J Supercomput @ CrossMark
DOI 10.1007/s11227-016-1694-y

Automatic tuning to performance modelling of matrix
polynomials on multicore and multi-GPU systems

Murilo Boratto! - Pedro Alonso? -
Domingo Giménez>® - Alexey Lastovetsky*

© Springer Science+Business Media New York 2016

Abstract Automatic tuning methodologies have been used in the design of routines
in recent years. The goal of these methodologies is to develop routines which automat-
ically adapt to the conditions of the underlying computational system so that efficient
executions are obtained independently of the end-user experience. This paper aims to
explore programming routines that can automatically be adapted to the computational
system conditions thanks to these automatic tuning methodologies. In particular, we
have worked on the evaluation of matrix polynomials on multicore and multi-GPU
systems as a target application. This application is very useful for the computation of
matrix functions like the sine or cosine but, at the same time, the application is very
time consuming since the basic computational kernel, which is the matrix multiplica-
tion, is carried out many times. The use of all available resources within a node in an
easy and efficient way is crucial for the end user.

B4 Murilo Boratto
muriloboratto@gmail.com

Pedro Alonso
palonso@upv.es

Domingo Giménez
domingo@um.es

Alexey Lastovetsky

alexey.lastovetsky @ucd.ie

Nicleo de Arquitetura de Computadores e Sistemas Operacionais, Universidade do Estado da
Babhia, Salvador, Bahia, Brazil

2 Departament de Sistemas Informatics i Computacid, Universitat Politecnica de Valencia,
Valencia, Spain

3 Departamento de Sistemas Informadticos, Universidad de Murcia, Murcia, Spain

4

Heterogeneous Computing Laboratory, School of Computer Science, University College Dublin,
Dublin, Ireland

Published online: 28 March 2016 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1694-y&domain=pdf

M. Boratto et al.

Keywords Automatic tuning - Matrix polynomials - Performance - Multicore -
Multi-GPU

1 Introduction

Itis up to software developers to create superscalar programs [7], since it is highly prob-
able that a program written today will need to be totally modified tomorrow to adapt
to machines with more and/or different processors. To meet this need, manipulation
patterns were created which allow modifications in existing codes by incorporating
directives. This means users do not need to radically update their applications to enjoy
the benefits of multiprocessing environments.

There exist many approaches to automatic tuning focused on getting a model for
the execution time of the routine to optimize. Once the model has been obtained, the-
oretically and/or experimentally, for a given problem size and execution environment,
this model is used to obtain the values of some adjustable parameters with which
minimize the execution time [9].

We use in this work a known technique to build the model consisting in the execution
of small benchmarks of the routine. In this work, a technique for redesigning the model
from regression has been included in our original methodology [1]. The basic idea is to
start from the theoretical model using the information from basic routines to model the
higher level ones without experimenting with them. However, if for a particular routine
all this information is not useful enough, then it would be built again from the beginning
using a series of experimental executions and regression applied appropriately.

The main contribution consists of a mathematical model to predict the execution
time of high demanding applications on heterogeneous systems which consists of
a general purpose multicore CPU with two equal or different GPUs attached. The
model is simple, can be built in a reasonable time at the installation stage, and is
accurate enough as to get the best workload distribution among the available computing
resources. The rest of the paper is organized as follows: Sect. 2 presents the related
work. Section 3 shows the fast parallel algorithm for solving matrix polynomials
on multicore and multi-GPU. Section 4 explains the design of the automatic tuning
methodology. Section 5 presents the experimental results. The conclusions section
closes the paper.

2 Related work

There exist important automatic tuning systems that attempt to automatically adapt
the software to tune to the conditions of the execution platform. These include, e.g.
the FFTW package developed for the computation of discrete Fourier transform [8],
ATLAS for BLAS [19], a library of linear algebra routines for sparse matrices [12],
etc. The main goal of any automatic tuning system is to minimize the execution time of
the routine to tune, keeping in turn the installation time below a reasonable threshold.
In addition, the existence of automatically tuned software makes easy the efficient
utilization of the library routines by non-expert users.

@ Springer

Automatic tuning to performance modelling of matrix. . .

