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Abstract. The paper presents a new data partitioning algorithm for parallel 

computing on heterogeneous processors. Like traditional functional partitioning 

algorithms, the algorithm assumes that the speed of the processors is 

characterized by speed functions rather than speed constants. Unlike the 

traditional algorithms, it does not assume the speed functions to be given. 

Instead, it uses a computational kernel to estimate the speed functions of the 

processors for different problem sizes during its execution. This makes the 

algorithm distributed as its execution involves all the heterogeneous processors. 

The algorithm does not construct the complete speed function for each 

processor but rather builds and uses their partial estimates sufficient for optimal 

data distribution with a given accuracy. The low execution cost of this 

algorithm makes it ideal for employment in self-adaptable applications. 

Experiments with a parallel matrix multiplication application employing this 

algorithm are performed on a local heterogeneous computational cluster. The 

results show that the algorithm converges very fast and that its execution time is 

several orders of magnitude less than the total execution time of the application. 

Keywords: distributed algorithms, data partitioning algorithms, functional 

performance models, heterogeneous platforms 

1 Introduction 

Conventional data partitioning algorithms for parallel computing on 

heterogeneous processors [1-2] are based on a performance model, which 

represents the speed of a processor by a constant positive number, and 

computations are distributed amongst the processors such that their volume is 

proportional to this speed of the processor. The constant characterizing the 

performance of the processor is typically its relative speed demonstrated 

during the execution of a serial benchmark code solving locally the core 

computational task of some given size.  
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Fig. 1. Optimal data distribution showing the geometric proportionality of the 

number of chunks to the speed of the processor. 

The traditional constant performance models (CPMs) proved to be accurate enough 

for heterogeneous distributed memory systems if partitioning of the problem results in 

a set of computational tasks that fit into the main memory of the assigned processors. 

But these models become less accurate in the presence of paging. The functional 

performance model (FPM) of heterogeneous processors proposed and analyzed in [3] 

has proven to be more realistic than the CPMs because it integrates many important 

features of heterogeneous processors such as the processor heterogeneity, the 

heterogeneity of memory structure, and the effects of paging. The algorithms 

employing it therefore distribute the computations across the heterogeneous 

processors more accurately than the algorithms employing the CPMs. Under this 

model, the speed of each processor is represented by a continuous function of the size 

of the problem. This model is application centric because, generally speaking, 

different applications will characterize the speed of the processor by different 

functions. 

The problem of distributing independent chunks of computations over a 

unidimensional arrangement of heterogeneous processors using this FPM has been 

studied in [3]. It can be formulated as follows: Given n independent chunks of 

computations, each of equal size (i.e., each requiring the same amount of work), how 

can we assign these chunks to p (p<n) physical processors P1, P2, ..., Pp with their 

respective full FPMs represented by speed functions s1(x), s2(x), ..., sp(x) so that the 

workload is best balanced? An algorithm solving this problem with a complexity of 

O(p×log
2
n) is also proposed in [3]. This and other similar algorithms, which relax the 

restriction of bounded heterogeneity of the processors [4] and which are not sensitive 

to the shape of speed functions [5], are based on the observation that the optimal data 

distribution points (x1, s1(x1)), (x2, s2(x2)), …, (xp, sp(xp)) lie on a straight line passing 

through the origin of the coordinate system and are the intersecting points of this line 

with the graphs of the speed functions of the processors. This is shown in Figure 1. 
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These algorithms are used as building blocks in algorithms solving more complicated 

linear algebra kernels such as the dense factorizations [6].  

The cost of experimentally building the full FPM of a processor, i.e., the FPM for 

the full range of problem sizes, is very high. This is due to several reasons. To start 

with, the accuracy of the FPM depends on the number of experimental points used to 

build it. The larger the number, the more accurate the FPM is. However, there is a 

cost associated with obtaining an experimental data point, which requires execution of 

a computational kernel for a specified problem size. This cost is especially high for 

problem sizes in the region of paging. Also, the number of experimental points 

required to build the full FPM increases remarkably as the number of parameters used 

to represent the problem size increases, as shown in the experimental results in this 

paper.  

