
MPI vs BitTorrent : Switching Between
Large-Message Broadcast Algorithms in the

Presence of Bottleneck Links

Kiril Dichev and Alexey Lastovetsky

Heterogeneous Computing Laboratory
University College Dublin

Dublin, Ireland
Kiril.Dichev@ucdconnect.ie, Alexey.Lastovetsky@ucd.ie

Abstract. Collective communication in high-performance computing is
traditionally implemented as a sequence of point-to-point communica-
tion operations. For example, in MPI a broadcast is often implemented
using a linear or binomial tree algorithm. These algorithms are inherently
unaware of any underlying network heterogeneity. Integrating topology
awareness into the algorithms is the traditional way to address this het-
erogeneity, and it has been demonstrated to greatly optimize tree-based
collectives. However, recent research in distributed computing shows that
in highly heterogeneous networks an alternative class of collective algo-
rithms - BitTorrent-based multicasts - has the potential to outperform
topology-aware tree-based collective algorithms. In this work, we exper-
imentally compare the performance of BitTorrent and tree-based large-
message broadcast algorithms in a typical heterogeneous computational
cluster. We address the following question: Can the dynamic data ex-
change in BitTorrent be faster than the static data distribution via trees
even in the context of high-performance computing? We find that both
classes of algorithms have a justification of use for different settings.
While on single switch clusters linear tree algorithms are optimal, once
multiple switches and a bottleneck link are introduced, BitTorrent broad-
casts – which utilize the network in a more adaptive way – outperform
the tree-based MPI implementations.

Keywords: BitTorrent, MPI, Broadcast, Bandwidth, Bottleneck Link

1 Introduction and Related Work

The broadcast operation distributing data from a root process to all other pro-
cesses is one of the fundamental collective operations in high-performance com-
puting. Numerous research has been done to develop broadcast algorithms for
various platforms over the last 20 years. This work focuses on Ethernet-switched
networks – an overview of the most common MPI broadcasts and their per-
formance for Ethernet networks can be found in [15]. The basic existing algo-
rithms in the state-of-the-art MPI implementations are the flat tree (also called

round-robin), linear tree (also called daisy chain or pipeline) and binomial tree
algorithms.

For clusters connected through heterogeneous networks, very different strate-
gies have emerged for large-message broadcasts. Tree-based algorithms can be
optimized through topology awareness – however, computation of optimal com-
munication trees is expensive to compute (NP-complete). Heuristics can alleviate
this problem, and early work computing communication trees in polynomial time
includes [9, 2, 1]. More recently, we have used models to also generate efficient
communication trees [7]. As an alternative, simpler broadcast algorithms can be
devised to reflect e.g. a two-layer hierarchy [12].

In the area of peer-to-peer computing, Burger [3, 4] has recently demon-
strated that receiver-initiated multicasts (of which BitTorrent is an example)
can be very effcient. Experiments have shown that this class of algorithms has
the potential to outperform even optimized MPI libraries on emulated hetero-
geneous networks.

Independently from this work, we have recently addressed a related problem
in high-performance computing – why try to minimize the network utilization
on clusters through complex tree-based algorithms instead of maximizing it?
Our objective is the minimization of total communication time, and not the
minimzation of network utilization. We decided to experiment with the BitTor-
rent [5] protocol and use it in an unusual setting – for cluster communication.
Our research in large message broadcast algorithms on hierarchical and hetero-
geneous networks shows an interesting and surprising way forward. We show
that the protocol has a number of properties which contribute to maximizing
the network utilization. We experimentally verify that BitTorrent broadcasts of-
ten outperform optimized tree-based broadcasts for different cluster settings. In
addition, the original implementation of BitTorrent is oblivious of the network
topology – which makes it trivial to deploy anywhere.

