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Abstract—Parallel Matrix-Matrix Multiplication (MMM) is a
fundamental part of the linear algebra libraries used by scientific
applications on high performance computers. As heterogeneous
systems have emerged as high performance computing platforms,
the traditional homogeneous algorithms have been adapted to
these heterogeneous environments. Although heterogeneous sys-
tems have been in use for some time, it remains an open problem
of how to optimally partition data on heterogeneous processors
to minimize computation, communication, and execution time.
While the question of how to subdivide these MMM problems
among heterogeneous processors has been studied, the underlying
assumption of this prior study is that the data partition shape, the
layout of the data within the matrix assigned to each processor,
should be rectangular, i.e. that each processor should be assigned
a rectangular portion of the matrix to compute.

Our previous work in this area questioned the optimality
of this traditional rectangular shape and studied this partition
shape problem for two processors. In that work, we proposed
a novel mathematical method for transforming partition shapes
to decrease communication cost and an analytical technique for
determining the optimal shape.

In this work, we extend this technique to apply to three
and more heterogeneous processors. While applying this method
to two processors is relatively straightforward, the complexity
grows immensely when considering three processors. With this
complexity in mind, we propose a hybrid of experimental and
analytical techniques. We postulate that a small number of
partition shapes are potentially optimal, and perform extensive
testing using a computer aided method to apply our previously
developed analytical technique, without finding a counterexam-
ple. We identified six data partition shapes which are candidates
to be the optimal three processor shape.

Index Terms—Parallel Matrix Multiplication; Matrix Parti-
tioning; Heterogeneous Computing; High Performance Comput-
ing

I. INTRODUCTION

Partitioning Parallel Matrix-Matrix Multiplication (MMM)
over an arbitrary numbers of processors has been the subject of
extensive study. For homogeneous systems, when the number
of processors is a perfect square, the optimal solution is
straight forward and well known. Considering arbitrary num-
bers of homogenous processors, however, is more challenging.
For heterogeneous systems, the problem is even more substan-
tive. First, heterogeneity comes in various forms. A collection

of processors can be heterogeneous in their processing speeds,
their communication interconnect or some combination of both
[1]. In this paper, we will deal with heterogeneity in the
processing speeds of the various processors.

Heterogeneous systems have become popular as high per-
formance scientific computing platforms, and as such have
been the subject of much research. Finding the optimal data
partitioning for parallel MMM on these machines remains an
open problem. The bulk of the previous study has focused on
finding the optimal rectangular data partition, i.e. a partition in
which each processor has a rectangular portion of the matrix
to compute [2] [3] [4] [5] [6]. This is a difficult question,
and indeed, finding the optimal rectangular partition for an
arbitrary number of heterogeneous processors has been shown
to be an NP-complete problem [7]. While many solutions have
been proposed to efficiently find the best rectangular solution
to the partitioning problem, the assumption that the solution
should be rectangular has not been studied.

In our previous work [8], we questioned the optimality of
the traditional rectangular shape. We began our study with
the simple base case of two processors. Studying the case of
a small number of heterogeneous processors is immediately
relevant to several types of systems. In addition to being useful
in its own right, we may view each “processor” as an abstract
concept of a compute node or a group of tightly coupled
computing devices. In [9], the authors use the concept of ab-
stract logical processors to model GPU-CPU hybrid systems,
where each logical processor represents an independent group
of tightly coupled devices such as cores on the same socket
or a GPU and its host core. In this approach, a modern hybrid
compute node will be modeled by a small number of abstract
heterogeneous processors. Additionally, such abstract proces-
sors may model several clusters, of differing computational
speed, being used in concert.

We proved that for two processors, in some cases of pro-
cessor speed ratios and MMM algorithms, a non-rectangular
shape is actually optimal. Specifically, the Square-Corner
partition, comprised of a slower processor assigned a square
of data in some corner of the matrix, and a faster processor
computing the non-rectangular remainder, was optimal when



the processing speed ratio was greater than three to one.
In order to demonstrate this we developed a novel mathe-

matical technique called the Push operation. This technique
allows us to begin with any random partition shape and
transform its shape, while guaranteeing to never increase the
communication cost or the execution time. When the partition
shape can no longer be improved, it is a candidate to be the
optimal shape.

While previous study [10] [11] on the Square-Corner par-
tition had shown it superior to the traditional rectangular
approach, [8] further proved that it was superior to any other
possible shape, i.e. that it is the global optimum.

In this paper, we look to expand this work to cover three
and more processors. The ultimate aim is not to show that
a particular novel shape is better than the traditional shape,
but to find the optimal shape. However, the complexity of the
three processor case is far greater than for two processors.
Ensuring, in the two processor case, that the Push operation
forms one of the candidate shapes from any possible arbitrary
starting partition shape was obvious upon inspection, and
easily proven mathematically. For three processors, it is not
immediately obvious that some arbitrary partition that cannot
be reduced using Push does not exist. For this reason, we sug-
gest a hybrid approach between our analytical technique and a
newly developed experimental technique. We extensively test
many random starting partitions for a representative sample
of processor ratios, without finding a counterexample to our
postulate that the three processor Push always reduces to some
recognizable shape.

This new experimental technique is one of the contributions
of this paper. The codebase begins with a random, arbitrary
partition shape, and repeatedly applies the Push operation, in
a random order and direction. To find the optimal shapes,
we must only consider the partition shapes output by the
experimental technique, as we know no other shape can be
better in terms of communication and execution time. A
fundamental requirement of this program is that it must also
be applicable beyond the three processor case. It can easily be
adapted to form partition shapes for any number of processors.

Using this new approach, we were able to identify four
general partition shapes, or archetypes, for the case of three
heterogeneous processors. These archetypes each represent
several different partition shapes which fall under their general
description. We prove that three of the archetypes can all be
further improved to become data partition shapes encompassed
by the fourth archetype.

Finally, we enumerate the data partition shapes which fall
under the optimal archetype and find the canonical form for
each, reducing the search for the optimal shape from millions
of arbitrary arrangements of elements to just six well defined
shapes.

