to improving the
accuracy of the processor performance evaluation. The
first approach is based on a classification of mpC appli-
cations and the use of a special benchmark program for
every class. This approach was rejected, since experi-
ments showed that a processor performance could be
quite different even for applications of the same class.
For example, consider two fragments of C programs:

for(k=O; k<500; k++) {

for(i=k, ikk=sqrt(a[k] [k]); i<500; i++)

PROGRAMMING AND COMPUTER SOFTWARE Wol. 26 No. 4 2000

226 LASTOVETSKY et al.

a [i] [k]/=ikk;
for(j=k+l; j<500; j++)

for(i=j; i<500; i++)
a [i] [j]-=a[i] [k]*a [j] [k] ;

}

and
for(k=O; k<500; k++) {

for(j=k, ikk=sqrt (a[k] [k]) ; j<500; j++)
a [k] [j]/=ikk;

for(i=k+l; i~500; i++)
for(j=i; j<500; j++)

a[i] [j]-=a[k] [j] *a [k] [i]
}

Both fragments implement the Cholesky factoriza-
tion for the matrix of the dimension 500 x 500. If these
fragments are used as benchmark programs, then the
first one evaluates the relative performance of SPARC-
station-5 and SPARCstation-20 as 10 : 9, whereas the
second fragments yields the estimate 10 : 14. Note that
the function dpotf2 included in the LAPACK package
and solving the same problem estimates the relative
performance of these processors as 10 : 10.

The second approach consists in using a special
benchmark code for every mpC application. In particu-
lar, we considered the problem of the automatic gener-
ation of a benchmark code by the source code of the
application. This approach considerably complicates
the mpC programming environment, but it does not
work if the problem solved by the program splits into
several subproblems, each of which is solved on a sep-
arate network. In this case, the estimate of processor
performance is obtained by averaging the estimates
obtained for different parallel parts of the program and
can be inaccurate as with the first approach.

The third approach consists in the automatic gener-
ation, for every mpC program, of a benchmark code
that could produce a vector estimate of processor per-
formances. With this approach, every parallel part of
the program that is executed on a separate network is
characterized by a specific estimate used when this net-
work is created. This approach is very difficult to
implement and does not work in the case when the
actual network is also used for other computations. In
this case, from the standpoint of the mpC program, the
actual processor performance is a function of time.

Thus, the use of any static estimate that is not modified
in the course of the program execution often leads to
the inaccurate estimation of processor performance
and, consequently, to decreased speed of the program
execution.

In our implementation of mpC, we used the fourth
approach. We introduced a new language construct that
allows the programmer to update the estimate of pro-
cessor performances during the program execution
using the most suitable (from his point of view) bench-
mark. The new construct is as follows:

recon benchmark

Here benchmark is either an empty statement con-
sisting of a semicolon or a generic type statement dis-
tributed over the entire computing space that executes
the same piece of code on all virtual processors without
specifying the communication between them. This con-
struct makes it possible to update information about the
relative performance of the processors in the network.
If the benchmark is an empty statement, then a standard
benchmark is used; otherwise, the routine specified by
the benchmark is used.

In addition, the library of standard functions
includes several functions that make it possible to
obtain the current estimate of processor performances
and set this estimate explicitly (without executing the
benchmark program).

The recon statement and the corresponding library
functions are not difficult to use and implement. To
demonstrate the use of this statement, consider the fol-
lowing subroutine.

/*I*/ #define N 100
/*2*/ nettype Grid(P, Q) {
/*3*/ coord I=P, J=Q;
/*4*/ };
/*5*/ int [net Grid(p, q) v]
/*6*/ void [*]Cholesky(repl
1"7"I (
/*8*/ int n = N, info;
/*9*/ double a[N] [N] ;

mpC2bl acs_gri dini t (int *, char*) ;
int P, repl int Q) {

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

A LANGUAGE AND PROGRAMMING ENVIRONMENT 227

/*I0"/ init(a);

/*Ii*/ recon dpotf2_("U", &n, a, &n, &info);

/'12"/ }

/'13"/ {
/'14"/ net Grid(P, Q) w;

/'15"/ [w] : {
/'16"/ int ConTxt;

/'17"/ ([(P, Q)w])mpC2Cblacs_gridinit(&ConTxt,
/'18"/ pdlltdriverl_ (&ConTxt) ;

/ "19 */ mpC2Cblacs_gridexi t (ConTxt) ;

/*20*/ }

/'21"/ }

/*22*/ }

"R") ;

This subroutine performs the Cholesky factorization
of a square matrix. Here, the heterogeneous breakdown
of the computation processes between processors is
done by mpC and the parallel Cholesky factorization is
performed by the means provided by the ScaLAPACK
package [10].

The recon statement that occurs in line II deter-
mines the performance of actual processors by execut-
ing the program dpotrf included in the package
LAPACK. The code of this program is a good approxi-
mation of the code that will be executed by every node.
Thus, the information about the performance of proces-
sors is updated at runtime by executing the program
dpotrf2 as a benchmark.

