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Abstract

SmartGridSolve is an extension of GridSolve that ex-

pands the single task map and client-server model of

GridRPC by implementing server to server communication

and the mapping of a group of tasks.

In order to accomplish this functionality SmartGridSolve

needs a task graph that highlights tasks’ execution order,

communication volume and computation volume for a given

group of tasks.

This work presents the Algorithm Description Language

(ADL), a language that helps the application programmer

to easily specify a task graph for any given algorithm. The

language is modular, it has a well-defined structure and its

syntax is similar to “C” language.

This poster paper introduces a trivial example of Smart-

GridSolve application and the use of ADL to build the rela-

tive task graph with an overview of the language syntax.

1. Introduction

GridRPC [5] is a standard promoted by the Open Grid

Forum that provides a simple remote procedure call (RPC)

mechanism for a Grid environment. Using the GridRPC

API an application programmer can easily specify different

tasks to be executed remotely.

The high level programming model of GridRPC offers

the possibility to smoothly design grid applications, with

asynchronous parallel tasks, by hiding the complexity of the

interface to the Grid from the application programmer. The

middleware system is responsible for individually mapping

a task to a single server in the Grid and communicating the

data between the server and the client computer. This model

supports minimisation of the execution time of each indi-

vidual task of the application rather than the minimisation

of the execution time of the whole application. A number of

grid middleware systems are GridRPC compliant including

GridSolve [7], Ninf-G [6] and DIET [3].

SmartGridSolve [1], previously implemented as Smart-

NetSolve [2], is an extension of GridSolve that expands the

single task map and client-servermodel of GridRPC. This is

done by implementing server to server communication and

the mapping of groups of tasks. The collective mapping of

tasks, with the possibility to use a fully connected network,

helps SmartGridSolve find an optimalmapping solution that

can exploit fully a Grid environment.

SmartGridSolve, in order to map a group of tasks, needs

to build a task graph of the undergoing task calls present in

the grid application. The task graph, a direct acyclic graph

(DAG) structure, highlights the order of tasks and their

synchronisation (whether they are executed in sequence or

parallel), the dependencies between tasks, the load of data

communication and the task computational volume [1].

SmartGridSolve introduces a new API that automatically

generates the task graph. This API works by iterating twice

through the application code that contains the task calls to

be mapped collectively. On the first iteration of the code

each task call is discovered but not executed, then when the

last call in the group of tasks is reached the task graph is

generated. On the second iteration of the code, after pro-

ducing the mapping by using the new task graph, the code

is normally executed and the task calls are performed.

One advantage of this method is that the application pro-

grammer only has to make minimal modifications to the

original GridRPC code. Unfortunately this approach has the

restriction that a task graph is not always generated for ev-

ery kind of algorithm. There are different situations where

the automatic task graph generationwill not work. A typical

example is when, in the code to be mapped, a conditional

construct exists that checks a value that cannot be known

without executing a remote task call. The application pro-

grammer can choose to create the task graph from a smaller

block of code to avoid this problem but the resulting group

of tasks to bemappedwill generate a less optimal execution.

To solve this problem we designed the Algorithm Defi-

nition Language (ADL) and the respective compiler that al-

lows the application programmer to easily describe all kinds



of algorithms and generate the corresponding task graph.

In the situation where the output of a remote task call can

change the flow of execution, the application programmer

can know the best way to generate the task graph. The main

goal of ADL is to give a powerful tool to the application

programmer that can help implement a SmartGridSolve ap-

plication with the best mapping and execution possible.

This work is outlined as follows, section 2 presents a

trivial SmartGridSolve application that shows how the au-

tomatic task graph generator works and the restriction pre-

viously detailed. Section 3 shows how to use ADL to de-

scribe the example application and gives an overview of the

language syntax. Section 4 details how the ADL compiler

integrates with the example application using SmartGrid-

Solve. Finally in section 4 we present the task graph and

how ADL can help the application programmer to obtain an

optimal mapping solution for the given example.

2. SmartGridSolve Example

In this section we introduce a pseudo GridRPC applica-

tion and its implementation in SmartGridSolve. This appli-

cation is specifically designed to show the restrictions of the

automatic task graph generation method.

The example application uses the GridRPC APIs

grid call and grid call async to execute respectively a

blocking and an asynchronous remote call. The first argu-

ment of both APIs is the handler of the task executed, the

second is the session ID of the remote call while the follow-

ing arguments are the parameters of the task. Furthermore

the code uses the method grid wait all to block the execu-

tion until any previously issued asynchronous request has

completed.

Table 1. GridRPC application

...

grpc call async(T1_hnd,&id1,VA0,VB0,VC0);

grpc call async(T1_hnd,&id2,VA1,VB1,VC1);

grpc_wait_all();

grpc call(T2_hnd,&id3,VC0,VC1,VD);

if(F1(VD)<0){

grpc call async(T3_hnd,&id1,VC0,VD,VC0);

grpc call async(T3_hnd,&id2,VC1,VD,VC1);

grpc_wait_all();

}

...