II. RELATED WORK

Our previous work in this area was a detailed study of data
partitioning shapes for parallel MMM with two heterogeneous
processors. We searched for the optimal data partitioning shape
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Fig. 1. Pivot row and column, k, of the kij algorithm. Every element of C
is updated before k is moved to the next row and column.

under five parallel MMM algorithms, and for all ratios between
processing speeds.

To model the processor communication we used the linear
Hockney Model [12], Tcomm = α+ β ×M .

The kij algorithm is well-known and used by such software
as ScaLAPACK [13] to compute MMM. It is the manner of
computation for all algorithms presented in this paper. The
kij algorithm for MMM is a variant of the triply nested loop
algorithms. The three for loops are nested and iterate over
the line C[i, j] = A[i, k] ∗ B[k, j] + C[i, j]. The k variable
represents a “pivot” row and column as shown in Fig. 1. For
each iteration of k, every element of the result Matrix C is
updated, incrementally obtaining the final value.

If the processor assigned to calculate an element of Matrix
C has not been assigned some element in the corresponding
pivot column or row, that element must be communicated to
the processor.

The five MMM algorithms considered were:
1) Serial Communication with Barrier (SCB) All data is

sent by each processor serially, and only once com-
munication completes does the computation proceed in
parallel on each processor.

2) Parallel Communication with Barrier (PCB) All data is
sent among processors in parallel, and only once com-
munication completes does the computation processed
in parallel on each processor.

3) Serial Communication with Bulk Overlap (SCO) All data
is sent by each processor serially, while in parallel any
elements that can be computed without communication
are computed. Only once both communication and over-
lapped computation are complete does the remainder of
the computation begin.

4) Parallel Communication with Bulk Overlap (PCO) All
data is sent among processors in parallel, while in
parallel any elements that can be computed without
communication are computed. Only once both commu-
nication and overlapped computation are complete does
the remainder of the computation begin.

5) Parallel Interleaving Overlap (PIO) At each step data
is sent a row and a column (or k rows and columns)
at a time by the relevant processor(s) to all processor(s)
needing that information, while, in parallel, all proces-
sors compute using the data sent in the previous step.

For each of these five MMM algorithms we created an
analytical model of total execution time on two heterogeneous



Fig. 2. A two processor partition shape is transformed using the Push Down
operation.

processors as a function of processing speed, communication
volume, communication bandwidth, the number of computa-
tions per matrix element, and the ratio between computation
and communication speed [14]. For each algorithm, using
these models, we demonstrated that the total execution time
decreases, or at worst remains unchanged, when the total
volume of communication is decreased and the computation
time is unchanged.

To determine the optimal data partitioning shape, we created
a mathematical method called the Push. This method takes
an input partition shape, and provides an output partition
shape which is guaranteed to have the same, or lower, vol-
ume of communication. We took the three general partition
shapes output by this method, and analyzed them using the
five parallel algorithms for all processing speed ratios. Of
these three general shapes, two, the Straight-Line and the
Square-Corner, were shown to always be superior to the
third, the Rectangle-Corner. Additionally, the non-traditional,
non-rectangular Square-Corner was found to be the optimal
partition shape for:
• all processor power ratios when bulk overlapping com-

munication and computation (SCO, PCO)
• processor power ratios greater than 3 : 1 when placing a

barrier between them or using interleaving overlap (SCB,
PCB, PIO)

A Push operation acts on a single row or column of the
matrix, k, to remove elements belonging to a single active
processor, X . The row or column k must be the edge of
Processor X’s enclosing rectangle. An enclosing rectangle is
an imaginary rectangle drawn around the elements assigned to
a given processor, which is strictly large enough to encompass
all such elements. The elements of X are moved from k into
other rows and columns in the direction specified by the Push,
i.e. Up, Down, Left, or Right. For example, in a Push Down
(↓) the elements of X are moved from k, into the rows below
k. This is illustrated further in Fig. 2. Rules exist which limit
what elements may be moved to which rows and columns, in
order to guarantee that the Push operation will never increase
the volume of communication or execution time.

III. PROBLEM STATEMENT

The problem of finding the optimal data partitioning shape
for three heterogeneous processors is significantly more com-
plex than with two processors. While expanding the rules of
the Push technique to be applicable to N processors, we must
consider not only where the elements of the active processor

Fig. 3. An asymptotically rectangular partition shape, left, and a shape that
is not asymptotically rectangular, right. Only a single row or column may be
less than the length of the edge of the enclosing rectangle.

from row or column k may go, but whether the elements of
other processors may be moved to row or column k. This
added constraint makes it difficult to prove mathematically
that some arbitrary arrangement of elements that cannot be
Pushed does not exist.

The aim of this paper is to apply the Push technique to
three processors, with the help of a computer-aided method,
to find a set of partition shapes which should be further ana-
lyzed, while discarding those shapes and non-shapes (arbitrary
arrangements of elements) that do not need to be considered.
Those partition shapes which warrant further study, known as
the candidate partition shapes, are equal or better than all other
shapes and non-shapes in terms of execution time.

IV. THEORETICAL RESULTS

Throughout, we will make several assumptions, as follows:
1) Matrices A, B and C are square, of size N × N ,

and identically partitioned among Processors P , R, and
S, represented in figures as white, gray and black,
respectively.

2) Processor P computes faster than Processors R and S
by ratio, Pr : Rr : Sr, where Sr = 1.

3) All Processors may communicate with all other Proces-
sors, with no constraints on network topology.

4) Partition shapes are referred to as rectangular if they are
asymptotically rectangular, i.e. if it contains at most a
single side which has a single row or column that is less
than the length of the that side of the shape, see Fig. 3.

Formally, each element of an N ×N matrix is of the form
(i, j) and a data partition shape is a function, such that,

q(i, j) =


0 if (i, j) ∈ R
1 if (i, j) ∈ S
2 if (i, j) ∈ P

In this section, we formally define the three processor Push
and update the performance models for each of the five MMM
algorithms for three processors.

A. Three Processor Push Definition

A Push is an atomic operation performed on a partition
shape, q, and producing a new partition, q1. A Push may not
enlarge the enclosing rectangle of any processor.