The problem of minimization of the cost of experimentally building the full FPM 

of the processor has been studied recently proposing a relatively efficient sub-optimal 

solution [7]. However, even if an ideal optimal procedure becomes available to build 

approximations of the FPM of heterogeneous processors, the fact remains that the cost 

of building the full FPM is too high to forbid the use of data partitioning algorithms, 

employing the full FPM, in self-adaptable applications.  

The paper presents a new algorithm of data partitioning for parallel computing on 

heterogeneous processors. Like traditional functional partitioning algorithms, the 

algorithm assumes that the speed of the processors is characterized by speed functions 

rather than speed constants. Unlike the traditional algorithms, it does not assume the 

speed functions to be given. Instead, it uses a computational kernel to estimate the 

speed functions of the processors for different problem sizes during its execution. 

This makes the algorithm distributed as its execution involves all the heterogeneous 

processors. The algorithm does not construct the complete speed function for each 

processor but rather builds and uses their partial estimates sufficient for optimal data 

distribution. The proposed algorithm does not return a partitioning perfectly balancing 

the load of the processors but a partitioning balancing their load with a given 

accuracy. 

Using experimental results for parallel matrix multiplication on a local 

heterogeneous computational cluster, we demonstrate that the execution time of the 

proposed distributed partitioning algorithm is several orders of magnitude less than 

the total execution time of the parallel application, thereby making it very suitable for 

employment in self-adaptable applications. 

The rest of the paper is organized as follows. In Section 2, we present the 

contribution of this paper, which is the distributed iterative partitioning algorithm. 

This is followed by experimental results on a local heterogeneous computing cluster 

in Section 3. For the experiments, we use a parallel matrix multiplication application 

employing the data partitioning algorithm. Finally, we present numerical results 

demonstrating the efficiency of the distributed iterative partitioning algorithm. 

2 Distributed Functional Partitioning Algorithm (DFPA) 

The data partitioning problem that we are trying to solve can be formulated as 

follows: 
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• Given 

─ A set of n independent units of computation each of equal size (i.e., each 

requiring the same amount of work); 

─ A set of p (p<n) processors P1, P2, ..., Pp, whose speeds of processing x 

units, si=si(x), can be obtained by measuring the execution time, ti(x), of 

a computational kernel, si(x)=x/ti(x), 

─ ε, a required relative accuracy of the solution; 

• Partition the set of computation units into p subsets so that  

o There is one-to-one mapping between the partitions and the 

processors, and 

o 

1 ,

( ) ( )
( )

( )
max

i i j j

i j p i i

t n t n

t n
ε

≤ ≤

−

≤
, where ni is the number of 

computation units allocated to processor Pi (1≤i≤p). 

Thus, the problem we study is to balance the load of heterogeneous processors 

with a given accuracy. The fundamental assumption, which makes efficient solution 

of this problem particularly difficult, is that the speeds of the processors are not 

known a priori. Therefore, if a partitioning algorithm needs the speed of processing of 

a given number of computation units by one or the other processor, it has to execute 

the corresponding number of units on this processor. Our solution to this problem is 

the following distributed data partitioning algorithm.    

Distributed Functional Partitioning Algorithm (DFPA): The inputs to the algorithm 

are  

• n, the number of computation units; 

• p (p<n) processors P1, P2, ..., Pp; 

• ε, the termination criterion.  

