
Distributed Data Partitioning for

Heterogeneous Processors Based on Partial

Estimation of their Functional Performance

Models

Alexey Lastovetsky, Ravi Reddy

School of Computer Science and Informatics, University College Dublin,

Belfield Dublin 4, Ireland
{Alexey.Lastovetsky, Manumachu.Reddy}@ucd.ie

Abstract. The paper presents a new data partitioning algorithm for parallel

computing on heterogeneous processors. Like traditional functional partitioning

algorithms, the algorithm assumes that the speed of the processors is

characterized by speed functions rather than speed constants. Unlike the

traditional algorithms, it does not assume the speed functions to be given.

Instead, it uses a computational kernel to estimate the speed functions of the

processors for different problem sizes during its execution. This makes the

algorithm distributed as its execution involves all the heterogeneous processors.

The algorithm does not construct the complete speed function for each

processor but rather builds and uses their partial estimates sufficient for optimal

data distribution with a given accuracy. The low execution cost of this

algorithm makes it ideal for employment in self-adaptable applications.

Experiments with a parallel matrix multiplication application employing this

algorithm are performed on a local heterogeneous computational cluster. The

results show that the algorithm converges very fast and that its execution time is

several orders of magnitude less than the total execution time of the application.

Keywords: distributed algorithms, data partitioning algorithms, functional

performance models, heterogeneous platforms

1 Introduction

Conventional data partitioning algorithms for parallel computing on

heterogeneous processors [1-2] are based on a performance model, which

represents the speed of a processor by a constant positive number, and

computations are distributed amongst the processors such that their volume is

proportional to this speed of the processor. The constant characterizing the

performance of the processor is typically its relative speed demonstrated

during the execution of a serial benchmark code solving locally the core

computational task of some given size.

2 Alexey Lastovetsky, Ravi Reddy

Size of the problem

A
b

s
o

lu
te

 s
p

e
e

d
)(xs

x

)(1 xs

)(2 xs

)(3 xs

)(4 xs

1x 2x
3x 4x

)()()()(42

4

31

3

24

2

13

1

xs

x

xs

x

xs

x

xs

x
===

))(,(131 xsx
))(,(242 xsx

))(,(313 xsx
))(,(424 xsx

Fig. 1. Optimal data distribution showing the geometric proportionality of the

number of chunks to the speed of the processor.

The traditional constant performance models (CPMs) proved to be accurate enough

for heterogeneous distributed memory systems if partitioning of the problem results in

a set of computational tasks that fit into the main memory of the assigned processors.

But these models become less accurate in the presence of paging. The functional

performance model (FPM) of heterogeneous processors proposed and analyzed in [3]

has proven to be more realistic than the CPMs because it integrates many important

features of heterogeneous processors such as the processor heterogeneity, the

heterogeneity of memory structure, and the effects of paging. The algorithms

employing it therefore distribute the computations across the heterogeneous

processors more accurately than the algorithms employing the CPMs. Under this

model, the speed of each processor is represented by a continuous function of the size

of the problem. This model is application centric because, generally speaking,

different applications will characterize the speed of the processor by different

functions.

The problem of distributing independent chunks of computations over a

unidimensional arrangement of heterogeneous processors using this FPM has been

studied in [3]. It can be formulated as follows: Given n independent chunks of

computations, each of equal size (i.e., each requiring the same amount of work), how

can we assign these chunks to p (p<n) physical processors P1, P2, ..., Pp with their

respective full FPMs represented by speed functions s1(x), s2(x), ..., sp(x) so that the

workload is best balanced? An algorithm solving this problem with a complexity of

O(p×log
2
n) is also proposed in [3]. This and other similar algorithms, which relax the

restriction of bounded heterogeneity of the processors [4] and which are not sensitive

to the shape of speed functions [5], are based on the observation that the optimal data

distribution points (x1, s1(x1)), (x2, s2(x2)), …, (xp, sp(xp)) lie on a straight line passing

through the origin of the coordinate system and are the intersecting points of this line

with the graphs of the speed functions of the processors. This is shown in Figure 1.

Distributed Data Partitioning for Heterogeneous Processors Based on

Partial Estimation of their Functional Performance Models 3

These algorithms are used as building blocks in algorithms solving more complicated

linear algebra kernels such as the dense factorizations [6].