Underlying network Optimal broadcast algorithm

Very homogeneous Linear tree algorithm (static)

Very heterogeneous topology-aware pipelined trees (static)
or receiver-initiated multicasts (dynamic)

Some level of heterogeneity Unknown
Table 1. Optimal large-message broadcast algorithms for the two extremes of homo-
geneous or heterogeneous networks according to recent research

Inspired by these developments – summarized in Table 1 – this work builds a
bridge between the algorithms used in the high-performance computing domain
and the algorithms used in the distributed computing domain for large message
broadcasts. In particular, we examine if the described algorithms both have their
justification when using settings which are neither fully homogeneous nor very
heterogeneous. Some of the questions we answer in this work are:

1. How sensitive is the performance of operations like linear tree and BitTor-
rent broadcasts to the heterogeneity of the underlying network? When does
it make sense to switch between algorithms?
This question is not addressed in any previous work to the best of our knowl-
edge. The high-performance computing domain usually assumes a single
switched cluster or a hierarchy without any underlying heterogeneity [13].
On the other hand, [3] assumes a high level of heterogeneity, with emulated
cluster scenarios differing in the available link bandwidth around 10 times.

2. Are the results of the related work on large-message broadcasts as shown in
Tab. 1 in agreement with experiments on modern grid clusters with a mod-
erate level of heterogeneity?
This is an important experimental validation, since this study overlaps with
existing research on broadcast operations performed in very different re-
search domains and using different settings.

The paper is structured as follows - in section 2 we highlight the principle
differences between the BitTorrent version and the main MPI versions of per-
forming a broadcast operation. In section 3 we present our main experimental
settings – with or without a bottleneck link – and our benchmark results. Section
4 concludes the paper.

2 Broadcast in BitTorrent and MPI

2.1 Complexity for Large Message Broadcasts

The classic three algorithms for broadcast operations in MPI – linear, binomial
and flat tree algorithm – are described in detail in previous work [15]. A number
of variations based on these algorithms exist – for example the scatter/allgather
version used in MPICH2 for large messages, where the scatter operation resorts
to binomial tree as well.

For large messages, fragmentation and pipelining always yield better perfor-
mance and variations on that include pipelined linear tree algorithm, pipelined
binomial tree algorithm and scatter/allgather-based broadcast. [13] describes
pipelined algorithms and observes that on Ethernet switched clusters and for
sufficiently large messages, the message size dominates the runtime (rather than
the number of processes). Then the theoretical lower limit for a broadcast of a
message is the transfer time of this message only between two nodes, since in a
pipeline many nodes can overlap their message transfer to each other. The au-
thors perform some simple analysis finding that a pipelined linear tree broadcast
without contention and with good segment size comes close to the theoretical
lower limit for large messages on single-switch clusters as well as on multi-switch
clusters with fully homogeneous network. This is also experimentally confirmed.

In summary: When broadcasting very large messages (Megabytes) across
10s to 100s of processes, efficient algorithms like the linear tree algorithm in
MPI have a time complexity of O(M) with M being the message size. With the
BitTorrent-based approach, we can only hope to reduce this complexity by a
constant factor.

2.2 Algorithm Differences Between MPI and BitTorrent Broadcasts

In the following, we focus on the significant differences between the data distri-
bution in BitTorrent as compared to the MPI broadcast algorithms.

– Pipelining

Fragmentation and pipelining always lead to higher parallelism for large
messages, and MPI and BitTorrent both use these techniques. The fragment
size respectively is best determined at runtime. Our profiling shows that
BitTorrent uses fragment size of 16 KB, and Open MPI uses fragment size
of 128 KB.