The output d is an integer array of size p, the i-th element of which is the number of 

computation units allocated to processor i. The algorithm can be summarized as 

follows: 

• Initialization: 

─ All the p processors execute n/p computation units in parallel; 

─ The execution times are gathered on processor P1, 

))/(,),/((),,( 11 pntpnttt pp …… ← ;  

─ If 
1 ,

( / ) ( /
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( / )

i j

i j p
i

t n p t n p

t n p
ε
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 
 

 then the even distribution of computations 

solves the problem and the algorithm stops; 

─ Otherwise, processor P1 calculates the absolute speeds of the processors, 

si(n/p)=(n/p)/ti for pi ≤≤1 and builds the first approximation of their 

FPMs in the form of constant models, )/()( pnsxs ii = , as illustrated 

in Figure 2. 

• Iterating: At each step,  
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Fig. 2. Steps of the distributed functional partitioning algorithm (DFPA) illustrated 

using four heterogeneous processors. The dotted curves are real-life speed functions. 
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─ Using the data partitioning algorithm [3], processor P1 calculates  a new 

distribution of computation units, ),,( 1 pdd … , which will be optimal 

for the current approximations of the FPMs, and then sends a message to 

each processor Pi informing the latter of its new allocation of 

computation units, di ( pi ≤≤1 ); 

─ Each processor Pi  then executes di computation units in parallel with the 

other processors, pi ≤≤1 ; 

─ The execution times are gathered on processor P1, 

))(,),((),,( 111 ppp dtdttt …… ← ; 

─ If ε≤








 −

≤≤
i

ji

pji t

tt

,1
max , then the current distribution of computation 

units, ),,( 1 pdd … , solves the problem and the algorithm stops; 

─ Otherwise, processor P1 calculates the absolute speeds, which the 

processors demonstrated for this distribution of computation units, 

i

i
ii

t

d
ds =)(  ( pi ≤≤1 ), and uses these newly obtained points of the 

FPMs of processors Pi, ))(,( iii dsd , to build their more accurate 

piecewise linear approximations (as illustrated in Figure 2). Namely, let 
( ) ( )

1{( , ( ))}j j m

i i i jd s d
=

 (
(1) ( )m

i id d< <… ) be the experimentally 

obtained points of ( )is x  used to build its current piecewise linear 

approximation, then 

o If 
(1)

i id d< , then the line segment 

(1) (1) (1)(0, ( )) ( , ( ))i i i i is d d s d→  of this approximation will 

be replaced by two connected line segments 

( )(0, ( )) ( , ( ))i i i i is d d s d→  and 

(1) (1)( , ( )) ( , ( ))i i i i i id s d d s d→ ; 

o If 
( )m

i id d> , then the line 

( ) ( ) ( )( , ( )) ( , ( ))m m m

i i i i id s d s d→ ∞  of this approximation 

will be replaced by the line segment 
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o If 
( ) ( 1)k k
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+

< < , the line segment 

( ) ( ) ( 1) ( 1)( , ( )) ( , ( ))k k k k

i i i i i id s d d s d
+ +

→  will be replaced by 

two connected line segments 
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( ) ( )( , ( )) ( , ( ))k k
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─ Then, the algorithm proceeds to the next step.  

Proposition. Given the full FPMs of the processors P1, P2, ..., Pp satisfy the 

assumptions about their shape stated in [3], the DFPA algorithm always converges. 

Space limitations do not allow us to give the full formal proof of this proposition. 

In brief, its main points are as follows. First of all, by construction, the piecewise 

linear approximations of the full FPMs used in the algorithm will satisfy the same 

assumptions about their shape as the full FPMs themselves. Therefore, at each 

iteration step, application of algorithm [3] to the set of approximate FPMs will be 

successful and return the optimal solution for these approximate FPMs. Second, each 

next iteration step of the algorithm results in more accurate approximation of the 

segments of the full FPMs that contain the points of the optimal solution. Therefore, 

after a number of iterations, the approximations of the full FPMs will become 

accurate enough in order algorithm [3] to return a solution sufficiently close to the 

optimal one.       

Figure 2 illustrates the operation of the DFPA algorithm using an example with 

four heterogeneous processors (P1,P2,P3,P4). 