The cost of experimentally building the full FPM of a processor, i.e., the FPM for

the full range of problem sizes, is very high. This is due to several reasons. To start

with, the accuracy of the FPM depends on the number of experimental points used to

build it. The larger the number, the more accurate the FPM is. However, there is a

cost associated with obtaining an experimental data point, which requires execution of

a computational kernel for a specified problem size. This cost is especially high for

problem sizes in the region of paging. Also, the number of experimental points

required to build the full FPM increases remarkably as the number of parameters used

to represent the problem size increases, as shown in the experimental results in this

paper.

The problem of minimization of the cost of experimentally building the full FPM

of the processor has been studied recently proposing a relatively efficient sub-optimal

solution [7]. However, even if an ideal optimal procedure becomes available to build

approximations of the FPM of heterogeneous processors, the fact remains that the cost

of building the full FPM is too high to forbid the use of data partitioning algorithms,

employing the full FPM, in self-adaptable applications.

The paper presents a new algorithm of data partitioning for parallel computing on

heterogeneous processors. Like traditional functional partitioning algorithms, the

algorithm assumes that the speed of the processors is characterized by speed functions

rather than speed constants. Unlike the traditional algorithms, it does not assume the

speed functions to be given. Instead, it uses a computational kernel to estimate the

speed functions of the processors for different problem sizes during its execution.

This makes the algorithm distributed as its execution involves all the heterogeneous

processors. The algorithm does not construct the complete speed function for each

processor but rather builds and uses their partial estimates sufficient for optimal data

distribution. The proposed algorithm does not return a partitioning perfectly balancing

the load of the processors but a partitioning balancing their load with a given

accuracy.

Using experimental results for parallel matrix multiplication on a local

heterogeneous computational cluster, we demonstrate that the execution time of the

proposed distributed partitioning algorithm is several orders of magnitude less than

the total execution time of the parallel application, thereby making it very suitable for

employment in self-adaptable applications.

The rest of the paper is organized as follows. In Section 2, we present the

contribution of this paper, which is the distributed iterative partitioning algorithm.

This is followed by experimental results on a local heterogeneous computing cluster

in Section 3. For the experiments, we use a parallel matrix multiplication application

employing the data partitioning algorithm. Finally, we present numerical results

demonstrating the efficiency of the distributed iterative partitioning algorithm.

2 Distributed Functional Partitioning Algorithm (DFPA)

The data partitioning problem that we are trying to solve can be formulated as

follows:

4 Alexey Lastovetsky, Ravi Reddy

• Given

─ A set of n independent units of computation each of equal size (i.e., each

requiring the same amount of work);

─ A set of p (p<n) processors P1, P2, ..., Pp, whose speeds of processing x

units, si=si(x), can be obtained by measuring the execution time, ti(x), of

a computational kernel, si(x)=x/ti(x),

─ ε, a required relative accuracy of the solution;

• Partition the set of computation units into p subsets so that

o There is one-to-one mapping between the partitions and the

processors, and

o

1 ,

() ()
()

()
max

i i j j

i j p i i

t n t n

t n
ε

≤ ≤

−

≤
, where ni is the number of

computation units allocated to processor Pi (1≤i≤p).

Thus, the problem we study is to balance the load of heterogeneous processors

with a given accuracy. The fundamental assumption, which makes efficient solution

of this problem particularly difficult, is that the speeds of the processors are not

known a priori. Therefore, if a partitioning algorithm needs the speed of processing of

a given number of computation units by one or the other processor, it has to execute

the corresponding number of units on this processor. Our solution to this problem is

the following distributed data partitioning algorithm.

Distributed Functional Partitioning Algorithm (DFPA): The inputs to the algorithm

are

• n, the number of computation units;

• p (p<n) processors P1, P2, ..., Pp;

• ε, the termination criterion.

The output d is an integer array of size p, the i-th element of which is the number of

computation units allocated to processor i. The algorithm can be summarized as

follows:

• Initialization:

─ All the p processors execute n/p computation units in parallel;

─ The execution times are gathered on processor P1,

))/(,),/((),,(11 pntpnttt pp …… ← ;

─ If
1 ,

(/) (/
max

(/)

i j

i j p
i

t n p t n p

t n p
ε

≤ ≤

 −

≤ 
 
 

 then the even distribution of computations

solves the problem and the algorithm stops;

─ Otherwise, processor P1 calculates the absolute speeds of the processors,

si(n/p)=(n/p)/ti for pi ≤≤1 and builds the first approximation of their

FPMs in the form of constant models,)/()(pnsxs ii = , as illustrated

in Figure 2.