The approach chosen, e.g. by FAST [5], consists of a large benchmark followed by a
polynomial regression to find the optimal parameters for different routines. Polynomial
regression is used in [18] to decide which is the most appropriate version among the
different variants of a routine. The authors of the same work also introduce a black-
box running method to reduce the enormous implementation space. In the approach
followed by FIBER [13] the execution time of a routine is approximated by fixing
one parameter and varying the other one. In this case, a set of polynomial functions of
grades 1-5 is generated and the best one of them all is selected. The values provided by
these functions for different problem sizes are then used to generate another function
where the second parameter is fixed now and the first one is varied. The work in [17]
introduces a new method, named Incremental Performance Parameter Estimation. In
this method, the estimation of the theoretical model by polynomial regression is started
from the least sampling points and incremented dynamically to improve accuracy.
Initially, they apply it on sequential platforms and with just one algorithmic parameter
to seek. In [11] the number of sampling points is reduced by starting from a previous
shape of the curve that represents the execution time.

The current hardware trends have inevitably brought the need for updates on exist-
ing legacy software packages, such as BLAS [4] and LAPACK [3]. This is reflected,
for instance, in the Parallel Linear Algebra Software for Multicore Architectures
(PLASMA) project [16], and the Matrix Algebra on GPU and Multicore Architectures
(MAGMA) project [14], which is a recent effort on developing a LAPACK version
for multicore and heterogeneous/hybrid architectures containing hardware acceler-
ators like GPUs. The goal of this work falls within the context of all these above
mentioned packages which try to build the best routine through the selection of some
critical parameters at installation time, and is carried out on the evaluation of matrix
polynomials.

3 Fast parallel algorithm for solving matrix polynomials on multicore
and multi-GPU

The matrix polynomial is a simple algebraic structure that represents a real problem
applied in the area of engineering and physics. We define a matrix polynomial P of
degree d as

d
P = Zad—ixd_i =g X'+ a1 X+ v X +aol
i=0

where X, I € R"*", being I the identity matrix [2]. We also define the array @ as
a = [@;]i=0,... .4 for convenience in further descriptions.

There exists a sequential technique that allows to reduce the number of computations
(number of matrix products) needed to evaluate a polynomial. This technique is based
on the method that Paterson and Stockmeyer designed for scalar polynomials [15].
From now on, and for the sake of clarity, we will denote this method as boxing. The
next example, where the degree of the polynomial to evaluate is d = 14, easily shows
the idea behind this method.

@ Springer

M. Boratto et al.

14
P = zaM—iXMil
i=0

= o X+ a3 XB 4 anX? Fan XM+ apoX'0 + aoX? + agX®
+o7 X+ X+ asX° + s X + o3 X3 + o X2 + a1 X + aol
=x" (0l14X2 +a3X +a121) + x8 (a11X3 +a10X? +agX +a81)

+ x4 (a7x3 FaX? +asX! + a41) n (a3x3 fooX?farX + aol). (1

Let Q9(a, X) be the polynomial of degree ¢ in X with coefficients given by vector
a={og, 0q_1,...,01,a0}, then

Q4@ X) = Q9@ = g X + g 1 X9+ + o1 X + ol
and polynomial (1) can be written as

P = X20%@4:12) + X303 @118) + X* 03 (@74) + 0 (@30)
= X*(X* (XN Q¥ (@14:12)) + Q*(@118)) + QX (@7.0)) + O (@30). ()

The example above uses a boxing size of b = 3, which means that the largest
polynomial in the previous expression can not be larger than b = 3. The boxing size b
also means that the power b+ 1 of matrix X (X*in the example) is used as the common
factor. It is easy to see that the number of operations needed to evaluate polynomial (2)
is lower than that needed for evaluating the original polynomial. Function EVALUATE
of Algorithm 1 summarizes the overall process. In lines 2—5, an array of matrices A is
filled with the b + 1 matrix powers of X needed for the evaluation of the polynomial
so that

A=[X il = (X x2 ... xt xb“). 3)

Array A will be used to evaluate the “boxed” polynomials of type Q9 (&, X). Once
array A has been computed, routine EVALUATE calls the routine BoxING, which is a
recursive routine that allows to evaluate the polynomial using boxing.