The network w that executes the parallel computa-
tions is declared in line 14 (its type is declared in lines
2--4). This network consists of P x Q virtual processors
(by default, they have an identical performance). The
parent of this network (the virtual host processor) is
located at the point I = 0, J = 0. At runtime, this decla-
ration of w leads to such a mapping of its virtual pro-
cessors onto the processes of the parallel program that
the number of the processes that participate in the com-
putation at each actual processor is proportional to its
performance that was estimated earlier in the program.

A slightly modified test driver of the ScaLAPACK
package performing the Cholesky factorization is
called on the network w (lines 15-20). This driver reads
the parameters of the problem from a file (the size of
the matrix and blocks), constructs the test matrix, and
factors it.

The mpC language includes three types of func-
tions: basic, network, and nodal functions.

Basic functions are called and executed on the entire
computing space. Networks can only be created within
those functions. The Cholesky function provides an
example of a basic function. This is indicated by the
construct [*] in line 6 placed directly before the func-
tion name.

Network functions are executed on the network (an
example is provided by mpC2Cblacs_gridinit defined
in lin 5). They have three specific parameters: v, p, and
q. The so-called network formal parameter v indicates

the network on which the function is executed. The
parameters p and q are considered as integer variables
replicated over the network ~ They are parameters of
the network type Grid(p, q) of the network ~ In line 17,
this function is called for the network w and the corre-
sponding actual parameters P and Q.

A nodal function may be executed on any single vir-
tual processor. Conventional C functions are consid-
ered as node functions in mpC.

If a variable is declared without a special distribu-
tion attribute, then it is considered distributed over the
entire computing space in basic functions; in network
functions, it is considered distributed over the corre-
sponding network. The distribution attribute [w] in line
15 specifies the network that executes the compound
operator in lines 15-20.

5. EXPERIENCE IN USING MPC

The first implementation of mpC was released at the
end of 1996. It has been available on the Internet for
over two years (http://www.ispras.ru). During this time,
over 400 installations have been made all over the
world, mpC is mainly used for scientific computations
on networks consisting of workstations and PCs. Typi-
cal applications include multiplying matrices, solving
the multibody problem, linear algebra (LU decomposi-
tion, Cholesky factorization, and so on), numerical
integration, simulating oil extraction, analyzing con-
structions for stresses and strains, and many others. The
experience shows that mpC allows for developing por-
table modular parallel programs that considerably
speed up the solution of both regular and irregular prob-
lems on heterogeneous networks. In addition, mpC
makes it possible to solve irregular problems on homo-
geneous networks much more quickly than by using
traditional methods.

In this section, we present several typical applica-
tions developed in mpC.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

228 LASTOVETSKY et al.

5.1. Irregular Applications Developed in mpC
As an example of an irregular problem, we consider

simulating the evolution of a stellar system in a galaxy
(or a set of galaxies) under gravitational attraction
force.

We assume that the system to be simulated consists
of a certain number of large groups of bodies. It is well
known that, since the gravitational interaction quickly
decreases with distance, the effect of a large group of
bodies may be approximated by the effect of a single
equivalent body if this group of bodies is located suffi-
ciently far from the point where its effect is analyzed.
We suppose that this assumption is true in our case; i.e.,
let the groups of bodies under consideration be located
sufficiently far from each other.

This problem allows for a natural parallelization.
Our simulating mpC program will use several virtual
processors each of which will update the data concern-
ing one group of bodies. Every virtual processor must
store the attributes of all bodies included in the corre-
sponding group and the masses and centers of gravity
of all other groups. Every body is described by its coor-
dinates, velocity, and mass.

Finally, let the number of groups and the number of
bodies in each group become available only when the
program is executed.

The mpC program designed for solving this prob-
lem is structured as follows.

Initialize the galaxy on the virtual host processor
Create the network for future computations and data exchange
Send the groups of bodies to the virtual processors in the network

Compute (concurrently) the masses of groups
Exchange information about the masses of groups between the virtual processors

while (I) {
Visualize the galaxy on the virtual host processor
Compute (concurrently) the masses of gravity for the groups
Exchange information about the centers of gravity of groups between the virtual

processors
Update group attributes (concurrently)
Collect the groups on the virtual host processor

)

The corresponding mpC programs is as follows.