Here, we formally describe the ↓ direction of the Push
operation for three processors. The ↑,← and → directions
are similar.

Consider three processors, P , R and S. Processor P is
equal or faster in processing speed than each processor, R



Fig. 4. A matrix partitioned among 3 processors, white, gray and black. The
dotted lines are the enclosing rectangles around the black and gray processors.
The enclosing rectangle for the white processor is the entire matrix.

and S. Processor R is the active processor. Each processor
has an enclosing rectangle, r, s and p respectively. The
row and column values of the dimensions of the enclosing
rectangle of Processor X are known, in clockwise order, as
xtop, xright, xbottom and xleft.

The Push↓ operation creates a new partition shape, q1 from
the existing one, q, by cleaning the top row of the enclosing
rectangle, rtop, of all elements assigned to Processor R.
Processor R is assigned a corresponding number of elements
in the rows below. The Processor, either S or P , which owned
those elements newly assigned to R, are assigned the elements
in rtop.

When Pushing three processors, there are six possibilities
for a legal Push, i.e. a Push which decreases, or at least does
not increase, the volume of communication. The volume of
communication of any data partition shape q is given by

VoC =

N∑
i=1

N(ci − 1) +

N∑
j=1

N(cj − 1) (1)

ci −# of processors assigned elements in row i of q
cj −# of processors assigned elements in column j of q

1) Type One - Decreases VoC: For each element assigned
to Processor R in rtop, Processor R is assigned an element in
the below rows and columns already containing elements of
Processor R.

For each element which has been reassigned to R, the
Processor previously assigned that element is given some
unassigned element (rtop, j). Prior to the Push, this Processor
must have already had an element in row rtop and in column
j.

2) Type Two - Decreases VoC: For each element assigned
to Processor R in rtop, Processor R is assigned an element
in the rows below. Elements may go to some number, l, of
rows and columns which did not already contain elements of
Processor R, dirtying those rows and columns, if l or more
rows and columns are also cleaned of R.

For each element which has been reassigned to R, the
Processor previously assigned that element is given some
unassigned element (rtop, j). Prior to the Push, this processor
must already have had an element in row rtop and in column
j.

3) Type Three - Decreases VoC: For each element assigned
to Processor R in rtop, Processor R is assigned an element in

the rows and columns below that already contain elements of
Processor R.

For each element which has been reassigned to R, the
Processor previously assigned that element is given some
unassigned element (rtop, j). Prior to the Push, it is not
necessary for this Processor have had an element in rtop or
j, provided the number of rows and columns dirtied, l, is less
than the number of rows and columns cleaned.

4) Type Four - Decreases VoC: For each element assigned
to Processor R in rtop, Processor R is assigned an element
in the rows below. Elements may go to some number of rows
and columns, l, which did not already contain elements of
Processor R, dirtying those rows and columns, if l or more
rows and columns are also cleaned of R.

For each element which has been reassigned to R, the
Processor previously assigned that element is given some
unassigned element (rtop, j). Prior to the Push, it is not
necessary that this Processor have already had an element in
rtop or j, provided the number of rows and columns dirtied,
l, is less than the number of rows and columns cleaned.

5) Type Five - Unchanged VoC: For each element assigned
to Processor R in rtop, Processor R is assigned an element
in the rows below. A single row or column not containing
elements of Processor R may be dirtied.

For each element which has been reassigned to R, the
Processor previously assigned that element is given some
unassigned element (rtop, j). Prior to the Push, this Processor
must have been assigned an element in row rtop and in column
j.

6) Type Six- Unchanged/Decrease VoC: For each element
assigned to Processor R in rtop, Processor R is assigned
an element in the rows below. A single row or column not
containing elements of Processor R may be dirtied.

For each element which has been reassigned to R, the
Processor previously assigned that element is given some
unassigned element (rtop, j). Prior to the Push, it is not
necessary that this Processor have had an element in rtop or
j, provided the number of rows and columns dirtied, l, is less
than or equal to the number of rows and columns cleaned.

B. Parallel MMM Algorithm Performance Models

These performance models define execution time, for
each MMM algorithm, as a function of communication and
computation time. This section asserts that if communication
time is decreased, for each of the algorithms modeled, the
execution time will either decrease or remain unchanged.

1) Serial Communication with Barrier:

Texe =Tcomm + Tcomp (2)

Tcomm =
( N∑

i=1

N(pi − 1) +

N∑
j=1

N(pj − 1)
)
× Tsend (3)



where,

pi = # of processors assigned elements in row i

pj = # of processors assigned elements in column j
Tsend = # of seconds to send one element of data

As Push is designed to clean a row or column of a given
processor, it will decrease pi and pj , lowering communication
time, and thereby execution time. At worst, it will leave pi
and pj unchanged.

2) Parallel Communication with Barrier:

Texe = Tcomm + Tcomp (4)
Tcomm = max(dP , dR, dS) (5)

Here, dX is the time taken, in seconds, to send all data by
Processor X and is formally defined below.

dX =
(
(N × iX +N × jX)− ∈ X

)
× Tsend (6)

where,

iX = # of rows containing elements of Processor X
jX = # of columns containing elements of Processor X
∈ X = # of elements assigned to Processor X

Each Push operation is guaranteed, by definition, to decrease
or leave unchanged, either iX or jX , or both.

3) Serial Communication with Bulk Overlap:

Texe = max
(
dP + dR + dS ,max(oP , oR, oS)

)
+ max(cP , cR, cS) (7)

where,

oX =# of seconds to compute the overlapped computation
on Processor X

cX =# of seconds to compute the remainder of the data on
Processor X

Each Push operation is guaranteed, by definition, to decrease
or leave unchanged, iX and jX of dX for the active processor.
It also, by definition, will not increase dX for either inactive
processor.