– Parallel point-to-point transfers at a time

Another important parallelization aspect is how different point-to-point calls
are parallelized, i.e. how many point-to-point transfers can be performed in
parallel through the network. In MPI, the pipelined linear tree algorithm
can theoretically provide a parallelism of (p-1) point-to-point calls when the
pipeline is full. In BitTorrent, a much denser (but not complete) communi-
cation graph can be used. The protocol can provide for 2 * p * c parallel
point-to-point calls with c being the allowed active downloads or uploads at
a time. For the original client we use, 4 parallel uploads are allowed (more
downloads are allowed, but only the lower bound is relevant), i.e. c = 4. The
constant 2 denotes that BitTorrent allows bidirectional message transfers. In
theory, this means that BitTorrent could utilize the network better, partic-
ularly parts of the network in the presence of bottlenecks. In practice, 100
% parallelization of all point-to-point transfers can not be achieved, since a
node can not physically send or receive data in parallel to all peers - the Eth-
ernet adapter is one example of a serialization point. Furthermore, network
saturation and even congestion are a possibility.

– Dynamic Parallel Access

Dynamic parallel access is a significant feature of BitTorrent not present
in any of the MPI-based collective algorithms. In a BitTorrent protocol,
a process can listen on a socket for a data chunk from several peers in
parallel (see Fig. 1). Indeed, this is a very powerful feature which allows
for dynamicity and adaptivity in communication as demonstrated for wide-
area networks e.g. in [14]. This is not possible in the sender-initiated MPI
collectives where the schedule allows each process to receive data from only
one peer.

– Tree vs Complete Graph

All modern broadcast algorithms in MPI follow a communication tree. The
flat tree and the linear tree algorithm can be seen as two opposite extremes
of communication trees (with minimal and maximal depth), the binomial
tree is another option. On the other hand, the BitTorrent algorithm builds a
dense communication graph, in which every process can potentially exchange
data with every other process (but only keeps a record of 35 peers in the
used implementation).

(a)

(b)

(c)

(d)

Fig. 1. Point-to-point communication in BitTorrent (a) and MPI broadcasts with flat
tree (b), linear tree (c) or binomial tree (d). Only BitTorrent allows a random process
(colored in gray) to receive fragments from any other process

3 Experimental Setup and Results

3.1 Bordeaux Site in Grid’5000 as Experimental Platform

We used the 3 clusters Bordereau, Borderline and Bordeplage in Bordeaux in
Grid’5000 as experimental platform. Figure 2 shows the network between the
clusters. Here, isolated point-to-point bandwidth between any two nodes across
the clusters is 1 Gbps (limited by the network interface). However, when intense
collective communication is used, the point-to-point throughput decreases sig-
nificantly across the Dell ProConnect – Cisco connection , because only a single
1 Gbit link connects the two switches. In addition, we measure an increased la-
tency along this link – easily explained with the traversal of more switches. This
is the main potential bottleneck. To a lesser extent, the Nortel-HP link also can
turn into a bottleneck link for collective communication.

The used setting has significantly less heterogeneous network properties than
settings usually used in the distributed computing domain, but we do not con-
sider this a disadvantage. On the contrary, this moderately heterogeneous setting
is more typical for high-performance computing.

3.2 Modifications for Profiling BitTorrent and MPI Libraries

We use the original BitTorrent client written by Bram Cohen [5] for our experi-
ments. It has Open Source License and is written in Python. While probably not
as efficient as C/C++ compiled binaries, the Python scripts are convenient as
proof of concept, and debugging and modifications are comparatively easy. We
mostly used the source code itself as well as [10] as a reference for details on the
algorithm. The software is available as a package in most modern Linux-based
distributions.

The following modifications were introduced into the original BitTorrent
client:

Fig. 2. Ethernet network on Bordeaux site. 10G denotes single 10 Gigabit link, x1,
x10 and x93 denotes 1, 10 or 93 1 Gigabit links. The Dell–Cisco link is a major bottle-
neck during intense collective communication between Bordeplage and Borderline or
Bordeplage and Bordereau

– File I/O was removed. Instead, dummy data strings are generated on-the-fly
and transferred over the network.

– The wall clock time is taken at initiation of the class StorageWrapper and
at download completion in the same class. The time difference is used as
reference.