#define MaxGs 30 /* the maximal number of groups */
#define MaxBs 600 /* the maximal number of bodies in a group */
typedef double Triplet [3] ;
typedef struct {Triplet pos; Triplet v; double m;} Body;

int [host]M; /* the number of groups */
int [host]N[MaxGs] ; / *array of the number of bodies in groups */

repl dM, dn [MaxGs] ;
double [host]t; /* the galaxy clock */

/* the array of the body attributes in the galaxy */

Body (* [host]Galaxy[MaxGs] [MaxBs] ;

nettype GalaxyNet(m, n[m]) {

coord I=m;
node { I>=O: n[I]*n[I];};

};

void [host]Input (), UpdateGroup() , [host]VisualizeGalaxy() ;

void [*]Nbody(char *[host]infile)
(

Input(infile); /* initializing Galaxy, M, and N */
dM=M; /* sending the number of groups */
/* sending the array containing the number of bodies in the groups */

dN[]: N[]; {
/* creating the network g */
net GalaxyNet (dM, dN) g;

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

A L A N G U A G E A N D PROGRAMMING ENVIRONMENT 229

}
}
}

void
{

int [g]myN, [g]mycoord;
Body [g]Group [MaxBs] ;
Triplet [g]Centers [MaxGs] ;
double [g]Masses [MaxGs] ;
repl [g]i;
void [net GalaxyNet (m, n[m])]Mint (double (*) [MaxGs]) ;
void [net GalaxyNet (m, n[m])]Cint (Triplet (*) [MaxGs]) ;
mycoord = I coordof body_count;
myN = dN[mycoord] ;
for (i=0; i<[g]dM; i++) /* sending groups */

[g:I==i]Group[] = (*Galaxy[i]) [];
for (i=0; i<myN; i++)

Masses [mycoord] += Group[i] .m;
([([g] dM, [g] dN) g])Mint (Masses) ;
while(l) {

VisualizeGalaxy() ;
Centers [mycoord] [] = O. O;
for(i=O; i<myN; i++)

Centers [mycoord] [] +=
(Group [i] . m/Masses [mycoo rd]) * (Group [i] . pos) [] ;

([([g]dM, [g]dN) g])Cint (Centers) ;
([g] UpdateGroup) (Centers, Masses, Group, [g]dM) ;
for (i=O; i<[g]dM; i++) /* collecting groups */

(*Galaxy[i]) [] = [g:I==i]Group[];

[net GalaxyNet (m, n[m]) p]Mint (double

double MassOfMyGroup;
repl i, j;
MassOfMyGroup = (*Masses) [I coordof i] ;
for(i=O; i<m; i++)

for(j=O; j<m; j++)
[p:I==i] (*Masses) [j] =

[p : I==j]MassOfMyGroup;
}

void
{

[net GalaxyNet (m, n[m]) p]Cint (Triplet

Triplet MyCenter;
repl i, j;
MyCenter = (*Centers) [I coordof i] [];
for(i=O; i<m; i++)

for(j=O; j<m; j++)
[p:I==i] (*Centers) [j] [] =

[p : I==j] MyCenter [] ;

(*Masses)[MaxGs])

(*Centers) [MaxGs])

This program contains the following external decla-
rations:

�9 declarations of the variables M, and t, and arrays N
and Galaxy located at the virtual host processor;

�9 declarations of the variable dM and array dN repli-
cated over the entire computing space;

�9 declaration of the network type GalaxyNet;

�9 declaration of the basic function Nbody with a sin-
gle formal parameter infile located at the virtual host
processor;

�9 declaration of the network functions Mint and
Cint.

Generally, the network function is called and exe-
cuted on a certain network or subnetwork; its argu-

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

230 LASTOVETSKY et al.

ments and the return value (if any) are also distributed
over the same network or subnetwork. The header of
the declaration of the network function either specifies
an identifier (within the scope of the file) of a static net-
work or subnetwork or declares the identifier of the net-
work that is a special formal parameter of the function.
In the first case, the function may be called only on the
network or subnetwork specified; in the second case, it
may be called on any network or subnetwork of the
proper type. In any case, no other networks, except for
that specified in the header of the declaration, can be
created and used in the body of the network function.
Only data objects that are located on the network or
subnetwork associated with a function can be created
within its body. In addition, the function may use com-
ponents of external data objects that are located within
the corresponding domain of the computing space. In
contrast to basic functions, network (as well as nodal)
functions can be called concurrently.

In the program above, the nodal functions Input,
VisualizeGalaxy, and UpdateGroup are specified; the
first two of them are associated with the virtual host
processor.

The automatic network g, which performs the
greater part of the computations and communications,
includes M virtual processors with the relative perfor-
mances characterized by the square of the number of
the bodies in the groups that will be analyzed by those
processors.

Thus, a more powerful virtual processor will ana-
lyze a larger group of bodies. Using this information,
the programming environment builds a suitable map-
ping of the virtual processor included in the network g
onto the processors of the computing space. Since this
is done at runtime, the program does not need to be
recompiled before executing it on another network.

The call of ([g]UpdateGroup)(...) initiates concur-
rent execution of the nodal function UpdateGroup on
every virtual processor of g. This means that the func-
tion name UpdateGroup is transformed into the pointer
to the function distributed over the entire computing
space, and the operator [g] cuts from this pointer a
pointer distributed over g. Thus, the value of the expres-
sion [g]UpdateGroup is a pointer to the function dis-
tributed over g, and the expression ([g]Update-
Group)(...) designates a distributed call of the set of
undistributed functions.