4) Parallel Communication with Overlap:

Texe = max
(

max(dX , dR, dS),max(oP , oR, oS)
)

+ max(cP , cR, cS) (8)

Each Push operation is guaranteed, by definition, to decrease
or leave unchanged, iX and jX of dX for the active processor.
It also, by definition, will not increase dX for either inactive
processor.
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Fig. 5. The 4 possible general partition shape archetypes found using the
Push program. Each of these archetypes has multiple shapes which must be
explored for each ratio. Although all shape archetypes are pictured as non-
rectangular, Archetype A includes all the traditional rectangular partitions in
it’s general description.

5) Parallel Interleaving Overlap:

Texe = Send k+
N∑

i,j,k=1

max

((
N ×

(
(pi − 1) + (pj − 1)

))
× Tsend,

max(kP , kR, kS)

)
+ Compute(k + 1) (9)

where,

pi = # of processors assigned elements in row i

pj = # of processors assigned elements in column j
kX = # of seconds to compute step k on Processor X

V. USING PUSH TO FIND OPTIMAL SHAPES

The Push operation is used to form three processor data
partition shapes for MMM which minimize communication
cost and execution time. The aim of this work is to identify
data partition shapes which are better, or at least no worse,
than any other shape or non-shape (arbitrary arrangement of
elements). These are labeled as candidates to be the optimal
shape, under specific conditions. However, it is difficult to
show mathematically that the Push operation will always
give some recognizable shape when used on data partitions
with three or more heterogeneous processors. We introduce
in this section an experimental technique to accompany our
analytical methods. This allows us to assert that no non-shape,
an arbitrary arrangement of elements with no defined borders
or single contiguous allocation of elements, will be superior
to the condensed shapes we present.

Postulate 1 (Three Processor Push): There exists no ar-
rangement of elements among three heterogeneous processors
in an N × N matrix which cannot be improved with the
Push operation, except those arrangements of shapes defined
in Fig. 5.

To motivate Postulate 1, we present the problem as a Deter-
ministic Finite Automaton. A DFA is a 5-tuple (Q,Σ, δ, q0, F )
where

1) Q is the finite set of states, the possible data partitioning
shapes

2) Σ is the finite set of the alphabet, the processors and the
directions they can be Pushed



3) δ is Q × Σ → Q the transition function, the Push
Operation

4) q0, the start state, chosen at random
5) F is F ⊆ Q, the accept states, candidate partitions to

be the optimum
The finite set of states, Q, is every possible permutation

of the three processor’s elements within the N × N matrix.
Therefore the number of states in the DFA is dependent on the
size of the matrix, the number of processors and the relative
processing speeds of those processors.

The finite set, Σ, called the alphabet, is the information
processed by the transition function in order to move between
states. Legal input symbols are the active processor being
Pushed, X , and the direction the elements of Processor X
are to be moved, i.e. Up, Down, Right or Left.

The transition function δ is the Push operation. This function
processes the input language Σ and moves the DFA from one
state to the next, and therefore the matrix from one partition
shape to the next. The implementation of the transition func-
tion is discussed further in the next section.

Finally, the accept states F are those fixed points in which
no Processor X may be Pushed in any direction. These states,
and their corresponding partition shapes, must be studied
further.

VI. PROGRAM CONSTRUCTION

As the primary contribution of this paper, we designed a
program which implements this DFA. It begins with a random
q0 start state. It moves from between states by following
the Push operation transition function. When no transitions
remain, the final state is a candidate for the optimal parti-
tion shape. This program is designed to be executed many
thousands of times with various inputs. In this way, we may
convince ourselves that no partition exists that is better than
the final partition shapes we have discovered.

A. Program Inputs
The program takes as input the number of processors, 3,

their relative processing speeds, Pr : Rr : 1, and the size
of the matrix, N . One of the slower processors, R or S, is
randomly selected to be the active processor first for the Push
operations.

1) Randomizing Push Direction: Part of the difficulty of
searching for potentially optimal data partition shapes is en-
suring all possible shapes are considered. Preconceived notions
about what is likely to be optimal should not determine how
the program searches for these potentially optimal shapes. For
each new starting state, our program selects a random number
of directions (1, 2, 3 or 4) to Push the active processor. The
Push directions are then randomly selected. For example, if
2 is selected as the number of directions, then Up and Left,
or Down and Left, and so forth, might be selected as Push
directions. Finally, the order of Push operations is randomly
selected. In this way, we cover such disparate cases as one
Push direction only, two Push directions in which one direction
is exhausted before the other begins, or four Push directions
where each Push direction is interleaved with the others.

2) Randomizing q0: At the beginning of the program, all
elements are assigned to the fastest processor, P . Each sub-
sequent processor, X , is considered in turn. Random integer
values are selected for row and column, separately, and if the
element at (i, j) has not already been assigned to a processor
other than Processor P , it is assigned to the Processor X .

B. Program Operation

In this section, we describe the way in which the program
searches for a legal Push on the active Processor, X , in a given
direction.

We define several metrics of a partition shape:
For row i,

row(q, i,X) =

{
0 if (i, ·) of q no elements of X
1 if (i, ·) of q has elements of X

For column j,

col(q, j,X) =

{
0 if (·, j) of q no elements of X
1 if (·, j) of q has elements of X

As an example, we discuss a Push Down on active Processor
R, but the other directions are similar.

Formally, ↓ q(R) = q1 where,
Initialize q1 ← q
(g, h)← (rtop + 1, rleft)
for j = rleft → rright do

if q(rtop, j) = 0 then
{Element is dirty, clean it}
(g, h)← find (g, h) {Function defined below}
if q(g, h) = 1 then
q1(rtop, j)← 1 {Cleaned element assigned to S}

end if
if q(g, h) = 2 then
q1(rtop, j)← 2 {Cleaned element assigned to P}

end if
q1(g, h)← 0 {Put displaced element in new spot}

end if
j ← j + 1

end for
The function find(g,h) searches for a suitable swap of ele-

ments according to defined Push Types. This is the algorithm
for finding a Type One Push, the other Types are similar.

findTypeOne(g, h) {Look for a suitable slot to put element}
for g → rbottom do

for h→ rright do
if q1(g, h) 6= 0 && (row(q, rtop, (q1(g, h)) = 1
‖ col(q, j, (q1(g, h)) = 1) && (row(q, g, R) = 1 ‖
col(q, h,R) = 1 then

return (g, h)
end if
h← h+ 1

end for
h← kleft
g ← g + 1

end for
return q1 = q {No Type One Push↓ q(R) possible}



Fig. 6. Those states, q, which have transition arrows to states, q0 through
q4, which are a known (experimentally found) path to an accept state. If it is
possible to transition to any state on this path from q, then we denote q to be
considered experimentally, and not a possible counterexample.

