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Abstract. In this paper we explore computing max-plus algebra operations and 

discrete event simulations on parallel hierarchal heterogeneous platforms. When 

performing such tasks on heterogeneous platforms parameters such as the total 

volume of communication and the top-level data partitioning strategy must be 

carefully taken into account. Choice of the partitioning strategy is shown to 

greatly affect the overall performance of these applications due to different 

volumes of inter-partition communication that various strategies impart on 

these operations. One partitioning strategy in particular is shown to reduce the 

execution times of these operations more than other, more traditional strategies. 

The main goal of this paper is to present benefits waiting to be exploited by the 

use of max-plus algebra operations on these platforms and thus speeding up 

more complex and quite common computational topic areas such as discrete 

event simulation. 
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1   Introduction 

Max-plus algebra is a relatively new field of mathematics which grew from the advent 

of tropical geometry in the early 1980s and has since been shown to have many 

diverse application areas. MPA is (along with min-plus algebra) a sub-category of 

tropical algebra. MPA obeys most laws of basic algebra with the operations of 

addition       and multiplication       replaced by the operations          

and addition      
 
respectively. Min-plus algebra is similar, but with the maximum 

operation replaced with a minimum function. 

Discrete event simulation is an extremely expansive area of continuing and intense 

research which may broadly be characterised as a collection of techniques and 

methods which when applied to the study of discrete-event dynamical systems 

generate sequences which characterize system behaviour. This includes modelling 

concepts for abstracting essential features of a system into a set of precedence and 

mathematical relationships, which can be used to describe the system and more 

importantly for system design, to predict behaviour, performance, and 

drawbacks/bottlenecks. DES is used to design and model a vast number of systems 



including travel timetables, operating systems, communication networks, autonomous 

guided vehicles, operating systems, CPUs and other complex systems. There are 

many approaches to designing DES including Petri nets, alphabet based approaches, 

perturbation methods, control theoretic techniques and expert systems design. 

Recently MPA and other techniques involving both logical and algebraic components 

have shown to be capable of simplifying simulations while maintaining the desired 

outputs [11]. One such method is explored later in this paper.  

The square-corner partitioning (SCP) is a top-level partitioning method for parallel 

hierarchal heterogeneous computing which when applied to problems such as matrix-

matrix multiplication (MMM) and all linear algebra kernels reducible to MMM, 

optimally reduces the total volume of communication (TVC) between computing 

entities (processors, clusters, etc.) when the power ratios between entities meet 

certain, yet numerous and very common ratios. This partitioning also has other 

benefits including simpler communication schedules and the possibility of 

overlapping communication and computation [2], [3]. As this paper demonstrates the 

SCP can extend these benefits to many application areas. 

The rest of this paper is outlined as follows: In Section 2 we review and formally 

define the MPA, and introduce a specific approach for solving DES problems. We 

then outline the SCP and its application to these operations on heterogeneous parallel 

platforms. Section 3 presents results of MPI experiments applying the SCP to MPA 

operations and a DES example which uses a mixed algebraic/logical approach. 

Section 4 presents our conclusions and future work.  

2   Background and Related Work 

2.1 Max-Plus Algebra 

Max-plus algebra is a relatively new field in mathematics, dating back approximately 

30 years. It has since been shown to have several application areas such as discrete 

event simulation, dynamic programming, finite dimensional linear algebra, modelling 

communication networks, operating systems, combinatorial optimization, solving 

systems of linear equations, biological sequence comparisons and even problems such 

as crop rotation [4], [8], [9], [11], [13]. In many scientific and computational 

applications the structure of MPA matrix multiplication is an important aspect. 

Additionally, higher powers of MPA matrices are of significant interest and necessary 

in many application areas [5], [11].  

MPA is based on replacing the “normal” algebraic addition operation with a 

binary     function, and the “normal” multiplication operation with addition. 

Formally, if we define      
 

    and e     
 

 0 then denote      to be the set        

then for elements          ,the operations   and   are defined  respectively by 

the following.  
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Therefore,                and          . We can now formally 

define max-plus algebra as                    . Finally, the   operation has 

priority over the  
 
operation.  

MPA matrices are denoted     
   , where   and   are the matrix dimensions. For 

the MPA matrices       
    and,       

   
 the matrix product     is the same as 

in normal linear algebra, but following the operation substitutions in (1). From this, 

matrix powers are straight-forward, and represented     for the     power of  . As 

max-plus matrix multiplication and max-plus matrix powers are integral parts of 

many applications of MPA we further discuss this in Section 3.1.  