• Iterating: At each step,

Distributed Data Partitioning for Heterogeneous Processors Based on

Partial Estimation of their Functional Performance Models 5

(a)

(b)

(c)

(d)

Fig. 2. Steps of the distributed functional partitioning algorithm (DFPA) illustrated

using four heterogeneous processors. The dotted curves are real-life speed functions.

6 Alexey Lastovetsky, Ravi Reddy

─ Using the data partitioning algorithm [3], processor P1 calculates a new

distribution of computation units,),,(1 pdd … , which will be optimal

for the current approximations of the FPMs, and then sends a message to

each processor Pi informing the latter of its new allocation of

computation units, di (pi ≤≤1);

─ Each processor Pi then executes di computation units in parallel with the

other processors, pi ≤≤1 ;

─ The execution times are gathered on processor P1,

))(,),((),,(111 ppp dtdttt …… ← ;

─ If ε≤








 −

≤≤
i

ji

pji t

tt

,1
max , then the current distribution of computation

units,),,(1 pdd … , solves the problem and the algorithm stops;

─ Otherwise, processor P1 calculates the absolute speeds, which the

processors demonstrated for this distribution of computation units,

i

i
ii

t

d
ds =)((pi ≤≤1), and uses these newly obtained points of the

FPMs of processors Pi,))(,(iii dsd , to build their more accurate

piecewise linear approximations (as illustrated in Figure 2). Namely, let
() ()

1{(, ())}j j m

i i i jd s d
=

 (
(1) ()m

i id d< <…) be the experimentally

obtained points of ()is x used to build its current piecewise linear

approximation, then

o If
(1)

i id d< , then the line segment

(1) (1) (1)(0, ()) (, ())i i i i is d d s d→ of this approximation will

be replaced by two connected line segments

()(0, ()) (, ())i i i i is d d s d→ and

(1) (1)(, ()) (, ())i i i i i id s d d s d→ ;

o If
()m

i id d> , then the line

() () ()(, ()) (, ())m m m

i i i i id s d s d→ ∞ of this approximation

will be replaced by the line segment
() ()(, ()) (, ())m m

i i i i i id s d d s d→ and the line

(, ()) (, ())i i i i id s d s d→ ∞ ;

o If
() (1)k k

i i id d d
+

< < , the line segment

() () (1) (1)(, ()) (, ())k k k k

i i i i i id s d d s d
+ +

→ will be replaced by

two connected line segments

Distributed Data Partitioning for Heterogeneous Processors Based on

Partial Estimation of their Functional Performance Models 7

() ()(, ()) (, ())k k

i i i i i id s d d s d→ and

(1) (1)(, ()) (, ())k k

i i i i i id s d d s d
+ +

→ .

─ Then, the algorithm proceeds to the next step.

Proposition. Given the full FPMs of the processors P1, P2, ..., Pp satisfy the

assumptions about their shape stated in [3], the DFPA algorithm always converges.

Space limitations do not allow us to give the full formal proof of this proposition.

In brief, its main points are as follows. First of all, by construction, the piecewise

linear approximations of the full FPMs used in the algorithm will satisfy the same

assumptions about their shape as the full FPMs themselves. Therefore, at each

iteration step, application of algorithm [3] to the set of approximate FPMs will be

successful and return the optimal solution for these approximate FPMs. Second, each

next iteration step of the algorithm results in more accurate approximation of the

segments of the full FPMs that contain the points of the optimal solution. Therefore,

after a number of iterations, the approximations of the full FPMs will become

accurate enough in order algorithm [3] to return a solution sufficiently close to the

optimal one.

Figure 2 illustrates the operation of the DFPA algorithm using an example with

four heterogeneous processors (P1,P2,P3,P4).

3 Experimental Results

We use a small heterogeneous local network of 16 different Linux processors (hcl01-

hcl16) for the experiments. The specifications of the network are available at the URL

http://hcl.ucd.ie/Hardware/Cluster+Specifications. The network is based on 2 Gbit

Ethernet with a switch enabling parallel communications between the computers. The

software used is MPICH-1.2.5 and ATLAS [8], which provides an optimized BLAS

library.