The full code base is available for inspection at
http://www.hcl.ucd.ie

C. End Conditions

In order to implement the Push, we must strictly define the
conditions under which a partition is considered fully Pushed.
In the theoretical Push, a partition is considered fully Pushed,
or condensed, when the elements of no processors, except the
largest processor, may be legally moved in any Push direction.

The implementation of our program first determines the
valid directions of Push for a given processor in a given run.
A partition fully condensed if there are no available Push
operations in any direction in that set of possible directions.

VII. EXPERIMENTAL RESULTS FOR 3 PROCESSORS

The size of the test matrix chosen for the experiments must
be large enough to possess the granularity of elements required
to form a variety of shapes, and be considered representative
of any value of N . However, the larger the matrix size N ,
the larger the set of possible states, Q, and therefore more
experimental runs are necessary to appropriately cover them
all. To balance these two requirements, we chose N = 1000.

The processor ratios chosen for study were 2:1:1, 3:1:1,
4:1:1, 5:1:1, 10:1:1, 2:2:1, 3:2:1, 4:2:1, 5:2:1, 5:3:1, 5:4:1. For
each ratio, the DFA implementation was run approximately
10,000 times. As the DFA is not a simulation of actual MMM
on parallel processors, but searching for partition shapes which
cannot be improved using the Push operation, it is run on a
single processor. Multiple instances of the program were run
on multiple processors to increase the speed at which data
was collected. The DFA was run on a small cluster of Dell
Poweredge 750 machines with 3.4 Xeon processors, 256 MB
to 1 GB of RAM, and 1 MB of L2 cache.

A. Experimental Thoroughness

The problem space, the number of possible arrangements
of elements, given an N size matrix, and 3 processors is
3N

2

. However, we can further restrict this space to ensure the
number of states, Q, covered in our experiments is attainable.
First, we assert that because we have a set number of elements

Fig. 7. An example run of the DFA at approximate steps 1, 500, 1000, 1500
and 2100.

assigned to each processor, ∈ P,∈ R and ∈ S, we can say
the total number of possible states Q is N2!

(∈P !)×(∈R!)×(∈S!) .
A state, q, has been considered if it is a q0 for an experiment,

any state, qx, passed through during an experiment, or any
state with a transition arrow leading to either q0 or qx. This
is shown in Fig. 6. This significantly reduces the number of
states that must be considered by the Push program code.

B. Example Run

This example run is of ratio 2:1:1, N = 1000, with
Processor R randomly selected to be moved in two directions,
down and right, and Processor S randomly selected to be
moved in two directions, down and left. Fig. 7 shows the
approximate partition shape at approximate steps 1, 500, 1000,
1500, and 2100. These figures are shown at 1

100

th granularity,
i.e. each box shown is a 100 × 100 square of individual
elements. The colors given represent the Processor assigned
the majority of the elements in that 100× 100 square.

C. Results

The next challenge was to determine if the final states, F ,
were condensed shapes and whether a counterexample had
been found. To make the output manageable, we grouped every
state, q, in F , into a shape archetype. A shape archetype is a
general description of q, based on the layout and overlap of the
enclosing rectangles of R and S, and the number of corners
in R and S. The number of corners is equal to the number of
interior angles of a processor’s shape. The minimum number
of corners for any of the output shapes was four. Further
definition of corners can be found in Section VIII-A.

For all experimental processor ratios, the DFA program re-
vealed four general partition shape archetypes. These partition
archetypes are shown in Fig. 5.

D. Archetype A - No Overlap, Minimum Corners

In Archetype A partitions, the enclosing rectangles of Pro-
cessors R and S do not overlap. Processors R and S are
each rectangular, possessing the minimum number of corners
(four). Processor P is assigned the remainder of the matrix.
Depending on the dimension and location of Processors R and
S, the matrix remainder assigned to Processor P may be either
rectangular or non-rectangular.



If Processor P is rectangular, the entire partition shape, q, is
rectangular. Otherwise, q is a non-traditional, non-rectangular
shape. It is important to note that although these two partition
shapes seem disparate at first glance, they are similar in their
description of enclosing rectangles and corners, and so are
grouped together.

E. Archetype B - Overlap, L Shape

In Archetype B partitions, the enclosing rectangles of Pro-
cessors R and S partially overlap. One processor, shown in
Fig.5 as Processor S, is rectangular, having four corners.
Processor R has six corners, and is arranged in an “L” shape
adjacent to the rectangle shape of Processor S. Processor P
is assigned the remainder of the matrix.

F. Archetype C - Overlap, Interlock

In Archetype C partitions, the enclosing rectangles of
Processors R and S partially overlap. Neither processor has
a rectangular shape. Each processor has a minimum of six
corners. Processor P is assigned the remainder of the matrix,
which may be rectangular or non-rectangular.

We note that in all experimentally found examples of
Archetype C, if the shapes of Processors R and S were viewed
as one processor, they would be rectangular.

G. Archetype D - Overlap, Surround

In Archetype D partitions, the enclosing rectangle of one
processor, shown in Fig. 5 as Processor S, is entirely over-
lapped, or surrounded, by Processor R’s enclosing rectangle.
Processor S has four corners, while Processor R has eight
corners. Processor P is assigned the remainder of the matrix,
which may be rectangular or non-rectangular.

VIII. ANALYSIS OF SHAPE ARCHETYPES

In this section, we demonstrate that partition shapes of
Archetypes B, C and D may all be transformed, without
worsening their volume of communication or execution time,
into Archetype A partitions. Then we may eliminate those
actual partition shapes which fall under those Archetypes, and
consider only those shapes which are of Archetype A.