2.2 Discrete Event Simulation 

Discrete event simulation is a very broad and well-studied field and therefore the 

purpose of this Section is to acquaint the reader with the specific technique utilized in 

this paper. Briefly, DES is a collection of techniques and methods which when 

applied to the study of a discrete-event dynamical system generates sequences which 

characterize the system behaviour. This includes modelling concepts for abstracting 

essential features of the system into a set of precedence and mathematical 

relationships, which can be used to describe the system and more importantly for 

design, and to predict its behaviour, performance, and drawbacks/bottlenecks. For 

more see any good DES text such as [7]. 

As most DES algorithms are computationally intensive, efforts to parallelize them 

are numerous. The complexity of most practical DES algorithms however poses 

numerous obstacles in effective and efficient parallelization. Amongst these are 

synchronization and timing inconsistencies, synchronous vs. asynchronous 

simulation, deadlock avoidance and detection, conservative vs. optimistic simulation, 

recovery strategies, and memory management to name a few [6].  

In Section 3.2 we present results of the parallelization of a DES modelling 

technique which although as presented in [13] is sequential, lends itself to 

parallelization due to a computationally intensive algorithmic core which can be 

efficiently ported to hierarchal heterogeneous parallel platforms. This core is very 

similar to a max-plus matrix operation but using logical and/or operations instead of 

max-plus operations. We employ this technique – called the Matrix Discrete Event 

Model (MDEM) – using MPI and utilizing the SCP [2], [3], for the core routine.  

 

The Matrix Discrete Event Model 

 

The authors of [13] note that the design, simulation, and analysis of large-scale, 

complex systems using existing DES techniques such as Petri nets, alphabet-based 

approaches, perturbation methods, control theoretic techniques, and expert systems 

design are often difficult to implement and are very labour and time intensive. The 

MDEM is a hybrid system with logical and algebraic components that seeks to make 

these processes more efficient. Although the examples in [13] focus on manufacturing 

systems, the formulation is also applicable to many DES situations such as travel 

timetables, operating systems, communication networks, autonomous guided vehicles, 

operating systems, and many others. Clearly the number of degrees of freedom, state 



possibilities, and general complexity of such systems often result in simulations with 

several thousands (or more) event components. 

The MDEM approach is a rule-based model described by four equations: the model 

state equation, start equation, resource release equation, and the product output 

equation. Each of these equations are logical, only using or, and, and negation 

operations. Additionally, all vectors and matrices in these equations are binary – only 

composed of 0‟s and 1‟s. For instance, the vector which is the output of the start 

equation contains a „1‟ for each job which is to be started at the given state of the 

simulation, and a „0‟ otherwise.  

The simulation itself is carried out by first calculating initial conditions from the 

description of the system. The core of the simulation is carried out by the successive 

calculation of „firing vectors‟ which carry the simulation to the next state. This 

amounts to the repeated calculation of an equation which has the form of a matrix-

matrix multiplication except that since the approach of the MDEM technique is 

hybrid – having both algebraic and logical components – the algebraic multiplication 

and addition operations are replaced with logical „or‟ and „and‟ operations 

respectively. It is this step that constitutes the bulk of the calculation time for the 

MDEM technique as all other calculations only need to be carried out once.      

2.3 The Square-Corner Partitioning 

The square-corner partitioning is a partitioning method for parallel hierarchal 

heterogeneous computing which when applied to problems such as matrix-matrix 

multiplication and all linear algebra kernels reducible to MMM reduces the total 

volume of communication (TVC) between clusters optimally when the power ratios 

between clusters is greater than 3:1.1 This partitioning also has other benefits such as 

simplified communication schedules and the possibility of overlapping 

communication and computation. A defining feature of the SCP is that it removes the 

restriction that all partitions be rectangular, which at first may seem unintuitive [12].  

An existing state-of-the-art heterogeneous partitioning scheme (referred to here as 

the straight line partitioning or SLP) which does carry such a restriction is introduced 

in [1] which presents a column based partitioning based on that of [10]. The SLP 

balances the workload between processors of different speeds in an attempt to 

minimize the TVC between processors. First the matrix is partitioned into rectangles 

proportional in area to the speed of each processor. These rectangles are then arranged 

into columns in a defined manner. The TVC is proportional to the sum of the half-

perimeters s of each rectangle, given by (2), where p is the number of processors and 

hi and wi are the height and width of the rectangle assigned to processor i, respectively. 
 

                                 
 
                                                     (2) 

Since the perimeter of any rectangle enclosing a given area is minimized when that 

rectangle is a square, there is a natural lower bound l of (2), shown by (3), where ai is 

the area of the partition belonging to processor i. 