Routine BoxING is based on the following recurrence

P < X Pyt + QP @ptin) = XU Q1 + 00, 4

fori =0,0+1,2(b+1),3(b+1), ..., where matrix P; represents the general case.
The base case of this recursion is met when d — i < b, which means that there is
no longer the possibility of doing boxing. In this case, the algorithm evaluates the
polynomial Q9(ay ;.;), being ¢ = d —i. It can be easily shown that the recursion (4)
applied to the polynomial example in (2) results in

@ Springer

Automatic tuning to performance modelling of matrix. . .

Algorithm 1 Algorithm for the evaluation of the matrix polynomial using boxing

1: function EvaLuAaTE(1, X, d, @, b) return P
A0 =X

3 fori < 1,bdo

4 Al < AG—-1-X
5: end for
6

7

8

P < BoxiNG(n,d,b,0,a, A)
: end function
: function sBoxiNG(n,d, b, i, &, A) return P

9: q<«—d—i

10: if ¢ < b then

11: P < EVAL(n, q, 0g4i:. A)

12: else

13: Q1 < BoxXING(n,d,b,b+1i,a,A)
14: q<—b—1

15: Q2 < EVAL(N, q,0g4i:i, A)

16: P < A(q)- 01+ Q2

17: end if

18: end function

Algorithm 2 Recursive algorithm to evaluate a matrix polynomial using boxing on
CPU cores and multi-GPU

1: function BoxiNG(d, b, i, @, A, B) return P
2: P < BOXING (i,d,b,i,a, A)

3 #pragma omp parallel for
4 forg < 0,...,Ddo

S5: q<«—d—i

6 if ¢ < b then

7 P <—BvaL(j, Qg4 A)
8: else

9: Q1 < BoxiNG(d,b,b+1i,a, A, B)
10: q<—b-—1

11: Q2 < EVAL(k, 0y A)
12: P<~B-01+ 0>

13: end if

14: end for

15: end function

P =Py=X*"Pi+ 0% @s0)
Py = X*Ps + 0% (@74)
Py =X*Pip+ Q*@8)
P12 = Q*(@14:12).

The recursive function BoxING makes use of another function called EvaL. Function
EVAL(g, &, A), computes Q7 (ag4:;) provided g < b.

The algorithm to evaluate a matrix polynomial using boxing on CPU cores and
multi-GPU is written in Algorithm 2. The method proposed is based on OpenMP
parallel loops [6]. Each iteration of the parallel loop is carried out by one thread which
is, in turn, bound to a given GPU and/or CPU core, from O to D devices. Before
calling this routine, the powers of X are assumed to be already computed and stored
in array A (3). All the components of this array (which are matrices) are partitioned in

@ Springer

M. Boratto et al.

blocks of columns and distributed among the GPUs and the CPU cores accordingly to
their computing capability. This way, each thread executing the iteration of the loop
performs the computation of a different set of data, those part of the matrix stored on
this component in previous steps. The computation of the powers of X is by far the
most costly step and is distributed among the different devices of the computer. Only
the first (A(0)) and the last (A(b), represented by B in the algorithm) components are
needed to be fully stored in each device.

All the evaluation process is carried out in parallel between the devices without
communication. Only upon termination the CPU system receives factors P from both
GPUs and the CPU cores to build the final square matrix.

4 Automatic tuning methodology

The automatic tuning methodology uses a theoretical model of the execution time of
the routine which is used to select the suitable values of some parameters that will
allow to get the result in the shortest possible time. We follow here the automatic
tuning methodology presented in [1]. The model proposed must reflect, on the one
hand, the computing and communication features of the algorithm, known as AP
(Algorithm Parameters), and, on the other hand, the features of the system under which
the algorithm is executed, known as S P (System Parameters). The mathematical model
of the execution time (7) can be expressed as a function of the input size (s), which is
in turn a function of the AP and SP,i.e.t(s) = f(s, AP, SP). The value of all these
parameters should be selected to obtain a reduced execution time.