Theorem 8.1: In a partition among three heterogeneous
processors, the position of the two smaller processor shapes,
within the context of the larger matrix, does not affect the total
volume of communication, if the position of the two smaller
shapes do not change relative to each other.

Proof: Consider the shapes of Processor R and S to be
one continuous shape. Their position relative to each other
will not change, so moving this combined shape is analogous
to moving a single small processor in a two processor data
partition. This is known not to increase the volume of com-
munication [8].

A. Taxonomy of Corners

A corner is a point in a partition shape, q, of a single
processor at which the previously constant coordinate, x or
y, of the edge changes, and the other coordinate, either x or
y becomes a constant.

Each shape has four edges to consider, even if parts of each
edge lie on different rows or columns. An edge is any row
or column within a partition shape that does not have another
row or column (depending on whether a vertical or horizontal
edge) containing it’s processor’s elements between it and the
side of the matrix it is named after. The sides of the matrix,
beginning at the bottom and moving clockwise are named x,
y, z, and w.

Each processor, P , R and S, has a minimum of four corners.
Each edge is denoted using the notation Px1, Px2, Py1, Py2

and so on. This is shown in Fig. 8. When a shape has the
minimum number of corners, then each corner may be referred
to by two notations, i.e. Py1 = Pz1, Pz2 = Pw1, Pw2 = Px2

and Px1 = Py2. Note that for vertical edges, y and w, points
are given top to bottom, and for horizontal edges, x and z, are
given left to right.

If, for a given processor, the edge points are not equal to
their corresponding adjacent edge points, then at least one
extra corner must exist along those two edges.

y 

x 

z 

w 
Rx1 

Rx2 

Rw2 

Rw1 

Px1 Px2 

Py1 

Py2 

Pz1 Pz2 
Pw1 

Pw2 

Fig. 8. An Archetype B partition shape shown with the corner notation. Not
all points are labeled, but all points follow the pattern shown by points labeled
for Processor P .

B. Archetype B to Archetype A

Theorem 8.2: Any Archetype B partition shape, q, may be
transformed into a Archetype A partition shape, q1, without
increasing the volume of communication of the shape

Proof: The Archetype B partitions have two important
cases to consider. First, those where the combined width or
height of the smaller processors is equal to N and secondly,
those in which the combined length is less than N . These are
shown in Fig. 9.

For both cases of Archetype B partitions, we will apply a
Push-like transformation to Processor R, the “L” shape, along
one of the planes with the extra corner. In Fig. 9 this is either
the x or w sides, so the elements of Processor R may be
moved in either the Left (←) or Up (↑) directions. This is not
strictly a Push operation, as the enclosing rectangle for R will



Fig. 9. The two possible cases of an Archetype B partition shape. In the first
case, left, the combined length of the two shapes is N , the full length of the
matrix. In the second case, right, the combined length of the two shapes is
less than N .

be expanded in one direction. Because the enclosing rectangle
is also being diminished in another direction, we can show
that the volume of communication has not increased.

In the first case, to move the elements of R, only one
transformation direction is available because the length N of
the combined rectangles does not allow room for additional
swaps. In the example of Fig. 9 we choose the Left (←)
direction.

For each column transformed to remove elements of R,
at most one column previously not containing R will have
elements of R introduced. This is assured, by definition, by
virtue of the existence of the corner:

Rw1 → Rx2 < Ry1 → Ry2 (10)

where,

Rw1 → Rx2 = # of rows separating Rw1 and Rx2

Ry1 → Ry2 = # of rows separating Ry1 and Ry2

For the second case, the elements of R can be moved
in either direction, as the combined length of both shapes
is less than N , and therefore rows and columns exist in
either direction into which elements of R can be moved.
The direction of the Push-like transformation is decided by
choosing that which requires the lower volume of elements to
be moved. In example Fig. 9, we would first use Theorem 8.1
to move the entire shape of Processors R and S down in the
matrix so that Sx2 = Px2, opening rows above Processor R
so we may move elements in the Up (↑) direction.

For each row transformed to remove elements of R, at most
one row previously not containing R will have elements of
R introduced. This is assured by definition, by virtue of the
existence of the corner:

Rx1 → Rw2 < Rz1 → Rz2 (11)

where,

Rx1 → Rw2 = # of rows separating Rx1 and Rw2

Rz1 → Rz2 = # of rows separating Rz1 and Rz2

For every row or column made dirty with R during these
transformations, a row or column must have, by definition been
made clean of R, so volume of communication is constant or
decreasing.

1 2 3 

4 5 6 

Fig. 10. The six candidate partition types found under Archetype A.

C. Archetype C to Archetype A

Theorem 8.3: Any Archetype C partition shape, q, may be
transformed into a Archetype A partition shape, q1, without
increasing the volume of communication of the shape by
applying the Push operation

Proof: By definition of this shape, valid Push operations
remain, which if applied will result in an Archetype A parti-
tion.

Archetype C is the only archetype formed by our program
on which there are valid Push operations remaining. These
form as a result of the randomized Push direction algorithm,
and is a necessary downside to truly considering every possible
partition shape without preconceived notions of the final shape.
Transforming partition shapes of this archetype is a simple
matter of applying the Push operation in the direction not
selected by the program.

In the program, this case is handled by a “beautify” function
to return rectangular or asymptotically rectangular shapes, but
is included here for comprehensiveness.

D. Archetype D to Archetype A

Theorem 8.4: Any Archetype D partition shape, q, may be
transformed into an Archetype A partition shape, q1, without
increasing the volume of communication of the shape

Proof: In [8] it was proven that for two processors, the lo-
cation of the smaller processor within the context of the larger
matrix, does not effect the total volume of communication.

Consider the surrounding processor, in figures Processor R,
and the inner processor, Processor S, to be a two processor
partition in a matrix the size of Processor R’s enclosing
rectangle.

By [8] Theorem 3.4 Canonical Forms, move Processor S
so that Rx2 = Sx2.