Figure 3(a) shows the parallel matrix multiplication application. It implements

matrix operation C=A×B, multiplying matrix A and matrix B, where A, B, and C are

dense square matrices of size n×n matrix elements on a network of p heterogeneous

processors. We use a 1D processor arrangement of size 3 for illustration purposes.

Each element is a square matrix block of size b×b (the value of b used is 16). The

matrices A and C must be horizontally sliced such that the height of the slice is

proportional to the speed of the processor owning the slice. All the processors contain

all the elements of matrix B. We assume that only one process is configured to

execute on a processor. We purposely choose an application with no communications

because the goal of the experiments is not to show how to multiply matrices in

parallel but to demonstrate the practical speed of convergence of the distributed

8 Alexey Lastovetsky, Ravi Reddy

(a)

(b)

Fig. 3. (a) Matrix operation C=A×B on a network of three heterogeneous processors. Matrices A

and C are horizontally sliced such that the height of the slice (nb) is proportional to the speed of
the processor. (b) The computational kernel (shown here for processor 2 for example) performs

a matrix update of Ab of size nb×1 and Bb of size 1×n to give a dense matrix Cb of size nb×n.

The matrix elements represent b×b matrix blocks.

partitioning algorithm. The results will not differ significantly for more complicated

algorithms involving communications.

For this application, the core computational kernel performs a matrix update of a

matrix Cb of size nb×n using Ab of size nb×1 and Bb of size 1×n as shown in Figure

3(b). Each element is a square matrix block of size b×b. The size of the problem is

represented by two parameters, nb and n. The total number of matrix elements stored

on each processor will be (2×nb×n+n×n). We use a combined computation unit, which

is made up of one addition and one multiplication, to express the volume of

computation. If n is large enough, the total number of computation units needed to

solve this problem will be approximately equal to nb×n (namely, multiplications of

two b×b matrices). Therefore, the absolute speed of the processor exposed by the

application when solving the problem of size (nb, n) can be calculated as nb×n divided

by the execution time of the matrix update. This gives us a function, f: N
2
 → R+,

mapping problem sizes to speeds of the processor. The FPM of the processor is

obtained by continuous extension of function f: N
2
 → R+ to function g: R+

2
 → R+

(f(n,m)=g(n,m) for any (n,m) from N2). Figure 4(a) depicts this function for one of the

processors, hcl11, used in experiments. Figure 4(b) shows the relative speed of two

processors, hcl09 and hcl02, calculated as the ratio of their absolute speeds. One can

see that the relative speed varies significantly depending on the value of variables x

and y (the variables represent nb and n).

The heterogeneity of the network due to the heterogeneity of the processors is

calculated as the ratio of the absolute speed of the fastest processor to the absolute

speed of the slowest processor. For example, consider the benchmark code of a local

DGEMM update of two matrices 2560×16 and 16×2560, the absolute speeds of the

Distributed Data Partitioning for Heterogeneous Processors Based on

Partial Estimation of their Functional Performance Models 9

(a)

(b)

Fig. 4. (a) The absolute speed of a processor ‘hcl11’ as a function of the size of

the computational task of updating a dense x×y matrix. (b) The relative speed of

two processors (‘hcl09’, ‘hcl02’) calculated as the ratio of their absolute speeds.

processors hcl01-hcl16 in million flop/s performing this update are {7696, 5196,

7852, 14418, 8000, 8173, 7288, 7396, 9037, 8987, 13661, 14194, 11182, 14410,

12008, 15257}. As one can see, hcl16 is the fastest processor and hcl02 is the slowest

processor. The heterogeneity is therefore 3.

We compare the efficiency of the DFPA-based matrix multiplication application

with the application based on the Full-Functional-Model Partitioning Algorithm

(FFMPA). The difference between these applications is that the FFMPA-based one

uses pre-built full FPMs of the processors for partitioning the matrices. More

specifically, it uses the piecewise linear approximation of the full FPMs obtained with

the GBBP procedure [7], which employs the same computational kernel as the DFPA-

based application. Unlike the FFMPA-based application, the DFPA-based application

does not need the FPMs of the processors as input. In all our experiments, the FFMPA

returned the same data distribution as the DFPA.

Figure 5 shows the execution times of the sequential application and the parallel

applications employing the FFPMA and DFPA and solving the same matrix

10 Alexey Lastovetsky, Ravi Reddy

multiplication problem. The sequential application uses optimized BLAS library

(ATLAS) and is executed on the fastest processor (hcl09). The execution of the

Fig. 5. Execution times of sequential and parallel applications with FFPMA and

DFPA solving the same matrix multiplication problem.