Typical SP are: the cost of one arithmetic operation, communication start-up and
word-sending times in communication operations. These parameters represent the
characteristics of the computer and the communication system between CPU and GPU.
Typical A P are: the number of processors to use, the number of processes to be enabled
along with their mapping in the physical system, or the size of communication blocks,
or data partitioning and distribution among processes. To obtain a more realistic model,
we can consider that the values for S P are influenced by those for AP, i.e. SP can be
expressed as a function (h) of the input size (s) and the AP so that SP = h(s, AP).

The values for the S P will be obtained at the moment of installing the routine in
a new system. To this end, the routine designer should develop the runtime model,
identify the SP in the model, and design an installation strategy that includes, for
each SP, the experiments to estimate its values, the AP and the values that have to
be experimented with. The values obtained for the SP are included with the execu-
tion time model in the routine that is being optimized, which is, thus, installed with
information of the system for which it is being optimized.

The AP for the automatic tuning scheme presented in this paper are: the num-
ber of CPU cores (c), and the percentage of computation assigned to GPUs, defined
as workload (w). These two parameters capture the key characteristics of the appli-
cation performance and the machine that the application is running on. The CPU
cores and workload parameters are used to show the scalability of the applica-
tion. They reflect the reasons why the application performance becomes unscalable
beyond a certain point. Thus, in our problem, the set of algorithmic parameters is

@ Springer

Automatic tuning to performance modelling of matrix. . .

AP = {c, w}, so the total execution time can be written as t(s) = f(s, AP, SP) =
f(s,c,w, h(s,c, w)).

The optimum number of CPU cores and workload are not constant but depend on the
platform and on the problem size. Thus, a good selection of the values of the algorithm
parameters is important, and the development of automatic tuning software makes the
efficient utilization of the routines by non-expert users easy. The algorithm is studied
theoretically and experimentally to determine the influence of different values for S P
on the AP. The most important part of the information system to be incorporated to
the routine is the analytical execution model for the time as a function of the problem
size (s), SP, and AP. We propose the following model for the execution time:

1(s, ¢, w) = try + CPUpy + GPUpy, ()

where t is the routine execution time, and CPU,; and GPU,; are the CPU and GPU
management times, respectively. This analytical model predicts the execution time as a
function of the input data features, and requires direct information about the algorithm
used and the underlying architecture.

The model for the execution time (Eq. 5) is detailed in the following one:

t(s,c,w) = ——— + 1 - ty- 8. 6
(s, ¢, w) C+g_S+cc+gg (6)

Let S be the relative speedup of a GPU versus a CPU core, then the model estimates the
execution time starting from the sequential complexity cost feec(s) = k- O (s) divided
by the number of the CPU cores (¢) plus the number of GPUs (g) multiplied by S.
Constant k represents the cost of one arithmetic operation. To obtain this computation
time it is necessary to select w properly so that the workload is well balanced between
the CPU and the GPUs. The model for the execution time depicted in Eq. 6 also involves
the management time for both subsystems. These times depend on the initialization
time of a CPU thread (f.) and a GPU kernel (¢,), respectively, and are proportional to
the number of cores (c) and the number of GPUs (g), respectively. The management
of CPU cores are negligible in small systems (like those where the experiments have
been carried out), but the management of GPU devices is significant since it includes
the cost of data transference between CPU and GPU. Table 1 summarizes the meaning
of each term used in our model (Eq. 6).

The performance parameters involved in the model are key factors that the automatic
tuning methodology should consider for high performance applications. During the
installation, we carry out experiments with different combinations of the problem
size s, the number of cores ¢, and the workload w, seeking to minimize the time
difference between the theoretical prediction and the experimental values obtained by
using a least squares regression. By varying s and w we obtain a different optimum
value for the number of cores c in each execution environment. Constant k is also
estimated by using least squares. Once the execution time has been estimated the
possible values of ¢ and w are substituted into the formula and the routine is recompiled.
The final values of the parameters are included in the routine together with a decision
engine that gives the user the theoretical time to solve the problem. This methodology,