For discovering the runtime algorithm and fragment size for pipelining in
Open MPI [8] we used PERUSE [11]. PERUSE is an event-driven tracing library
for internal MPI events. We used it because the decision making process in MPI
collectives is very complex and runtime checks with PERUSE are a reliable way
to find which algorithm is used for particular process number and message size.
For MPICH2, we use the available documentation in related work to find which
algorithm is being used.

3.3 Timing Mechanism Used in BitTorrent and MPI

In this section, we give a detailed explanation of the timing methodology used
consistently both in BitTorrent and MPI experiments. This is important since
BitTorrent originally does not provide such timing, while MPI supports timing
and logical operations on timings for communication calls.

The runtime setup for BitTorrent involves starting a BitTorrent tracker and
then launching BitTorrent clients simultaneously identically to MPI program
startup. The execution time of a BitTorrent program is then taken as the wall
clock time between the start of a StorageWrapper instance and the moment
download completion is registered. A BitTorrent client then has to be explicitly
terminated since it has no concept of completing a collective communication. In
MPI, a barrier call is made, and then the wall clock time is taken before and
after the broadcast operation. Then, timing mechanism is as follows:

– In each run and for both types of broadcasts, 64 processes are run, and each
of them provides a different wall clock time to finish. As a reference, we take
the maximum time between all processes both for BitTorrent and MPI.

– We also perform a number of iterations for each run. As a reference, we take
the average of all iterations - again, both for BitTorrent and MPI.

For each message size and each setting, we perform 5 iterations for MPI and
BitTorrent.

3.4 Benchmarks of MPI and BitTorrent Broadcasts on a
Homogeneous Setting

In the first setting, we test the performance of the presented broadcast algo-
rithms without involving the main bottleneck link. We first use 64 nodes on
the Ethernet cluster Bordereau (Fig. 3(a)). Then we use 55 nodes on Bordereau
and 9 nodes on Borderline (Fig. 3(b)). We benchmark three broadcast versions
- MPICH2, Open MPI and BitTorrent. The used message sizes are 1, 5, 10, 50,
100 and 239 MB. The results for both runs are similar. They demonstrate that
for the message sizes 5 MB and 10 MB, MPICH2 marginally outperforms Open
MPI, but Open MPI and the linear tree algorithm is most efficient for the rest
of message sizes. However, the broadcasts with BitTorrent come very close to
the Open MPI broadcasts and even outperform MPICH2 for large messages.
This result is unexpected, since the initial assumption is that BitTorrent-based
broadcasts are not suitable for homogeneous clusters – however, BitTorrent per-
forms excellently for both settings. In particularly, the gap to the linear tree
broadcast disappears for the second run. We interpret this with the fact that
this run involves the Nortel-HP link as well and this introduces an increase in
network heterogeneity.

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000

R
u

n
ti
m

e
 (

s
e

c
s
)

Message size (MB)

MPICH2 64 proc broadcast
Open MPI 64 proc broadcast
BitTorrent 64procs broadcast

(a)

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000

R
u

n
ti
m

e
 (

s
e

c
s
)

Message size (MB)

MPICH2 64 proc broadcast
Open MPI 64 proc broadcast
BitTorrent 64procs broadcast

(b)

Fig. 3. 64 node broadcasts without the main bottleneck link: using single cluster Bor-
dereau (a) or clusters Bordereau and Borderline (b). On this homogeneous setting, the
linear tree algorithm performs best as expected for very large messages, but BitTorrent
also performs well.

3.5 Benchmarks of MPI and BitTorrent Broadcasts on More
Heterogeneous Settings

In the second setting, we involve the main bottleneck link (Fig. 2) in two differ-
ent runs. First, we use 32 Bordeplage nodes and 32 Bordereau nodes (Fig. 4(a)).
Then, we involve 32 Bordeplage nodes, 25 Bordereau nodes and 7 Borderline
nodes (Fig. 4(b)). For the MPI runs, processes are started in the way they are
listed. We consider this the most efficient process-to-node assignment for the lin-
ear tree algorithm. Inter-cluster communication is minimized, and intra-cluster
communication has been proved to be efficient anyway. For MPICH2, there is no
simple solution for providing an optimal file for the scatter/allgather algorithm,
and we provide the same process-to-node mapping. We use the same broadcast
implementations and message sizes as before. The benchmarks show that on both
settings, for message sizes of 50 MB and larger BitTorrent (which is oblivious of
the topology) outperforms both MPICH2 and Open MPI. A secondary result is
that for the same large message range, the scatter-allgather algorithm used by
MPICH2 outperforms the linear tree algorithm used by Open MPI.