                                                           
1 In this Section the words processor and cluster are used more or less interchangeably as some 

papers simulate individual clusters with processors for simplicity of modelling/verification 

purposes. 



        
 
    

  

                                                  (3) 
 

In considering the case of two clusters, we can inspect the case with relative speeds 

such that cluster 1 receives a rectangle of area       , and cluster 2 receives a 

rectangle of area     , where     is an arbitrarily small number. In order to 

partition the unit matrix into two rectangles using the straight line partitioning, a line 

of length 1 must divide the matrix. Using (2) this results in a sum of half-perimeters 

equal to 3, regardless of the value of  , but (3) shows that the lower bound can get 

arbitrarily close to 2, (as    ).         

 

 

Fig. 2.1. The square-corner partitioning (for two partitions) and the necessary communication 

steps. Shaded areas belong to the respective clusters. Clearly if    , no communication is 

necessary at all.   

 
 

Fig. 2.2. Comparison of the total volume of communication between two clusters for the 

square-corner and straight-line partitionings. 

 

A glance at Figure 2.1 illustrates that for the SCP (unlike the SLP), as    , the 

sum of half-perimeters – and therefore the TVC – approaches 2, showing that the SCP 

is optimal. A more detailed discussion and proof are given in [2].  

Figure 2.2 shows the TVC of the SCP compared to that of the SLP. It is clear that 

when the power ratio between clusters is 3:1, the TVC values are equal, and for ratios 



above 3:1 the SCP TVC is less. By the time the ratio reaches 15:1, the SCP TVC is 

exactly half that of the SLP. 

3   MPI Experiments 

3.1 Max-Plus MMM Using the Square-Corner Partitioning 

As outlined in Section 2.1 we experimented with performing a MPA MMM using C 

and MPI. We used a two cluster heterogeneous platform with power ratios between 

clusters ranging from 1:1 to 6:1. For all experiments we use double precision and N = 

7,000. Local computations utilized BLAS. The local interconnect was 2Gb/s 

Infiniband and the inter-cluster interconnect was 1Gb/s Ethernet. Figure 3.1 shows the 

communication times for both the SCP and SLP partitionings. Firstly, it can be seen 

that as expected the SCP does not show improvement in communication time until the 

power ratio is 3:1, as this is when the SCP results in a lower TVC as shown in [2]. 

After this (as the system becomes more heterogeneous), the gap between the two 

communication times widens, and would be expected to widen. 

Figure 3.1 shows the resulting difference in execution times between the SCP and 

SLP. As expected we also see the crossover around ratio 3:1, and note that the lower 

TVC that the SCP brings also results in lower execution times for ratios above 3:1. 

Again this gap would be expected to widen. 

It is worth noting that since carrying out a matrix power operation    amounts to 

nothing more than n repeated matrix multiplications, carrying out matrix power 

operations would also benefit from the above. 

 

 
 

Fig. 3.1. Communication times (left) and execution times (right), Max-Plus MMM, N = 7000. 



3.2 The Square-Corner Partitioning for Discrete Event Simulation 

In Section 2.2 we outlined the MDEM model for discrete event simulations. We use 

the same experimental platform as in Section 3.1 to demonstrate results on a parallel, 

heterogeneous platform of the MDEM model. We utilize both the SLP and the SCP 

for the core routine which is a matrix “and/or” multiplication. We generate the initial 

conditions so that the core routine involves a large system (N = 5000). All initial 

calculations and cleanup are carried out on a single processor as these calculations are 

carried out only once and make up a very small percentage of the overall execution 

time.  

 

 
 

Fig. 3.2. Total execution times, MDEM DES model, N = 5000. 

 

Figure 3.2 shows the execution times for the MDEM DES using both partitioning 

techniques. All times are averaged over five runs. It is seen that the use of the SCP for 

the core kernel of the MDEM DES algorithm significantly reduces the execution time 

for ratios above 3:1. Again the expected crossover occurs near the ratio of 3:1. The 

overall shapes of the curves are similar to those of Section 3.1 as the “and/or” MMM 

in the MDEM involves a similar computational cost as the max-plus MMM. 

4   Conclusion and Future Work   

In this paper we explored computing max-plus algebra matrix operations and a 

MDEM discrete event simulation on parallel hierarchal heterogeneous platforms. We 

found that the initial top-level data partitioning – particularly the use of the square-

corner partitioning - significantly affects overall execution time due to the total 

volume of inter-cluster communication involved. Notably the square-corner 

partitioning outperformed the straight-line partitioning in all cases.  Future work 

involves applying similar strategies to speed up more complex routines on parallel 

hierarchal heterogeneous platforms and experimenting on more complex networks. 
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