3 Experimental Results 

We use a small heterogeneous local network of 16 different Linux processors (hcl01-

hcl16) for the experiments. The specifications of the network are available at the URL 

http://hcl.ucd.ie/Hardware/Cluster+Specifications. The network is based on 2 Gbit 

Ethernet with a switch enabling parallel communications between the computers. The 

software used is MPICH-1.2.5 and ATLAS [8], which provides an optimized BLAS 

library.  

Figure 3(a) shows the parallel matrix multiplication application. It implements 

matrix operation C=A×B, multiplying matrix A and matrix B, where A, B, and C are 

dense square matrices of size n×n matrix elements on a network of p heterogeneous 

processors. We use a 1D processor arrangement of size 3 for illustration purposes. 

Each element is a square matrix block of size b×b (the value of b used is 16). The 

matrices A and C must be horizontally sliced such that the height of the slice is 

proportional to the speed of the processor owning the slice. All the processors contain 

all the elements of matrix B. We assume that only one process is configured to 

execute on a processor. We purposely choose an application with no communications 

because the goal of the experiments is not to show how to multiply matrices in 

parallel but to demonstrate the practical speed of convergence of the distributed  
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(a) 

 
(b) 

Fig. 3. (a) Matrix operation C=A×B on a network of three heterogeneous processors. Matrices A 

and C are horizontally sliced such that the height of the slice (nb) is proportional to the speed of 
the processor. (b) The computational kernel (shown here for processor 2 for example) performs 

a matrix update of Ab of size nb×1 and Bb of size 1×n to give a dense matrix Cb of size nb×n. 

The matrix elements represent b×b matrix blocks. 

 
partitioning algorithm. The results will not differ significantly for more complicated 

algorithms involving communications. 

For this application, the core computational kernel performs a matrix update of a 

matrix Cb of size nb×n using Ab of size nb×1 and Bb of size 1×n as shown in Figure 

3(b). Each element is a square matrix block of size b×b. The size of the problem is 

represented by two parameters, nb and n. The total number of matrix elements stored 

on each processor will be (2×nb×n+n×n). We use a combined computation unit, which 

is made up of one addition and one multiplication, to express the volume of 

computation. If n is large enough, the total number of computation units needed to 

solve this problem will be approximately equal to nb×n (namely, multiplications of 

two b×b matrices). Therefore, the absolute speed of the processor exposed by the 

application when solving the problem of size (nb, n) can be calculated as nb×n divided 

by the execution time of the matrix update. This gives us a function, f: N
2
 → R+, 

mapping problem sizes to speeds of the processor. The FPM of the processor is 

obtained by continuous extension of function f: N
2
 → R+ to function g: R+

2
 → R+ 

(f(n,m)=g(n,m) for any (n,m) from N2). Figure 4(a) depicts this function for one of the 

processors, hcl11, used in experiments. Figure 4(b) shows the relative speed of two 

processors, hcl09 and hcl02, calculated as the ratio of their absolute speeds. One can 

see that the relative speed varies significantly depending on the value of variables x 

and y (the variables represent nb and n).  

The heterogeneity of the network due to the heterogeneity of the processors is 

calculated as the ratio of the absolute speed of the fastest processor to the absolute 

speed of the slowest processor. For example, consider the benchmark code of a local 

DGEMM update of two matrices 2560×16 and 16×2560, the absolute speeds of the  

 



Distributed Data Partitioning for Heterogeneous Processors Based on 

Partial Estimation of their Functional Performance Models  9 

(a) 

(b) 

Fig. 4. (a) The absolute speed of a processor ‘hcl11’ as a function of the size of 

the computational task of updating a dense x×y matrix. (b) The relative speed of 

two processors (‘hcl09’, ‘hcl02’) calculated as the ratio of their absolute speeds. 

processors hcl01-hcl16 in million flop/s performing this update are {7696, 5196, 

7852, 14418, 8000, 8173, 7288, 7396, 9037, 8987, 13661, 14194, 11182, 14410, 

12008, 15257}. As one can see, hcl16 is the fastest processor and hcl02 is the slowest 

processor. The heterogeneity is therefore 3.  