 0

 5

 10

 15

 20

 25

 30

 35

 1 10 100 1000

R
u

n
ti
m

e
 (

s
e

c
s
)

Message size (MB)

MPICH2 64 proc broadcast
Open MPI 64 proc broadcast
BitTorrent 64procs broadcast

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100 1000

R
u

n
ti
m

e
 (

s
e

c
s
)

Message size (MB)

MPICH2 64 proc broadcast
Open MPI 64 proc broadcast
BitTorrent 64procs broadcast

(b)

Fig. 4. 64 node broadcasts with main bottleneck link: using clusters Bordeplage and
Bordereau (a) or all clusters (Bordeplage, Bordereau and Borderline) (b). This setting
has some level of heterogeneity, and BitTorrent performs better than MPI for large
messages.

3.6 Interpreting the Results

The performance of the linear tree algorithm of Open MPI decreases significantly
with the introduction of a bottleneck link; the throughput decreases by around
50 %. On the other hand, the binomial tree and particularly the BitTorrent al-
gorithm perform excellent. The total amount of received data at all processes
does not differ between the different broadcast algorithms. However, the flow of
data differs between the three algorithms. Tree-based algorithms staticlly sched-
ule the transfer of data – e.g. the linear tree algorithm only transfers the exact

message size once across the bottleneck link. On the other hand, as described in
Sec. 2.2, BitTorrent can use a larger number of parallel point-to-point connec-
tions to dynamically schedule the broadcast. This allows the protocol to utilize
the network better. A more detailed analysis of BitTorrent reveals that a typical
239 MB broadcast with the setting of Fig. 4(b) transfers around 3,5 GB across
the bottleneck link (in both directions). Within clusters, data exchange is less
intense than with the linear tree algorithm. This leads to the conclusion that in
the presence of bottleneck links, BitTorrent dynamically finds a more efficient
schedule for a broadcast than a good tree-based algorithm.

4 Conclusion

In this work, we compared a BitTorrent broadcast with state-of-the-art MPI
broadcasts on switched Ethernet clusters which are either homogeneous or in-
troduce some level of heterogeneity through bottleneck links. The results demon-
strate that while in the former setting the linear tree broadcast of Open MPI is
more efficient, for the somewhat heterogeneous setting with a bottleneck link the
BitTorrent broadcast outperforms both MPI implementations for large enough
messages. We concluded that the intense point-to-point communication in Bit-
Torrent and the resulting adaptive and dynamic schedule of a broadcast can lead
to a better performance.

The setting we use is significantly closer to the high-performance computing
domain than any previous experimental work using BitTorrent. This means that
large-message broadcasts with BitTorrent should be considered in this domain
even for moderately heterogeneous networks, and should be preferred for more
heterogeneous networks.

Furthermore, the BitTorrent protocol in its tested version is oblivious of the
network topology. In a common case in grid and cloud infrastructures, where
the network topology is unknown a priori to the user, the BitTorrent protocol
is a more sensible choice than MPI for large message broadcasts. If we run
applications broadcasting large messages on homogeneous clusters, BitTorrent
will be nearly as efficient as modern MPI implementations. If such applications
are run on clusters with some level of network heterogeneity, the BitTorrent
broadcast will outperform its MPI counterparts.

We refer to our recent work [6], which further explores the use of BitTorrent
for network discovery in grids and clouds.