We have created an Archetype B partition from an
Archetype D, without increasing its volume of communication.
By Theorem 8.2, it may be further reduced to Archetype A.

IX. CANDIDATE PARTITIONS

The candidate partition types included under Archetype
A are seen in Fig. 10. In all six, Processors R and S are
assigned rectangular portions of the matrix to compute. The
these rectangles vary in length from, at the longest, N to, at
the shortest,

√
∈ X , i.e. the side of a square containing all the

elements of X .



Each candidate shape pictured in Fig. 10 is representative
of all shapes matching it’s general description. The location
within the matrix for each Processor R and S may be different
than shown, and is a factor to consider when determining the
optimal canonical partition shape. Here we formally define
these 6 partition shape types, and describe which parts are
fixed and which may be changed to create a valid partition
shape of the same type. However, it is important to note that
we do not assert that all valid partition shapes of the same
type are necessarily equivalent. Indeed, in the next section we
define the canonical, “best version”, of each of the candidate
types.

A. Formal Definition of Candidate Shapes

Listed here are the fixed points in the definition of each
type. If a dimension or a relative location is left unspecified,
that dimension may have any value from zero to the size of the
matrix, N . A shape is considered rectangular if all processors
are assigned a single rectangular portion of the matrix to
compute. Shapes in which a single processor is assigned two
or more rectangles to compute are non-rectangular.

Processors R and S will be referred to as having the
dimensions Rwidth, Rlength and Swidth, Slength respectively.
The value of Rwidth is derived from the distance between
points Rx1 and Rx2 described in Section VIII-A. The value
of Rlength is the distance between points Ry1 and Ry2. The
values Swidth and Slength are derived in the same manner.

A partition shape falls under the given type if it fulfills
the listed criteria or can be rotated to meet the criteria. We
normalize the dimension of the matrix, N , to be 1 for the
following equations. For all types R and S are rectangular so
Rwidth ×Rlength =∈ R and Swidth × Slength =∈ S.

Type One
Rwidth + Swidth < 1, Rlength < 1, Slength < 1

Type Two
Rwidth + Swidth = 1

Rlength < 1, Slength < 1, Rlength 6= Slength

Type Three
Rwidth + Swidth < 1, Rlength < 1, Slength = 1

Type Four
Rwidth + Swidth = 1, Rlength < 1

Slength < 1, Rlength = Slength

Type Five
Rwidth + Swidth = 1, Rlength < 1, Slength = 1

Type Six
Rwidth + Swidth < 1, Rlength = 1, Slength = 1

B. Finding the Optimal Version

Each of the candidate partition types has some leeway for
difference either in the dimensions of rectangles R and S or
in their location within the matrix. We define the canonical

version for each candidate partition type. To minimize com-
munication time, here we focus on minimizing the combined
perimeters of rectangles R and S, under the constraints of each
partition type. For the following proofs we normalize the size
of the matrix to N = 1, and define

T = Pr +Rr + Sr (12)

1) Splitting Type One: The Type One candidate partition
type has two rectangles, each of which is less than the
matrix width, 1, in both dimensions. We assert the minimum
perimeter of a rectangle of fixed area occurs when width and
height are equal, i.e. when the rectangle is a square. However,
we notice that it may not always be possible to form two
non-overlapping squares in an 1 × 1 matrix, even if we fix
Ry1 = Py1 and Sx2 = Px2.

Theorem 9.1: The rectangles formed by Processors R and
S may both be squares when Pr > 2

√
Rr.

Proof: The volume of elements assigned to each proces-
sor is equal to the Processors’ ratio divided by the sum of
the ratios, and multiplied by the total volume of elements in
the matrix. The volume of elements assigned to each of the
Processors, P , R and S, are Pr

T ,
Rr

T , and 1
T , respectively. If

we assume that both Processors R and S are squares, then
the length of their sides will be

√
Rr

T and
√

1
T respectively.

In order for the squares to fit in the 1 × 1 matrix without
overlapping, √

Rr

T
+

√
Sr

T
< 1

Rr + 2
√
RrSr + Sr < T

2
√
Rr < Pr

For those ratios where Pr < 2
√
Rr, and two squares may

not be formed, the optimal shape which still conforms to the
Type One criteria must be found. We look to minimize the
function,

f(x, y) = 2
(Rr

Tx
+ x+

Sr

Ty
+ y
)

(13)

under the constraints,

0 <
Rr

xT
< 1

0 <
Sr

yT
< 1

x+ y < 1

The slope of the surface bounded by these constraints is
increasing with x and y. Indeed the derivative of Equation 13
is positive, indicating it is increasing. To find the minimum of
(13) then, we search along the lower bound when x+ y ≈ 1.
This allows us to rewrite (13) as a function of x, set it’s deriva-
tive equal to zero and solve for x. This gives x = −

√
R−R
R−1 .

Showing, for ratios such that Pr < 2
√
Rr, the optimal shape

is two non-square rectangles R and S of combined width of
approximately 1, but less than 1 by definition. The two optimal
versions of Type One partitions can be seen in Fig. 11.



A B 

Fig. 11. On the left is a Type 1A partition shape, the Square-Corner, with
Processors R and S each formed into a square. On the right is a Type 1B
partition shape, the Rectangle-Corner, showing two non-square rectangles.

3 4 5 6 

Fig. 12. The best versions of candidate partition types 3 to 6, i.e. each type
in canonical form. Type 3 partition, the Square-Rectangle. Type 4 partition,
the Block-Rectangle. Type 5 partition, the L-Rectangle. Type 6 partition, the
Traditional-Rectangle.

2) Combining Type Two and Four: Partition shape Types
Two and Four are similar, but Type Four is more rigid. In
a Type Four partition, both dimensions of rectangles R and
S are fixed, and only their relative location in the matrix
may be altered. In Type Two, the total width of R and S
is fixed, but the relative dimensions may change. A Type Two
partition is improved, lowering the volume of communication,
by transforming it into a Type Four partition by changing the
relative widths so that Rheight = Sheight. The canonical form
of the Type Four partition, the Block-Rectangle, is shown in
Fig. 12, with Ry1 = Py2 and Sz1 = Pz2.