The network functions Mint and Cint have three
special formal parameters. The parameter p indicates
the network on which the function is to be executed.
The parameter m is treated as an integer variable repli-
cated over p. The parameter n is treated as a pointer to
the first element of the array of read-only integers rep-
licated overp. The actual parameters that correspond to
these formal parameters are specified by the construct
([([g]dM, [g]dN)g)] placed on the left of the name of
the function when it is called from Nbody.

The execution time of the mpC program was com-
pared with the execution time of a similar (thoroughly
written) MPI program. The network consisted of three
workstations SPARCstation-5 (gamma), SPARCclassic
(omega), and SPARCstation-20 (alpha) connected by
10 Mbits Ethernet. In addition to these three, the seg-
ment of the local network included about 23 more
workstations. LAM MPI version 5.2 [12] was used as
the communication platform.

The computing space consisted of 15 processors: 5
on each workstation. The dispatcher was executed on
the gamma station and used the following relative per-
formances obtained automatically when the virtual
machine was created: 1150 (gamma), 331 (omega), and
1662 (alpha).

The program in MPI was designed so as to minimize
the communication burden. In all the experiments, nine
groups of bodies were used. Three processes of the MPI
program were run on gamma, one process on omega,
and five on alpha. This mapping is optimal if the num-
ber of bodies in all groups is the same.

Two experiments were conducted. In the first one,
the performance of the mpC and MPI programs were
compared for homogeneous input data when the num-
ber of bodies in all groups was approximately the same.
In essence, this experiment showed how much we pay
for using mpC instead of MPI. It turned out that the
execution time of the MPI program was about 95% that
of the mpC program. That is, in this case, we only lose
about 5% of the performance.

In the second experiment, we compared the same
programs for heterogeneous input data. The groups
consisted of 10, 10, 10, 100, 100, 100, 600, 600, and
600 bodies. The execution time of the mpC program is
independent of the order of these numbers. In all cases,
the dispatcher maps

�9 four processes for the virtual processors of the net-
work g into gamma; these processes compute the data
for two groups of 10 bodies, one group of 100 bodies,
and one group of 600 bodies;

�9 three processes for the virtual processors of the
network g into omega; these processes compute the
data for one group of 10 bodies and two groups of 100
bodies;

�9 two processes for the virtual processors of the net-
work g into alpha; these processes compute the data for
two groups of 600 bodies.

The simulation time of 15 hours of the galaxy evo-
lution by the mpC program was 94 s.

The execution time of the MPI program depends
heavily on the order of the number of bodies in the
groups: it varies from 88 s to 391 s when simulating
15 hours of the galaxy evolution. The figure shows the
ratio of the execution time of the MPI and mpC programs
for various permutations of these numbers. All permuta-
tions can be decomposed into 24 disjoined subsets of the
same cardinality such that two permutations belong

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

A LANGUAGE AND PROGRAMMING ENVIRONMENT 231

to the same subset if the execution time for them is the
same. We assume that these subsets are numbered in
such a manner that the subset with a greater number
corresponds to the permutations that require a longer
execution time of the MPI program. In the figure, every
subset is represented by a column with the height
equivalent to the ratio of the execution times tMptltmpc.

It is seen that the execution time of the MPI program
exceeds (often, substantially) that of the mpC program
for almost all input data.

5.2 Regular Applications Developed in mpC

A salient feature of irregular problems is that they
can be naturally decomposed into a small number of
subproblems requiring a different number of computa-
tions. In turn, this natural decomposition leads to natu-
ral parallelism in solving the problem: the program can
be executed as a small number of interacting concurrent
processes, each of them solving a separate subproblem.
An example of the irregular problem was considered in
the preceding section (simulating the galaxy evolution).

A salient feature of regular problems is that they can
be naturally decomposed into a relatively large number
of small homogeneous subproblems that require the
same amount of computations. Such a decomposition
leads to natural parallelism in solving the problem: the
program can be executed as a large number of identical
small programs running concurrently and interacting
by means of data exchange. An example of a regular
problem is that of multiplying dense matrices consid-
ered in Section 2. The basic idea of solving a regular
problem on a heterogeneous computer network is in
reducing it to an irregular problem with the structure
dependent on the topology of the computer network,
rather than the natural topology of the problem. This is
achieved by merging small homogeneous subproblems
into larger ones; the number of new problems does not
exceed the number of the available physical processes
and the amount of computations is proportional to the
power of those processors. Since mpC makes it possi-
ble to determine the topology of the computer system at
runtime, the corresponding program can be written so
as to execute efficiently on any heterogeneous com-
puter network without modifying its source code or
even recompilation.

In this section, we give an example of solving a
complex regular applied problem using heterogeneous
computer networks; more precisely, we present our
experience in porting an application written in FOR-
TRAN 77 using PVM (about 3000 lines of source code)
for the Parsytec PowerXpiorer supercomputer to a net-
work of heterogeneous workstations. This the problem
of simulating oil extraction.

The process of oil extraction under flooding was
modeled by the following system of differential equa-
tions [12]:

tMPI/tmt,C

4

0
5

I I

10 15 20
permutation set

Speedup obtained for various combinations of the number
of bodies in groups.

aSw
m--~- + div(uw) = qw,

q+ x Fw(S)--for sources

qw = ~ q_ x Fw(Sw)--for sinks
I

[0---outside of wells.