The pseudo application consists of three tasks, T1, T2,

T3, which have all the parameters as inputs except the last

one that is an output. The objects used in the application

are all vectors of double precision numbers. In table 1 it

is possible to see the simple GridRPC version of the code.

At the beginning two parallel remote T1 calls are executed.

The respective output objects, VC0 and VC1, are then used

as inputs of the remote task T2. The output of the last task,

VD, is then computed in a local function F1. If the function

returns a value less then zero the code executes two parallel

remote calls of the task T3.

SmartGridSolve introduces a new API, gs smart map,

that defines the area of code in which all the task calls con-

tained within it are mapped as a group of tasks in a fully

connected network. Table 2 shows how the new API can be

used in the example application. The task calls inside the

curly brackets block will be mapped as a group. The first

parameter of the gs smart map method gives the applica-

tion programmer the possibility to choose which mapping

function to use. The second one indicates the tool that will

be used to generate the task graph while the following pa-

rameters depend on the previous choice.

Table 2. Example of the optimal SmartGrid-

Solve mapping method in the application

...

gs smart map("ex_map",auto){

grpc call async(T1_hnd,&id1,VA0,VB0,VC0);

grpc call async(T1_hnd,&id2,VA1,VB1,VC1);

grpc_wait_all();

grpc call(T2_hnd,&id3,VC0,VC1,VD);

if(F1(VD)<0){

grpc call async(T3_hnd,&id1,VC0,VD,VC0);

grpc call async(T3_hnd,&id2,VC1,VD,VC1);

grpc_wait_all();

}

}

...

The code example in table 2 uses the automatic task

generator to build the task graph. At run-time when the

gs smart mapmethod is executed the code within its paren-

thesis will be iterated through twice. On the first iteration

both grpc call and grpc call async calls are discovered but

not executed. At the beginning of the second iteration the

task graph and the mapping solution are generated using the

task information from the previous discovery. On the sec-

ond iteration, the task calls are executed normally on the

respective server specified in the mapping solution [1].

The choice of which task calls to include in the group of

tasks to be mapped can influence the total execution time of

the application. If the task graph contains more elements,

SmartGridSolve has more opportunity to fine tune the map-

ping solution and consequently to minimise the data com-

munication volume and the total computation time of the

group of tasks.

The gs smart map block chosen in table 2, that includes

all the task calls to be mapped, is the one that gives more



options to the SmartGridSolve mapper to minimise the ex-

ample application’s execution time. Unfortunately the au-

tomatic task generator may not be able to create the task

graph for this particular situation. On the first iteration the

task calls are discovered but not executed, consequently the

output objects don’t contain any valid data. When in the

first iteration the local function F1 computes the output ob-

ject VD, as a result the behaviour of the function could be

unpredictable. This could cause the application to fail and

stop the execution.

However the function F1 may work in some situations

which will result in an arbitrary return value. The condi-

tional check of the value could produce a different flow of

execution on the first iteration compared to the second iter-

ation. Consequently the task graph generated may not rep-

resent the real tasks execution. SmartGridSolve can handle

this situation, of a task being executed but not existing in

the mapping solution, by reverting the executing method of

a remote task to the original GridSolve one.

Table 3. Example of an alternative mapping
method for the application

...

gs smart map("ex_map",auto){

grpc call async(T1_hnd,&id1,VA0,VB0,VC0);

grpc call async(T1_hnd,&id2,VA1,VB1,VC1);

grpc_wait_all();

grpc call(T2_hnd,&id3,VC0,VC1,VD);

}

if(F1(VD)<0){

gs smart map("ex_map",auto){

grpc call async(T3_hnd,&id1,VC0,VD,VC0);

grpc call async(T3_hnd,&id2,VC1,VD,VC1);

grpc_wait_all();

}

}

...

This arbitrary execution of the application is not accept-

able for a stable system. A method to avoid this situation is

to divide the area to map in smaller blocks as shown in ta-

ble 3 for the example application. This approach reduces the

size of the task graph and consequently means SmartGrid-

Solve will produce a less optimal mapping and execution

time.

3. ADL Example

A task call executed that is not in the mapping solution

has a negative impact on the total computational time of

the application. SmartGridSolve has to revert to using the

original GridSolve client-server single task map method to

execute this task. This worst case scenario can be statis-

tically reduced in a way that the negative impact becomes

insignificant compared to the the gain obtained by having a

bigger group of tasks to map.