Table 1. Execution times of the parallel matrix multiplication application

employing FFPMA and DFPA.

Size of the

matrix

(n)

Number of

iterations

of DFPA

DFPA

execution

time (sec)

Execution

time using

DFPA (sec)

Execution

time using

FFPMA (sec)

1024 2 0.06 0.2 0.2

2048 2 0.09 2.2 1.9

3072 2 0.3 9.9 8.5

4096 5 2 28 25.3

5120 5 3 53.3 50.5

6144 5 3 84.4 80.7

7168 5 4 137.7 132.4

8192 5 5 204.3 199.7

9216 5 7 295.3 287.6

10240 5 11 405.9 393.3

parallel matrix multiplication application consists of two parts. Firstly, all the

processors execute the DFPA/FFPMA data partitioning algorithm to partition the

matrices and then they perform the parallel matrix multiplication itself. For problem

sizes (n>5120), the sequential application fails due to the problem size exceeding the

memory limit of the processor. One can conclude that the parallel applications

outperform the sequential application.

Table 1 shows the execution times of the parallel matrix multiplication applications

employing the FFPMA and the DFPA. The second column shows the number of

iterations of DFPA. The third column shows the execution time of the DFPA. The

Distributed Data Partitioning for Heterogeneous Processors Based on

Partial Estimation of their Functional Performance Models 11

fourth column shows the total execution time of the DFPA-based application. This

includes the execution time of the DFPA. The fifth column shows the total execution

time of the parallel application employing the FFPMA algorithm, which obviously

does not include the time of construction of the FPMs of the processors.

One can see that the execution times of the parallel applications employing the

FFPMA and DFPA differ only marginally. The difference is the execution time of the

DFPA algorithm shown in the third column of Table 1. Most of it is spent in the

partial estimation of the FPMs of the processors. It should be noted that the execution

time of the parallel application employing the FFPMA does not take into

consideration the time taken to build the full FPMs of the processors.

The execution time taken to build the full FPMs of the processors, which are used

in the FFPMA-based application, is 425 seconds. The range of problem sizes, (nb, n),

used for building them satisfy the inequalities, nb≤10240, n≤10240, and nb≤n. One can

see that the execution time is significant compared to the DFPA execution times

shown in the third column. The maximum number of experimental points used to

build the full FPMs for this range is 60. This is compared to a maximum of 6 using

DFPA (number of iterations plus one shown in column 2 of Table 1).

Thus, we can conclude that the DFPA converges very fast and its execution time is

several orders of magnitude less than the execution time of the application. It is also

efficient in terms of the number of experimental points.

This publication has emanated from research conducted with the financial support

of Science Foundation Ireland under Grant Number 08/IN.1/I2054.

References

[1] Kalinov, A., Lastovetsky, A.: Heterogeneous Distribution of Computations Solving

Linear Algebra Problems on Networks of Heterogeneous Computers. Journal of

Parallel and Distributed Computing, 61(4), 520--535 (2001)

[2] Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on

Heterogeneous Platforms. IEEE Transactions on Parallel and Distributed Systems.

12(10), 1033--1051 (2001)

[3] Lastovetsky, A., Reddy, R.: Data Partitioning with a Functional Performance Model

of Heterogeneous Processors. International Journal of High Performance Computing

Applications. 21(1), 76--90 (2007)

[4] Lastovetsky, A., Reddy, R.: Data Partitioning for Multiprocessors with Memory

Heterogeneity and Memory Constraints. Scientific Programming. 13(2), 93--112

(2005)

[5] Lastovetsky, A., Reddy, R.: Data Partitioning with a Realistic Performance Model

of Networks of Heterogeneous Computers. In: 18th International Parallel and

Distributed Processing Symposium, IEEE Computer Society (2004)

[6] Lastovetsky, A., Reddy, R.: Data distribution for dense factorization on computers

with memory heterogeneity. Parallel Computing, 33(12), 757--779 (2007)

[7] Lastovetsky, A., Reddy, R., Higgins, R.: Building the Functional Performance

Model of a Processor. In: 21st Annual ACM Symposium on Applied Computing,

pp.746--753, ACM Press, 2006

[8] Automatically Tuned Linear Algebra Software (ATLAS), http://math-

atlas.sourceforge.net/