(I)

where

div(K(S)gradP) = q, (2)

K(s) -- -k(k'(s) +
~, lal la2]

(3)

kl(S)llal
F(S) = (4)

kt(S)llaj + k2(S)lla 2"

The initial values are specified (on the entire oil bed) as
follows:

S~,l,=0 = _S, el ,=0 = P0. (5)

/)Sw = 0, = 0. (6)
On r

Here S~,, is the index of water saturation, S O is the
index of oil saturation, S is the index of bound water

saturation, S is the index of critical water saturation, uw
and u o are the filtering rates of water and oil, respec-
tively, m is the porosity coefficient, k is the absolute
permeability of the porous medium, k~,(Sw) is the coef-
ficient of the relative phase permeability of water,
k,,(S,.) is the coefficient of the relative phase permeabil-
ity of oil (the relative phase permeabilities are experi-
mentally obtained functions of the saturation of the dis-
placing phase), Fw(S w) is the Buckley-Leverette func-
tion for the displacing phase, law and /-to are the
coefficients of the dynamic viscosity of water and oil,
respectively, q (q_ and q. are distinguished) are the vol-

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

232 LASTOVETSKY et al.

Table 1, Performance of the parallel FORTRAN program implementing the implicit algorithm for solving the oil extraction
problem executed on the multiprocessor system Parsytec PowerXplorer in the PARIX programming environment

Number of processors to Number of iterations Time (in s) Speedup Efficiency

1

2

4

8

1.197

1.2009

1.208

1 .22175

205

211

214

226

120

64

38

26

1

1.875

3.158

4.615

100%

94%

79%

58%

ume sources and sinks of liquid (q_ is the volume of liq-
uid extracted from the production well in the unit time
and q§ is the volume of liquid pumped in the injection
well; outside the wells, q = 0), qw is the source (sink) of
water saturation, qo is the source (sink) ofoil saturation,
t is the time, and P is the pressure in the bed (identical
for both phases, since capillary forces are not taken into
account).

Equations (1), (2) provide a model for the filtration
of two-phase liquid (consisting of oil and water)
through a porous medium in the water pressure mode.
Equation (1) describes the transport of water saturation,
and (2) is the diffusion (elliptic) equation for the pres-
sure in the bed. This system of equations is solved for
Sw (the water faction in the two-phase liquid) and the
pressure P.

The numerical solution was sought in a symmetrical
domain cut from the infinite homogeneous oil bed; on
the boundary of this domain, the natural condition of
zero flows is set. The numerical algorithm is based on
explicit methods; namely, equation (1) was solved by
the iterative secant method; equation (2) was solved by
the iterative (r 13) algorithm [12]. To improve the con-
vergence rate of the (ct - [3) algorithm, a relaxation
parameter was included in the equations for certain
sweep method coefficients.

The parallel implementation of the algorithm for
executing on homogeneous multiprocessor systems
was based on the decomposition of the computational
domain (data parallelism): the domain was decom-
posed into subdomains of identical size along the Y-
coordinate, and the computations for every subdomain
were conducted concurrently by different processors of
the supercomputer. This decomposition turned out to be
more efficient than the decomposition along the X-
coordinate and than the decomposition along both
coordinates, since it requires a less intensive data
exchange between the processors. In every subdomain,
the system of equations (1), (2) was solved as follows.

Table 2. Relative performance of workstations

Number of the workstation 1 2 3-4 5-7 8-9
Performance 1150 575 460 325 170

For every time layer, water saturation was obtained by
solving equation (1) using the values of the pressure
obtained for the preceding time layer. This value of
water saturation was then used to calculate the new
value of the pressure for the current time layer by solv-
ing equation (2). Then, this procedure was repeated for
the next time layer.

The main difficulty of this parallel algorithm lay in
determining the optimal relaxation parameter for the
(ix - 13) algorithm, since this parameter depends on the
number of subdomains in the decomposition. The use
of nonoptimal values of the relaxation parameter
resulted in a considerable increase in the number of
iterations, and even in the loss of convergence of the
algorithm. The optimal value of the relaxation parame-
ter for various numbers of subdomains in the decompo-
sition was found by numerous experiments.

This algorithm was implemented in FORTRAN 77
with the use of the communication library PVM. It
demonstrated remarkable scalability, speedup, and effi-
ciency of parallelization when executed on the parallel
computer Parsytec PowerXplorer--a multiprocessor
system based on PowerPC-601 processors used as
computation nodes and transputers T800 as communi-
cation nodes (a T800 transputer transfers data at the
rate of 20 Mbit/s via 4 bi-directional links).