@ Springer

M. Boratto et al.

Table 1 Description of the parameters in the execution time model

Symbol Description

k Computational parameter for each execution system

Order of the polynomial. In the experiments it ranges from 4 to 20

s The length of the matrix. In the experiments it ranges from 4000 to 8000
c Number of CPU cores
w GPU workload
Number of GPUs
te Cost of initialization of a thread in CPU
tg Cost of initialization of a kernel in GPU
S Relative speedup of a GPU on one core in the CPU
r——————— —»’ Automatic — Tuning ‘

|

execution [s] [c} w
Step 1
—1 Installation — Set
nstallation — Se l Step 2

’—{ Sampling — Points }—l

multicore multi-GPU
\— w* = wl|ct—=c J
texezf.tmin >ty
Step 4 Step 3

Fig. 1 General scheme of automatic tuning methodology

which is essentially an iterative process, is likely to require many experiments to have
a good parameter estimation. This is why we also pursue simplicity in our model
by omitting some architectural aspects that lose impact in the execution time as the
problem size increases. Either way, the model proves to be sufficient and useful for
the target application.

The general scheme of the automatic tuning methodology is shown in Fig. 1. The
installation of the automatic routine tuning in the system is done executing the routine
for each matrix size specified in an Installation-Set, and varying the number of cores
¢ and the workload w between the multicore and the multi-GPU subsystems. The
performance parameter estimation the procedure is applied to get the optimal values:

Step 1: Choose range from values of the performance parameters in Installation-
Set,

@ Springer

Automatic tuning to performance modelling of matrix. . .

Step 2: Run the routine to obtain execution time at each sampling point,

Step 3: Search a minimum value point of the function which corresponds to the
optimal value of the performance parameters,

Step 4: Define the execution time model and fit it to the executed values.

The Sampling-Points contains significant values, from small to large, so the instal-
lation gives satisfactory results for a wide range of problem sizes. Our model is based
on the guided-search [10], where the search is made in many directions, and it finishes
for each problem size when the execution time exceeds the minimum for that size by
an amount greater than the threshold. The technique uses a good heuristic to direct the
search in an enormous search space, since the number of solutions increases with the
number of test variables. The optimal performance parameters are estimated using a
previously variable number of sampling points. When the number of sampling points
is large, the accuracy for estimation is high, but the computational efficiency is low,
and when the number of fixed sampling points is small, vice versa.

5 Experimental results

This section presents the experiments with detailed explanation and useful insights.
We used the following two execution environments:

[System 1] Execution environment with 2 identical GPUs. Comprises two Intel
Xeon at 2.26 GHz and 24 GB DDR3 main memory. Each one is a quadcore
processor with 12 MB of cache memory. It contains two GPUs NVIDIA Tesla
C2050 with 14 stream multiprocessors (SM) and 32 stream processors (SP) each
(448 cores in total).

[System 2] Execution Environment with 2 different GPUs. Comprises two Intel
Xeon at 2.93 GHz and 86 GB DDR3 main memory. Each one is a quadcore
processor with 12 MB of cache memory. It contains two GPUs: the first one is a
NVIDIA Tesla K20 with 28 stream multiprocessors (SM) and 64 stream processors
(SP) each (2496 cores in total); the second one is a NVIDIA Tesla C2050 with
14 stream multiprocessors (SM) and 32 stream processors (SP) each (448 cores in
total).

In our experiments we use a parallel implemented version of Algorithm 2 using
OpenMP and CUDA for the evaluation of matrix polynomials in heterogeneous envi-
ronments. Many parameter values were used at installation time to estimate the best
values for the A P. The available range for the CPU cores (¢) is 1, 2, ..., 16 in both
systems (Intel Hyper-Threading is set on in both systems). Then, we checked for GPUs
workloads from 10 to 45 %. The input sizes of the problem (s) for the experiments
were 4, 5, ..., 20. Table 2 shows the parameters used at installation time to estimate
the values of AP for the two environments (System 1 and System 2).