This situation suggests that code like the example in ta-

ble 2, where an application programmer chooses a large

area to map with gs smart map despite the risk that the

mapping solution doesn’t match the task calls, can become

favourable. An application programmer, that has good

knowledge of the application, can estimate in advance the

return value of the F1 function and consequently guess the

more likely flow of execution. As previously indicated the

automatic task builder has some restrictions for this par-

ticular type of application where the flow of execution de-

pends on task call outputs. Algorithm Definition Language

(ADL), a language to easily specify task graphs, was de-

signed to give more options to the application programmer

for solving this kind of problem.

The ADL language is powerful enough to be able to fully

describe a GridRPC algorithm and to provide a way to cal-

culate the computational and communication time of the

application, however flexible enough to generate the task

graph for any kind of algorithm. Another ADL feature is

that it is user-friendly and easy to write. The language syn-

tax is similar to C language. It uses different modules to

define an algorithm and each module, to simplify further

the reading, is divided in well defined zones. A zone spec-

ifies a characteristic of the algorithm. Table 4 shows the

ADL module that describes the example application from

the previous section.

Table 4. ADL example

module example (int size, int cond) {

component:

task "file.idl" T1,T2,T3;

IFO:

DOUBLE(size) VA[2],VB[2],VC[2],VD;

algorithm:

parallel{

T1:(VA[0],VB[0]) ->(VC[0]);

T1:(VA[1],VB[1]) ->(VC[1]);

}

T2:(VC[0],VC[1]) ->(VD);

client:(VD) ->();

if (cond){

parfor(int i=0;i<2;i++){

T3:(VC[i],VD) ->(VC[i]);

}

}

}

The data objects VA,VB, VC, VD in the application are

important for generating the task graph. The communica-

tion time and computational time of the application will

change depending on the size and type of these objects. In



ADL we reference an object that is used by a remote task

and can be moved anywhere on the Grid as an Identify Fly-

ing Object (IFO). The data objects declaration is made in

the IFO zone and it is composed of the type (in upper-case

letters to differ from a variable type), the number of dimen-

sions and the list of IFO names. The list of types to choose

for an IFO correlates to types used in the GridRPC API.

The number of round bracket pairs, located after the type,

represent the number of dimensions of an IFO. The value

inside the pair specifies the number of elements for that di-

mension. As in the example application the IFOs defined in

table 4 are vectors of double precision numbers. The sizes

of the vectors depend on the value of the parameter size.

The component zone includes the declaration of the tasks

used in the algorithm like T1, T2, T3 for the example ap-

plication. The ADL language needs to provide the com-

piler with some specific information about a task used. The

ADL compiler, for each task, requires the number and type

of input/output arguments and the eventual computational

complexity of the task. All this information can be pro-

vided “ad hoc” by the application programmer or retrieved

from a GridSolve Interface Definition Language (gsIDL)

file. The gsIDL is the mechanism through which GridSolve

and SmartGridSolve enables normal function methods to be

invoked remotely on a Grid environment [4]. The possi-

bility to chose a gsIDL file may be convenient for already

existing GridSolve applications, while in the case of a new

application, the programmer can directly specify the infor-

mation needed by using ADL.

In the algorithm zone of table 4 is possible to see how

a task call is described in ADL. A remote call is composed

of two parts, divided by a semicolon. In the first part there

is the name of the task called (e.g. T1), followed by an

eventual list of parameters needed. In the second part there

is the list of IFOs used as task inputs, e.g. VA and VB for

task T1, follow by an arrow symbol and the list of output

IFOs (e.g. VC). This task call syntax is made in a way that

easily highlights the parameters passed and the IFOs used

as inputs and outputs of a task.

The algorithm zone in the example ADL module de-

scribes the flow of execution of the application. The use

of the keywords parallel and parfor indicates that the re-

mote calls inside the curly brackets are asynchronous. One

of the main differences between the ADL code and the ap-

plication code is the use of the special keyword client, as a

task name, to specify a local execution. The ADL compiler,

to generate the task graph, doesn’t need to know the value

of an IFO but instead where it is used. Consequently in the

case of a local computation, ADL requires only the infor-

mation from the IFOs used as inputs and outputs. In table 4

the client task, F1, has only VD as an input and no output.

In the ADL description of the algorithm, the conditional

construct instead of checking the return value of the func-

tion F1 (as in the example application), checks the value of

the parameter cond. The value of cond will influence the

flow of execution and consequently the task graph gener-

ated. Parameters in ADL are not only used to determine

the flow of an algorithm but also to specify the size and

the number of IFOs utilised in the module. An IFO cannot

change its size after the declaration, consequently all the

parameters are considered constant in the ADL language.

4. ADL and Task Graph

In figure 1 it is possible to see how the ADL module is

compiled and integrated with the GridRPC example appli-

cation. The task graph used by SmartGridSolve is not gen-

erated directly by compiling the ADL code. For the given

module the ADL compiler will yield a C file that has to

be compiled within the client application. The produced C

file contains the code to generate the task graph. This code

will be executed at run-time by the gs smart map API. As

previously indicated the ADL compiler needs some specific

information for each task call used in the module compiled.