3) Type Three Canonical Form: The Type Three partition
has a rectangle of height N , and therefore of fixed width. The
second rectangle is unfixed in both dimensions, and as shown
above the optimal shape for a rectangle on length and width
less than N is a square. It is possible to form a square and a
rectangle for all ratios Pr : Rr : 1, without regard to which
Processor, R or S, is the square. The canonical form of the
Type Three partition, the L-Rectangle, is shown in Fig. 12,
with Rx2 = Sx1 and Sz1 = Pz2.

4) Type Five and Type Six Canonical Form: In both Type
Five and Type Six partitions, the height and width of both
processors R and S is fixed, and only their relative position
within the matrix may be changed. For Type Five, the L-
Rectangle partition, we fix Ry1 = Py2 and Sz1 = Pz2. In Type
Six partitions, the Traditional-Rectangle we set Rx1 = Px2

and Sx1 = Rx1, as seen in Fig. 12.

X. ANALYZING CANONICAL SHAPES TO FIND OPTIMAL

Of the six potentially optimal partition shapes, at least one
will be the optimum for a given set of factors. We must
analyze these shapes to determine the optimal partition shape
for all ratios Pr : Rr : Sr. This full analysis is beyond the
scope of this paper, but the methodology is described here.
As with the two processor case, for each MMM algorithm we
refine the performance model to reflect the communication
characteristics of the partition shape. The models are then
compared algebraically and graphically to determine their

relative cost in terms of execution time. For all ranges of ratios,
the partition shape with the minimum execution time at a given
value of ratios is said to be the optimum partition shape for
those given values.

Other factors which determine the optimal shape are net-
work topology and the ratio between communication and
computation speed. In the case of three processors, there are
two topologies to consider. First, we consider a fully connected
topology, where each processor is able to send and receive data
from all other processors. Secondly, there is the star topology,
where one central processor may send and receive data with
each of the other processors, but those two processors do not
communicate with each other. The models presented earlier
in this paper apply to the first, fully connected topology. It
is obvious that the additional restriction of communication
topology in the star will affect the which partition shape is
the optimal.

A. Theoretical Comparison

Although the full analysis is beyond the scope of this
paper, the algebraic and graphical comparison is shown here
to motivate the use of these canonical shapes. We take as an
example the SCB algorithm, Equation 2, the fully connected
network topology, and the Square-Corner and Block-Rectangle
partition shapes.

Square Corner vs. Block Rectangle
2N(Rwidth + Swidth) < N(Rlength +N)

Normalize N = 1

2(Rwidth + Swidth) < Rlength + 1√
Rr

T
+

√
1

T
< 1− Pr

T

At this point it becomes clear that both the Square-Corner
and the Block-Rectangle are dependent on Rr and Pr (due to
the T variable). This can be seen in the graph of these two
functions in Fig. 13.

B. Experimental Comparison

To further motivate and validate the contribution of this
paper, we briefly present experimental results of the Square-
Corner versus Block-Rectangle partition shapes for the SCB
algorithm on a fully connected topology. Theoretically, we
calculate that if it is possible to form a Square-Corner partition
(due to processor speed ratios), for high heterogeneity ratios
it will outperform the Block-Rectangular partition shape in
terms of communication and execution time.

Experimental results were found using three identical pro-
cessors. All ratios tested were such that Rr = Sr for sim-
plicity. Communication uses Open-MPI [15] and local matrix
multiplications use ATLAS [16]. The processing speed ratio
was controlled on the three nodes by using a CPU limiting
program which monitors processes using the /proc filesystem.
A process is allowed to run until a set fraction of CPU time
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Fig. 13. The cost functions of the Square-Corner partition, black, and the
Block-Rectangle, gray. The vertical surface represents the value at which a
Square-Corner partition becomes possible, Pr ≥ 2

√
Rr . The black surface

is valid in front of this vertical surface. The x-axis represents the value of
Rr from 1 to 10, and the y-axis represents the value of Pr from 1 to 20. For
highly heterogeneous ratios, i.e. small values of x and large values of y, the
Square-Corner partition has a lower cost than the Block-Rectangle partition
for the SCB algorithm on a fully connected network.
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Fig. 14. Communication time in seconds for Square-Corner and Block-
Rectangle partition shapes using the SCB algorithm and fully connected
topology. Network bandwidth is 1000 MB/s and N = 5000. As heterogeneity
increases along the x-axis the Square-Corner volume of communication
decreases, eventually overtaking the Block-Rectangle partition.

has been reached. The process will then be put to sleep and
woken later when the CPU has been idle long enough to
achieve the desired processor speed. These results, shown in
Fig. 14, confirm that the Square-Corner partition shape has
a lower communication and execution time when the ratios
are highly heterogeneous when compared with the Block-
Rectangle partition shape.

XI. CONCLUSION

In this paper we expanded the Push operation to be
applicable to three heterogenous processors. We described
performance models for three processor execution of MMM
under five different algorithms. We showed that the Push
operation decreases volume of communication, and thereby
total execution time for each of these five algorithms. We used
an experimental technique to support our postulate that no
arbitrary partition shape or non-shape exists which is superior
to those shapes in Fig. 11 and Fig. 12. Our program was able
to reduce the set of possibly optimal shapes to just six shapes
from the total number of possible arbitrary arrangements of
elements, N2!

(∈P !)×(∈R!)×(∈S!) .

Analyzing the potentially optimal data partition shapes
is beyond the scope of this paper, but such analyses will
be presented in the future. Each of the six partition shape
types will be extensively studied for all five parallel MMM
algorithms, and for all processing power ratios.

Other avenues for exploration would be the introduction
of additional constraints on network topology, communication
latency, or cache performance in the modeling. These factors
would certainly influence which shapes were optimal, and
under what conditions.

The complexity of the three processor case, as compared to
two processors, makes this work an excellent starting point for
four or more processors. Both the analytical methods and our
experimental technique used in this paper are extensible. The
ultimate aim is to determine the optimal data partitioning shape
under a variety of conditions for any number of heterogeneous
processors.
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