There are two important observations: (1) the ¢ values depend on the problem size
in the system under test, and (2) for each problem size and for different values of w
we obtain a different optimum value for ¢ on each execution environment. Be aware
of that this variability is essential to make good decisions in the later selection of the

@ Springer

M. Boratto et al.

Table 2 Execution time (s) obtained at installation time with different values for the performance parame-
ters

System 1 w =45,45,10 w = 40, 40, 20 w = 35, 35, 30 w = 30, 30, 40

N c t(s,c,w) c t(s,c, w) c t(s,c,w) c t(s,c,w)
5000 16 5.93 14 7.56 12 13.47 12 22.82
6000 16 9.34 14 12.24 12 21.42 14 38.33
7000 16 14.62 16 19.54 14 32.94 16 60.03
8000 16 20.59 16 27.93 14 48.01 16 89.42
System 2 w = 50, 30, 20 w = 45,40, 15 w =50, 35, 15 w = 55,35,10

K c t(s,c, w) c t(s,c, w) c t(s,c, w) c t(s,c, w)
5000 12 5.13 16 4.90 14 4.85 16 4.44
6000 14 8.44 16 7.99 14 7.53 16 7.42
7000 16 14.04 16 12.61 14 11.75 16 11.37
8000 16 19.32 16 18.07 16 16.63 16 16.11

Best values marked in boldface

optimum A P parameters. The A P obtained after the automatic tuning process in the
environments used are:

System 1(Using 2 identical GPUs + 2 Processors Quadcore)
Number of CPU cores (c) = 16

Workload (w) = (GPU, GPU, CPU) = (45 %, 45 %, 10 %)
System 2(Using 2 different GPUs + 2 Processors Quadcore)
Number of CPU cores (¢) = 16

Workload (w) = (GPU, GPU, CPU) = (55 %, 35 %, 10 %)

The installation time spent on both platforms was the same (around 160 minutes).
We did experiments with different combinations of s, ¢, and w, considering the small
size problem to obtain the model on a given platform.

We show in both plots of Fig. 2 the time and the speedup, respectively, for the
evaluation of matrix polynomials with different degrees ranging from 4 to 20 with a
polynomial matrix of size 10,000 in System 1. The execution was carried out on each
subsystem independently (CPU, 1 GPU, 2 GPUs) to have a measure for comparison
purposes. The speedup has been obtained with regard to the use of the CPU subsystem
only. Both plots show how the use of GPUs in our system clearly outperforms the
computation on the CPU. The sawtooth shape of the graphs in Fig. 2 is due to the
unbalanced workload for degrees of the polynomial which are odd.

The results shown in Fig. 3a, that were carried out on System 2, show the theoreti-
cally execution time according to the performance model (Eq. 6) and the experimental
time for a matrix size of 10000 with regard to the polynomial degree. We consider
that the difference between the two plots is low accounting for the simplicity of the
model and the low installation time used to figure out the performance parameters.
Figure 3b shows the speedup achieved when varying both the matrix size and the
polynomial degree. These numbers are interesting since they allow to check that the

@ Springer

Automatic tuning to performance modelling of matrix. . .

a Execution Time b Speedup
1400 70
Using 2 GPUs Using 2 GPUs/CPU cores
1200 }H| Using1 GPU -~ 60 H Using 1 GPU/CPU cores
Using CPU cores -------- - Using 2 GPUs/1 GPU
. 1000 | B 50 | I I S
&) o -
& 800 [2 40t
“E) 600 g 30
£ %]
400 20
200 10 -
0 S S e e e s Sy ST ST ST ST S S S e Wl Wl Wl bl Il et Wbl s el bl bl e sl sk |
4567 8 91011121314151617181920 456 7 8 91011121314151617181920
Degree polynomial Degree polynomial

Fig.2 Evaluation of matrix polynomials with a matrix size of 10, 000 with regard to the polynomial degree
on System 1. a Executing time. b Speedup

a Theoretical x Experimental Execution Time b Speedup
45 3F
Experimental
40 Theoretical -~~~
35 b 25 |
§ 30 g 2f
S 25+ 3
2 o 15
£ 20 o
= (7]
15 1+
10
0.5 |
5|
ol v vy ol v v v vy
4567 8 91011121314151617 181920 4567 8 91011121314151617181920
Degree polynomial Degree polynomial

Fig. 3 a Experimental versus theoretical execution time for evaluating matrix polynomials of size 10,000
with regard to the polynomial degree (System 2). b Speedup for the evaluation of matrix polynomials of
sizes 5000, 6000, 7000, 8000 with regard to the polynomial degree (System 2)

speedup grows more with the matrix size than with the polynomial degree. This is
because the matrices and, consequently, the multiplication of matrices have all been
partitioned in pieces and have been scattered among the different subsystems of the
heterogeneous environment. The smooth sawtooth shape of the graph is due to the
unbalanced workload for degrees of the polynomial which are odd, since in these
cases one of the two GPUs performs one more matrix multiplication.