Table 1 presents the computation results for the first
time layer. The efficiency of parallelization was deter-
mined as (Sreal/Sideal) * 100%, where S,~a t is the actual
speedup due to parallelization and Sidea t is the ideal
speedup that might be achieved on the parallel com-
puter system. The latter was determined as the ratio of
the sum of the performances of the processors of the
system to the performance of the base processor. The
speedup was calculated relative to the execution time of
the basic sequential program on the base processor.
Note that the efficiency of parallelization is greater the
faster the communication links and the slower the pro-
cessors are.

The program under discussion was designed as a
part of a portable software system able to work both on
supercomputers and local networks of heterogeneous
computers. Thus, a portable version of the program was
needed to simulate oil extraction using computer net-
works.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

A LANGUAGE AND PROGRAMMING ENVIRONMENT 233

Table 3. Performance of the parallel FORTRAN/PVM program modeling the oil extraction process run on subnetworks of
workstations

Subnetwork
(numbers of

workstations)

12,51

{5,6}

12,5-7]

{2-71

/2,3,5-81

{I-81

(o

1.2009

1.2(X)9

1.208

1.21485

1.21485

1.22175

Number of iterations

211

211

214

216

216

226

Time (s)

46

47

36

32

47

46

Ideal speedup

1.57

2.0

2.7

4.3

3.8

3.3

Actual speedup

0.88

1.52

1.13

1.27

0.87

0.41

Efficiency

0.56

0.76

0.42

0.30

0.23

0.12

Table 4. Execution time of the sequential program simulating oil extraction when run on different workstations

Ultra SPARC SPARC SPARC SPARC
Processor SPARC- I 20 station 4 5 classic

8 9 Workstation

Iterations

Time (s)

2 3 4 5] 6 7

205

18 .5 4 0 . 7 1 5 1 . 2 51.2 71.4] 71.4 71.4 133 133

As the first step of the development, the available
FORTRAN/PVM program was ported (without any
modifications) to the local network based on 10 Mbits
Ethernet and consisting of 9 single-processor SUN
workstations. To compare the performance of this net-
work with the performance PowerPC-601 used in Par-
sytec PowerXplorer note that the least powerful work-
station (SPARCclassic) executes the sequential pro-
gram a bit more slowly than PowerPC-601, and the
most powerful workstation (UltraSPARC- 1) executes it
more than six times as fast. The relative performances
of the workstations (for the oil extraction problem) are
presented in Table 2 (the workstations are assigned
numbers used in the following tables).

Table 3 presents the results obtained when executing
the FORTRAN/PVM program for a single time layer
on different subnetworks of the network consisting of
two, four, six, and eight workstations. The results
include the value of the relaxation parameter and the
corresponding number of 13-iterations, the execution
time, the ideal and actual speedup, and the efficiency of
using the subnetwork. The speedup was calculated rel-
ative to the execution time of the sequential program on
the most powerful workstation of the subnetwork (the
execution time of the sequential program on different
workstations is presented in Table 4). The noticeable
decrease in the efficiency of parallelization as com-
pared to Parsytec PowerXplorer is due to three reasons:
slower communication lines, more powerful proces-
sors, and unbalanced workload of processors of differ-
ent performance.

The modified algorithm is very difficult to imple-
ment in portable form using PVM. The cause is that
PVM, much like other message-passing libraries and
HPF, does not support means for creating groups of
processes depending on their relative performance. For
this reason, the algorithm for simulating the oil extrac-
tion process was developed in mpC. This program
determines (at runtime) the number and relative perfor-
mance of the available processors, creates a group of
processes such that every process is run by a separate

While the first two reasons are inevitable, the third
one can be worked around by modifying the parallel
algorithm underlying the FORTRAN/PVM program.
Namely, to achieve the optimal workload of the proces-
sors, the computational domain is decomposed into
subdomains of different size proportional to the perfor-
mance of the processors that do the computation for
them. More precisely, as a result of this decomposition,
every subdomain contains the same number of columns
of the grid, but a different number of rows. As to the
relaxation parameter, it is reasonable to assume that its
optimal value depends on the number of rows of the
computational grid and use a specific value for each
subdomain: co = tO(Nrow). We experimentally found a
sequence of optimal values of the relaxation parameter
for certain values of Nr,,~,,. Then, for an arbitrary N~,~,
the value of co was found by piecewise linear interpola-
tion. Note that this approach yields a rather high con-
vergence rate of the parallel (o~ - 13) algorithm with
relaxation (see the column "Number of iterations in
Table 5).

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

234

Table 5. Execution time of the

Subnetwork
(numbers of

workstations)

12,51

{5,6}

{2,5-7}

12-7}

12-8}

{2-81"

{2-9}

Number of
iterations

324

225

LASTOVETSKY et al.

mrallel program simulating oil extraction when run on different subnetworks of workstations

Time (s) Actual
speedup

0.98

1.84

Efficiency

0.63

0.92

Time for 205
iter. (s)

28.2

36.4

Speedup for
205 iter.

1.44

1.96

279

245

248

260

268

41.6

38.8

1.57

2.27

2.01

0.58

0.54

0.54

26

17.9

20.2

1.24

1.94

0.33

0.40

19.7

15

17

26.8

16

2.07

2.71

2.39

1.52

2.54

32.8

21

Efficiency for
205 iter.