This information can be provided by the application pro-

grammer or it can be retrieved from a gsIDL file as for ex-

ample in table 4 and figure 1.

Figure 1. Use of ADL compiler

In table 5 it is possible to see how to use the

gs smart map API with ADL to build the task graph. The

first argument of the API is the same as in the example in

table 2. The second argument, instead of the keyword auto,



is the keyword ADL. This specifies that the task graph will

be built by using the code generated from the ADL mod-

ule named in the following argument. The final arguments

in the gs smart map API match the parameters of the given

ADL module.

Table 5. Example of ADL use in the applica-

tion through SmartGridSolve API

gs smart map("ex_map", ADL,"example",size, 1){

grpc call async(T1_hnd,&id1,VA0,VB0,VC0);

grpc call async(T1_hnd,&id2,VA1,VB1,VC1);

grpc_wait_all();

grpc call(T2_hnd,&id3,VC0,VC1,VD);

if(F1(VD)<0){

grpc call async(T3_hnd,&id1,VC0,VD,VC0);

grpc call async(T3_hnd,&id2,VC1,VD,VC1);

grpc_wait_all();

}

}

The run-time execution of the gs smart map function is

different from the case of the automatic method. The task

graph is built and the mapping solution generated directly

when the API is called. Consequently the code inside the

parenthesis block is iterated only once while the task calls

are executed normally on the server specified in the map-

ping solution.

A programmer, who has a good understanding of the ap-

plication, can influence the task graph generated to match,

as closely as possible, the task calls executed. He can do so

by changing the value of the parameter cond passed through

the last argument of gs smart map. In table 5 the applica-

tion programmer is guessing that the conditional check of

the function F1 return value is positive. If this assump-

tion is true in the majority of cases, SmartGridSolve will

normally generate an optimal mapping solution and conse-

quentlyminimise the total execution time of the application.

The task graph generated from the code of table 5 is il-

lustrated in figure 2. The rectangles in the graph represent

remote tasks, the diamonds represent the client computation

and the circles represent the IFOs. The incoming arrows of

these circles indicate their source, whether it is the client or

another remote task and the outgoing arrows indicate their

destination. The dotted arrows highlight the order of task

calls and if the tasks are executed in sequence or parallel.

The values inside the circles and rectangles are respectively

the size of an IFO and the computational complexity of a

task. These are correlated to the value of the module param-

eter size passed through the second to last argument of the

gs smart map method. In a task graph all the input IFOs,

that are not generated by a remote task, are retrieved from

the client. All the output IFOs that are not used by a task

call, are sent back to the client.

start_node_0

client_1

VA[0]

size=8MB

VA[1]

size=8MB

VB[0]

size=8MB

VB[1]

size=8MB

T1_2

flop=36.56MF

T1_3

flop=36.56MF

VC[0]

size=8MB

T2_4

flop=105.60MF

T3_6

flop=23.33MF

VC[1]

size=8MB

T3_7

flop=23.330MF

VC[0]

size=8MB

client_8

VC[1]

size=8MB

VD

size=8MB

client_5

ep_0

ep_1

end_node_9

Figure 2. The task graph generated from the
ADL module example.

The node client 5 in the task graph represents the local

computation of function F1. If, during the execution of the

application, the conditional statement that checks the return

value of the function is negative, the task graph underneath

the node client 5 will not be used. In this particular case,

despite the fact that SmartGridSolve does not use all the

task graph, the total execution time of the application will

be similar to the one obtained if the task graph was gener-



ated by fine grained mapping (e.g. example in table 3). Fur-

thermore, if the conditional statement is true, it is possible

to see that coarse grained mapping is more favourable. In

this case the outputs of tasks T1 and T2 can be sent directly

to the servers that execute the parallel T3 tasks without the

need to pass trough the client as would be the case using

fine grained mapping.

One can see from this example that the ADL Language

permits the application programmer to map a large group

of tasks where the automatic task graph generator would

not work. This allows SmartGridSolve to find an optimal

mapping solution that can minimise the total communica-

tion volume, as shown in the previous example, and the task

computational time. Consequently minimising the total ex-

ecution time of the application.

5. Conclusion

We have presented in this paper the specifications of the

ADL language and its compiler. One of the goals of ADL is

to overcome the restriction that the automatic task builder

exhibits on applications where the flow of execution de-

pends on task call outputs. We demonstrate that the ADL

language overcomes this limitation and permits the appli-

cation programmer to use SmartGridSolve, with an opti-

mal mapping solution, for any kind of GridRPC applica-

tion. This work was supported by the Science Foundation

Ireland.
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