We show different aspects of the behavior of the algorithm with different workloads.
First, Fig. 4a plots the evolution of time regarding identical GPUs. Based on the
experiments it can be seen that the value w obtained through the theoretical derivation
is the best to be chosen if we use 2 GPUs and all the CPU cores. This value for the
workload is (w) = (GPU, GPU, CPU) = (45 %, 45 %, 10 %) for System 1. Second,
we show in the next experiment the execution time of the algorithm using different
GPUs. Figure 4b shows the reduction in time achieved by the use of 2 GPUs and
the CPU cores, and how this improvement grows with the problem size thanks to the
parallelization of the matrix multiplication. As expected, the degree of the polynomial
does not involve a big difference for different workloads due to the small weight of
communications (CPU-GPU) with regard to the weight of computations. The best
behavior is around (w) = (GPU, GPU, CPU) = (55 %, 35 %, 10 %).

@ Springer

M. Boratto et al.

a Identical GPUs: (Tesla C2050, Tesla C2050, Quadcore)

b Different GPUs:

(Tesla K20, Tesla C2050, Quadcore)

@5 45 .10) (50,30 ,20) —
100 H (40140 20) 40 H (540 18 / ,,,,,,
(35,35,30) -------- 35 (50,35,15) --- ST
(30.30..40) (5535 .10)
5 8r S0t
3 s |
€ et 255
s | £ 20
F 40t S Fost
S 10
20 0
—— 5 -
ol v v ol v v v
45678 91011121314151617181920 45678 91011121314151617181920

Degree polynomial Degree polynomial

Fig. 4 a Time for the evaluation of matrix polynomials of size 10000 with regard to the polynomial degree
on identical GPUs (System 1). b Time for the evaluation of matrix polynomials of size 10000 with regard
to the polynomial degree on different GPUs (System 2)

6 Conclusions

Inspired in the Paterson-Stockmeyer technique for computing polynomials, we pro-
posed in this work a recursive algorithm and an efficient implementation for the evalu-
ation of matrix polynomials in parallel. Also, we propose an automatic tuning method-
ology to easily adapt existing parallel algorithms that can execute efficiently on het-
erogeneous computers, i.e. computers featuring one or more hardware accelerator(s).

Automatic tuning techniques must be established based on a good understanding of
the target architecture, and an efficient algorithm implementation that exposes critical
and relevant properties of a program performance for that architecture. Regarding the
experiment data on the automatic tuning explains why the application achieves the
best performance under a certain parameter setting, but not under other settings.

The experimental results indicate that our approach is efficient and scalable and the
routines to solve this problem can incorporate an automatic tuning engine to obtain
execution times close to the optimum without user intervention. The use of modelling
techniques can contribute to improve the decisions taken to reduce the execution time
of the routines. The modelling allows us to introduce information about the behavior
of the routine in the automatic tuning process, guiding this process. It is necessary that
the modelling time is small because at least part of this process could be carried out
in each installation of the routines. Therefore, different ways of reducing it have been
studied here, and the results have been satisfactory.

Acknowledgments This work has been partially supported by Generalitat Valenciana under Grant PROM-
ETEOI1/2014/003, and by the Spanish MINECO, as well as European Commission FEDER funds, under
Grant TEC2015-67387-C4-1-R and TIN2015-66972-C5-3-R, and network CAPAP-H. Also, we have work
in cooperation with the EU-COST Programme Action IC1305, “Network for Sustainable Ultrascale Com-
puting (NESUS)”.