Acknowledgment

This publication has emanated from research conducted with the financial sup-
port of Science Foundation Ireland under Grant Number 08/IN.1/I2054.

Experiments presented in this paper were carried out using the Grid’5000
experimental testbed, being developed under the INRIA ALADDIN development
action with support from CNRS, RENATER and several Universities as well as
other funding bodies (see https://www.grid5000.fr).

References

1. Beaumont, O., Marchal, L., Robert, Y.: Broadcast trees for heterogeneous plat-
forms. In: Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th
IEEE International. p. 80b (april 2005)

2. Bhat, P., Raghavendra, C., Prasanna, V.: Efficient collective communication in
distributed heterogeneous systems. In: Distributed Computing Systems, 1999. Pro-
ceedings. 19th IEEE International Conference on. pp. 15 –24 (1999)

3. Burger, M.d.: High-throughput multicast communication for grid applications.
Ph.D. thesis, Vrije Universiteit Amsterdam (2009)

4. Burger, M.d., Kielmann, T.: Collective receiver-initiated multicast for grid appli-
cations. Parallel and Distributed Systems, IEEE Transactions on 22(2), 231 –244
(feb 2011)

5. Cohen, B.: Incentives build robustness in BitTorrent (2003)
6. Dichev, K., Reid, F., Lastovetsky, A.: Efficient and reliable network tomography

in heterogeneous networks using BitTorrent broadcasts and clustering algorithms.
SC ’12 (2012)

7. Dichev, K., Rychkov, V., Lastovetsky, A.: Two algorithms of irregular scat-
ter/gather operations for heterogeneous platforms. In: EuroMPI 2010. Lecture
Notes in Computer Science, vol. 6305, pp. 289–293. Stuttgart, Germany (Sep 2010)

8. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting. pp. 97–104. Budapest, Hungary (September 2004)

9. Hatta, J., Shibusawa, S.: Scheduling algorithms for efficient gather operations in
distributed heterogeneous systems. In: Proc. Int Parallel Processing Workshops.
pp. 173–180 (2000)

10. Izal, M., Urvoy-Keller, G., Biersack, E., Felber, P., Al Hamra, A., Garcs-Erice,
L.: Dissecting BitTorrent: Five months in a torrent’s lifetime. In: Barakat, C.,
Pratt, I. (eds.) Passive and Active Network Measurement, Lecture Notes in
Computer Science, vol. 3015, pp. 1–11. Springer Berlin / Heidelberg (2004),
http://dx.doi.org/10.1007/978-3-540-24668-8 1, 10.1007/978-3-540-24668-8 1

11. Keller, R., Bosilca, G., Fagg, G., Resch, M., Dongarra, J.: Implementation and
usage of the PERUSE-interface in Open MPI. In: Mohr, B., Trff, J., Worringen,
J., Dongarra, J. (eds.) Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, Lecture Notes in Computer Science, vol. 4192, pp. 347–
355. Springer Berlin / Heidelberg (2006), http://dx.doi.org/10.1007/11846802 48,
10.1007/11846802 48

12. Kielmann, T., Bal, H.E., Gorlatch, S.: Bandwidth-efficient collective communica-
tion for clustered wide area systems. In: Proc. 14th Int. Parallel and Distributed
Processing Symp. IPDPS 2000. pp. 492–499 (2000)

13. Patarasuk, P., Faraj, A., Yuan, X.: Pipelined broadcast on Ethernet switched clus-
ters. In: Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International. p. 10 pp. (april 2006)

14. Rodriguez, P., Biersack, E.W.: Dynamic parallel access to replicated con-
tent in the Internet. IEEE/ACM Trans. Netw. 10, 455–465 (Aug 2002),
http://dx.doi.org/10.1109/TNET.2002.801413

15. Wadsworth, D.M., Chen, Z.: Performance of MPI broadcast algorithms. In: Proc.
IEEE Int. Symp. Parallel and Distributed Processing IPDPS 2008. pp. 1–7 (2008)