0.92

0.98

0.77

0.63

0.64

0.40

0.53

* The computational domain was distributed into equal subdomains.

processor, and distributes data and computations pro-
portionally to the relative performance of processors.
We note that the mpC program not only suggests new
functional capabilities, but is also three times shorter
(in terms of the source code) compared to the original
FORTRAN/PVM program.

On heterogeneous computer networks, the mpC
program demonstrates moderate speedup and effi-
ciency of parallelization (see Table 5), which are, how-
ever, much higher than those of the program written in
FORTRAN/PVM (see Table 3). Despite the number of
iterations being increased, the mpC program is exe-
cuted more quickly thanks to the optimization of data
exchange and, most importantly, thanks to the balanced
workload of processors (cf. the column "Time" in
Tables 5 and 3). To evaluate the net gain obtained by
balancing the workload, the mpC program was exe-
cuted on the same subnetwork consisting of the work-
stations number 2, 3, 5, 6, 7, and 8 twice. The first time,
data were distributed according to the relative perfor-
mance of the processors and the second time, the data
were distributed uniformly. In the second case, the exe-
cution time was 1.5 times as long, and the speedup and
efficiency of parallelization decreased correspondingly
(marked by an asterisk in Table 5).

The moderate efficiency of parallelization of the
mpC program can be largely explained by particulari-
ties of adaptation of the (t~ - 13) algorithm with relax-
ation to heterogeneous networks. This algorithm is very
sensitive to the accuracy of evaluating the values of
and the approximate procedure described above yields
reasonable, but not the best possible, result. The num-
ber of iterations required for the convergence of the
parallel algorithm is considerably different from that in
the sequential algorithm. Thus, it would be interesting
to compare the execution time required to perform 205
iterations (this number of iterations is required for the
13 process to converge when run by a single processor).

The corresponding data are presented in Table 5, which
shows that if we were able to avoid increasing the num-
ber of iterations (e.g., by a more accurate evaluation of
the relaxation parameters), we could achieve remark-
able speedup and parallelization efficiency for the mpC
program simulating oil extraction.

6. RELATED WORKS

To our knowledge, all software systems designed
for developing programs to be run on networks possess
the following common property: either the programmer
does not have the means for describing the virtual par-
allel system on which the program is to be run or these
means are insufficient for determining an efficient dis-
tribution of computations and communications over the
target network. Even topological capabilities of MPI
(including MPI-2 [13]) are insufficient for solving this
problem. For this reason, to guarantee that the program
will be efficiently executed on a particular network, the
user must employ means that are external relative to the
language, such as the load scheme or application
scheme [14]. If the user knows the topology of the tar-
get network (i.e., its structure and performance of the
processors and communication lines) and the topology
of the program (i.e., its parallel structure), then he can
use configuration files to map the processes of the pro-
gram onto the network processors so as to guarantee the
most efficient execution. There exist systems that sup-
port this type of static distribution [15]. However, if the
topology of the program becomes known only at runt-
ime (e.g., depends on the initial data), this approach is
inapplicable. There exist systems [16, 17] that realize
some functions inherent in distributed operating sys-
tems: they try to take into account inhomogeneity of
processor performances when managing tasks to maxi-
mize the performance of the computer network consid-
ered as a single computer. In contrast to these systems,
mpC is designed to minimize the execution time of a

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

A LANGUAGE AND PROGRAMMING ENVIRONMENT 235

particular parallel program executed on a network,
which is the most important thing for end users.

7. CONCLUSIONS

Computer network is the most general parallel
architecture. The paper describes the mpC program-
ming language and programming environment
designed for developing efficiently portable modular
programs to be run on computer networks.

The most important characteristics of mpC are as
follows:

�9 mpC programs execute efficiently on any com-
puter network without changes to the source code (we
call this the efficient portability property);

�9 mpC makes it possible to develop programs that
can not only can adapt to the normal performance of the
processors, but also redistribute the computations and
communications, depending on the dynamic variations
of the processor workload in the network.

We have been experimenting with mpC for over two
years and have developed a technology of using it for
high-performance computations on heterogeneous net-
works. This technology was applied to solving the fol-
lowing problems.

�9 Efficient use of available parallel software
designed for supercomputers on heterogeneous com-
puter networks. The interface between mpC and ScaL-
APACK that makes it possible to use the latter on het-
erogeneous networks provides an example (for details,
see Section 4). The development of the interface took
about a week, and porting a complex ScaLAPACK pro-
gram to heterogeneous networks (using this interface)
took several days.

�9 Rewriting parallel programs designed for super-
computers in mpC to be efficiently executed on hetero-
geneous networks. An example of such a problem is
porting the program for simulating oil extraction from
the supercomputer Parsytec to the network of worksta-
tions (for details, see Section 5.2). Originally, the pro-
gram was written in FORTRAN 77 with calls of PVM.
Developing the corresponding mpC program took
about two weeks. This mpC program, which runs on a
network consisting of eight workstations, is three times
as fast as its FORTRAN/PVM analogue on this net-
work and is twice as fast as the FORTRAN/PVM pro-
gram that runs on the eight-processor segment of the
supercomputer Parsytec.