References

1. Alberti PV, Alonso P, Vidal AM, Cuenca J, Giménez D (2004) Designing polylibraries to speed up
linear algebra computations. [THPCN 1(1/2/3):75-84

@ Springer

Automatic tuning to performance modelling of matrix. . .

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Alonso P, Boratto M, Pinilla J, Ibafiez J, Martinez J (2014) On the evaluation of matrix polynomials
using several GPGPUs. Tech Rep Riunet/E10251/39615

Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J, Croz JD, Greenbaum A, Hammarling S,
McKenney A, Ostrouchov S, Sorensen D (2013) LAPACK users guide, 2nd edn. SIAM, Philadelphia
Blackford LS, Demmel J, Dongarra J, Duff I, Hammarling S, Henry G, Heroux M, Kaufman L,
Lumsdaine A, Petitet A, Pozo R, Remington K, Whaley RC (2001) An updated set of basic linear
algebra subprograms (blas). ACM Trans Math Softw 28:135-151

Caron E, Uter F (2002) Parallel extension of a dynamic performance forecasting tool. Sci Ann Cuza
Univ 11:80-93

Chandra R (2001) Parallel programming in OpenMP. Morgan Kaufmann, Burlington

. Demmel J, Marques O, Parlett BN, Vomel C (2008) Performance and accuracy of LAPACK’s sym-

metric tridiagonal eigensolvers. SIAM J.Sci Comput 30(3):1508-1526

Frigo M, Johnson S (1998) FFTW: an adaptive software architecture for the FFT. In: Proceedings of
IEEE International Conference on Acoustics Speech and Signal Processing vol. 3, pp 1381-1384
Garcia L, Cuenca J, Giménez D (2007) Including improvement of the execution time in a software
architecture of libraries with self-optimisation. In: ICSOFT 2007, Proceedings of the Second Inter-
national Conference on Software and Data Technologies, Volume SE, Barcelona, Spain, pp 156161,
22-25 July

Garcia LP, Cuenca J, Giménez D (2014) On optimization techniques for the matrix multiplication on
hybrid cpu+gpu platforms. Ann Multicore GPU Program 1(1):10-18

Hasanov K, Quintin JN, Lastovetsky A (2014) Hierarchical approach to optimization of parallel matrix
multiplication on large-scale platforms. J Supercomput 71(11):24-34

Katagiri T, Kise K, Honda H (2005) RAO-SS: a prototype of run-time auto-tuning facility for sparse
direct solvers. Tech Rep 22(1):1-10

Katagiri T, Kise K, Honda H, Yuba T (2004) Effect of auto-tuning with user’s knowledge for numerical
software. Proceedings of the 1st conference on computing frontiers, Ischia, Italy. ACM, New York,
NY, USA, pp 12-25

Nath R, Tomov S, Dongarra J (2010) An improved magma gemm for fermi graphics processing units.
Int J High Perform Comput Appl 24(4):511-515

Paterson MS, Stockmeyer LJ (1973) On the number of nonscalar multiplications necessary to evaluate
polynomials. SIAM J Comput 2(1):60-66

PLASMA (2015) Parallel linear algebra software for multicore architectures. Available in: http://www.
netlib.org/plasma/. Accessed 1 June 2015

Tanaka T, Katagiri T, Yuba T (2007) D-spline based incremental parameter estimation in automatic
performance tuning. In: International Conference on Applied Parallel Computing: State of the Art in
Scientific Computing, PARA’06. Springer-Verlag, Berlin, Heidelberg, pp 986-995

Vuduc R, Demmel J, Bilmes J (2004) Statistical models for empirical search-based performance tuning.
Int J High Perform Comput Appl 18:65-94

Whaley RC, Petitet A, Dongarra JJ (2001) Automated empirical optimizations of software and the
ATLAS project. Parallel Comput 27:21-37

@ Springer

http://www.netlib.org/plasma/
http://www.netlib.org/plasma/

	Automatic tuning to performance modelling of matrix polynomials on multicore and multi-GPU systems
	Abstract
	1 Introduction
	2 Related work
	3 Fast parallel algorithm for solving matrix polynomials on multicore and multi-GPU
	4 Automatic tuning methodology
	5 Experimental results
	6 Conclusions
	Acknowledgments
	References