We compare the efficiency of the DFPA-based matrix multiplication application 

with the application based on the Full-Functional-Model Partitioning Algorithm 

(FFMPA). The difference between these applications is that the FFMPA-based one 

uses pre-built full FPMs of the processors for partitioning the matrices. More 

specifically, it uses the piecewise linear approximation of the full FPMs obtained with 

the GBBP procedure [7], which employs the same computational kernel as the DFPA-

based application. Unlike the FFMPA-based application, the DFPA-based application 

does not need the FPMs of the processors as input. In all our experiments, the FFMPA 

returned the same data distribution as the DFPA. 

Figure 5 shows the execution times of the sequential application and the parallel 

applications employing the FFPMA and DFPA and solving the same matrix 
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multiplication problem. The sequential application uses optimized BLAS library 

(ATLAS) and is executed on the fastest processor (hcl09). The execution of the  

 

 

Fig. 5. Execution times of sequential and parallel applications with FFPMA and 

DFPA solving the same matrix multiplication problem. 

Table 1. Execution times of the parallel matrix multiplication application 

employing FFPMA and DFPA. 

Size of the 

matrix 

(n) 

Number of 

iterations 

of DFPA 

DFPA 

execution 

time (sec) 

Execution 

time using 

DFPA (sec) 

Execution 

time using 

FFPMA (sec) 

1024 2 0.06 0.2 0.2 

2048 2 0.09 2.2 1.9 

3072 2 0.3 9.9 8.5 

4096 5 2 28 25.3 

5120 5 3 53.3 50.5 

6144 5 3 84.4 80.7 

7168 5 4 137.7 132.4 

8192 5 5 204.3 199.7 

9216 5 7 295.3 287.6 

10240 5 11 405.9 393.3 

 

parallel matrix multiplication application consists of two parts. Firstly, all the 

processors execute the DFPA/FFPMA data partitioning algorithm to partition the 

matrices and then they perform the parallel matrix multiplication itself. For problem 

sizes (n>5120), the sequential application fails due to the problem size exceeding the 

memory limit of the processor. One can conclude that the parallel applications 

outperform the sequential application. 

Table 1 shows the execution times of the parallel matrix multiplication applications 

employing the FFPMA and the DFPA. The second column shows the number of 

iterations of DFPA. The third column shows the execution time of the DFPA. The 
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fourth column shows the total execution time of the DFPA-based application. This 

includes the execution time of the DFPA. The fifth column shows the total execution 

time of the parallel application employing the FFPMA algorithm, which obviously 

does not include the time of construction of the FPMs of the processors. 

One can see that the execution times of the parallel applications employing the 

FFPMA and DFPA differ only marginally. The difference is the execution time of the 

DFPA algorithm shown in the third column of Table 1. Most of it is spent in the 

partial estimation of the FPMs of the processors. It should be noted that the execution 

time of the parallel application employing the FFPMA does not take into 

consideration the time taken to build the full FPMs of the processors.  

The execution time taken to build the full FPMs of the processors, which are used 

in the FFPMA-based application, is 425 seconds. The range of problem sizes, (nb, n), 

used for building them satisfy the inequalities, nb≤10240, n≤10240, and nb≤n. One can 

see that the execution time is significant compared to the DFPA execution times 

shown in the third column. The maximum number of experimental points used to 

build the full FPMs for this range is 60. This is compared to a maximum of 6 using 

DFPA (number of iterations plus one shown in column 2 of Table 1).  

Thus, we can conclude that the DFPA converges very fast and its execution time is 

several orders of magnitude less than the execution time of the application. It is also 

efficient in terms of the number of experimental points. 

This publication has emanated from research conducted with the financial support 

of Science Foundation Ireland under Grant Number 08/IN.1/I2054. 
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