�9 Parallelization of sequential programs for running
on heterogeneous networks. For example, a parallel
version of the classic adaptable FORTRAN program
for numerical integration quanc8 [13]. This program
uses the quadrature Newton~Cotes formula of the
eighth order. In the case of complex (in terms of numer-
ical computation) integrand functions, this mpC pro-
gram considerably speeds up the computation of defi-
nite integrals using computers available in a local net-
work. Note that this program automatically

redistributes computations performed by computers
depending on their current workload. The development
of this program took two days.

�9 Developing original mpC programs. For example,
we developed a parallel program for simulating the
evolution of a system of bodies under Newtonian grav-
ity attraction force (for details, see Section 5.1). This
program demonstrated a considerable speedup (by
many times) as compared to a thoroughly written MPI
program that did not take heterogeneity into account.

We continue the work on mpC and its programming
environment. The purpose of this work is to achieve the
highest possible efficiency for a wide range of com-
puter networks (including clusters of supercomputers
and wide area networks) and to improve the program
model.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, project nos. 99-01-00205 and 99-
07-90458.

REFERENCES

1. EI-Rewini, H. and Lewis, T., Introduction to Distributed
Computing, Manning, 1997.

2. Message-Passing hzterface Forum, MPI." A Message-
Passing Interface Standard, ver. 1.1, 1995.

3. Geist, A., Beguelin, A., Dongarra, J., Jlang, W., Man-
chek, R., and Sunderam, V., PVM: Parallel Virtual
Machine, Users' Guide and Tutorial for Networked Par-
allel Computing, Cambridge: MIT Press, 1994.

4. High Performance Fortran Forum, High Performance
Fortran Language Specification, version 1.1, Houston:
Rice Univ., 1994.

5. Koelbel, C., Conferences for Scientific Applications, IEEE
Comput. Science Eng., 1998, vol. 5, no. 3, pp. 91-95.

6. Gaissaryan, S.S. and Lastovetsky, A.L., An ANSI C
Superset for Vector and Superscalar Computers and Its
Retargetable Compiler, J. C Lang. Transl., 1994, vol. 5,
no. 3, pp. 183-198.

7. The C* Programming Language, CM-5 Technical Sum-
mary, Thinking Machines Corporation, 1992, pp. 69-75.

8. Hatcher, P.J. and Quinn, M.J., Data-Parallel Program-
ming on MIMD Computers, Cambridge: MIT Press,
1991.

9. Arapov, D., Kalinov, A., Lastovetsky, A., and Ledovskih, I.,
Experiments with mpC: Efficient Solving Regular Prob-
lems on Heterogeneous Networks of Computers via
lrregularization, Proc.Fifth Int. Symp. on Solving Irreg-
ularly Structured Problems in Parallel (IRREGU-
LAR'98), Lect. Notes Comput. Sci., Berkley, 1998,
no. 1457, pp. 332-343.

I 0. Chetverushkin, B., Churbanova, N., Lastovetsky, A., and
Trapeznikova, M., Parallel Simulation of Oil Extraction
on Heterogeneous Networks of Computers, Proc. 1998
Conf. on Simulation Methods and Applications
(CSMA'98), Society for Computer Simulation, Orlando,
1998, pp. 53-59.

PROGRAMMING AND COMPUTER SOF/'WARE Vol. 26 No. 4 2000

236 LASTOVETSKY et al.

i 1. Kalinov, A. and Lastovetsky, A., Heterogeneous Distri-
bution of Computations While Solving Linear Algebra
Problems on Networks of Heterogeneous Computers,
Proc. 7th Int. Conf. on High Performance Computing
and Networking Europe (HPCN Europe'99), Amster-
dam, 1999, Lect. Notes Comput. Sci., no. 1593,
pp. 191-200.

12. Chetverushkin, B.N., Churbanova, N.G., and Trapeznik-
ova, M.A., Simulation of Oil Production on Parallel
Computing Systems, Proc. Simulation MultiConference
HPC'97." Grand Challenges in Computer Simulation,
Tentner, A., Ed., Atlanta, 1997, pp. 122-127.

13. MPI-2: Extensions to the Message-Passing Interface,
http://www.mcs.anl.gov.

14. Trollius LAM Implementation of MPl, Version 6.1, Ohio:
Ohio Univ., 1997.

15. Heinze, E, Schaefers, L., Scheidler, C., and Obeloeer, W.,
Trapper: Eliminating Performance Bottlenecks in a Par-
allel Embedded Application, IEEE Concurrency, 1997,
vol. 5, no. 3, pp. 28-37.

16. Dome: Distributed Object Migration Environment,
http://www.cs.cmu.edu/Dome/.

17. Hector: A Heterogeneous Task Allocator,
http://www.erc.msstate.edu/russ/hpcc/.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

