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Abstract

In this paper, we study the importance of languages for

the specification of algorithms in high performance Grid

computing. We present one such language, the Algorithm

Definition Language (ADL), designed and implemented for

the use in conjunction with SmartGridSolve. We demon-

strate that the use of this type of language can significantly

improve the performance of Grid applications. We discuss

how ADL can be used to improve the execution of some

typical algorithms that use conditional statements, iterative

computations and adaptive methods. We present experi-

mental results demonstrating significant performance gains

due to the use of ADL.

1. Introduction

Scientific numerical simulations typically need large

amount of computational resources during their execution.

Many scientific applications use Grid computing because

it provides an easy way to gather computational resources,

whether local or geographically distributed, that can be

pooled together to solve large problems. An application to

be executed in a Grid environment needs to logically divide

its core algorithm into a group of tasks that can be executed

remotely. GridRPC [11] is a standard promoted by the Open

Grid Forum that provides a simple remote procedure call

(RPC) mechanism to easily execute tasks in a Grid environ-

ment. Using the GridRPC API an application programmer

can easily specify different tasks to be executed remotely.

GridRPC works by individually mapping a task to a sin-

gle server in the Grid and communicating the data between

the client machine and the remote server. This model sup-

ports minimisation of the execution time of each individ-

ual task of the application rather than the minimisation of

the execution time of the whole application. A number of

Grid middleware systems are GridRPC compliant including

GridSolve [13], Ninf-G [12] and DIET [5].

In order to optimally minimise the total execution time

of an application, a Grid middleware would require the full

knowledge of all the tasks executed in the application’s al-

gorithm. A task graph, a direct acyclic graph (DAG) struc-

ture, can be used to fully represent the algorithm. The task

graph specifies the order of tasks execution and their syn-

chronisation (whether they are executed in sequence or in

parallel), the data dependencies between tasks, the load of

data communication and the task computational volume.

This information is essential to choose the best server to ex-

ecute a task and to minimise the amount of data movement

in a Grid.
SmartGridSolve [3] is a Grid middleware that uses task

graphs of algorithms to achieve higher performance in

scientific applications. SmartGridSolve implements the

new SmartGridRPC [2] model that expands the individual

task mapping and client-server communication model of

GridRPC by implementing server-to-server communication

and the mapping of groups of tasks. The collective map-

ping of tasks, with the possibility to use a fully connected

network, permits SmartGridSolve to calculate an optimal

mapping solution of an algorithm that can fully exploit the

Grid environment.

SmartGridSolve uses the SmartGridRPC API to auto-

matically generate the task graph from the application code.

This works by iterating twice through the code that contains

the task calls to be mapped collectively. On the first itera-

tion through the code, each task call is discovered but not

executed. Then, when the last call in the group of tasks is

reached, the task graph is generated. On the second iter-

ation, after producing the mapping by using the new task

graph, the code is normally executed and the task calls are

performed according to the newly mapping solution. The

automatic construction of the task graph works flawlessly

for many regular or static algorithms, i.e. algorithms where

the execution is not influenced by the inputs, because the

flow of task calls is known at run-time before their execu-

tion. Thus, the task graph generated for such an algorithm

accurately represents its run-time execution. This permits
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SmartGridSolve to obtain an optimal mapping for this kind

of algorithm and therefore to obtain better results than Grid-

Solve, as it is in the case of the real-life astrophysical appli-

cation discussed in [10].

Unfortunately, this approach has the restriction that a

representative task graph may not be always automatically

generated for every kind of code. The automatic construc-

tion of task graphs may not work for irregular or dynamic

algorithms, i.e. algorithms where the execution changes de-

pending on the inputs. A typical example is when, in the

code, a conditional construct checks a value that cannot be

known without executing a remote task call. To apply col-

lective mapping in this case, the application programmer

can choose to create task graphs for smaller blocks of code.

However, the resulting groups of tasks to be mapped will

generate a less optimal execution.

A solution to this problem, which we propose, is to use

algorithm specification languages to provide the application

programmers with a means that would allow them to use

their knowledge of the application to explicitly specify a

task graph that best represents the run-time execution of the

irregular algorithm. The mapping generated for this task

graph can achieve a faster execution time than the single

task mapping of GridRPC or the mapping of smaller groups

of tasks. In this paper we present one such language: the Al-

gorithm Definition Language (ADL). We discuss how the

use of ADL can improve the performance of SmartGrid-

Solve applications. ADL [9] is a new language designed

to help an application programmer to easily specify a task

graph for all kinds of algorithms.

This paper is outlined as follows. Section 2 presents

three example algorithms that model real-life irregular al-

gorithms that are common in many scientific applications.

These algorithms are outlined using three trivial applica-

tions implemented in GridRPC and SmartGridRPC. In addi-

tion, section 2 shows how the automatic task graph genera-

tor works and demonstrates its restrictions. Section 3 shows

how the application programmer can use ADL to gener-

ate representative task graphs for the example algorithms.

It presents a brief description of the language syntax and

how ADL can be used in conjunction with SmartGridSolve.

Section 4 presents results of experiments with the example

applications showing that the use of ADL significantly im-

proves their performance. Section 5 focus on the existing

languages that are used to generate task graphs or similar

structures for workflow management systems and GridRPC

middlewares. Furthermore, this section focus on the con-

clusion obtained from this work.

2. Irregular Algorithms and their GridRPC &

SmartGridRPC implementations

Irregular algorithms, where the flow of task calls change

dynamically, are important because they are common in

many scientific simulations. In this section, we introduce

three trivial examples of irregular algorithms. These exam-

ples are models of typical algorithms used to solve real-life

problems. For each algorithm, we present its GridRPC and

SmartGridRPC implementations. The SmartGridRPC im-

plementations are then used to show the restrictions of the

automatic task graph generation method. We also present

some programming techniques that help somehow mitigate

these restrictions.

The following examples use the GridRPC methods

grpc call and grpc call async to execute blocking and asyn-

chronous remote calls respectively. The first argument of

both methods is the handler of the task executed, the second

is the session ID of the remote call, while the following ar-

guments are the parameters of the task. The code uses the

method grpc wait all to block the execution until any pre-

viously issued asynchronous request has completed. The

SmartGridRPC examples utilise a new method, grpc map.

This method is used to define a specific area of code. All

the task calls contained in this area are mapped as a group

of tasks on to a fully connected network. The first parame-

ter of the grpc mapmethod allows the application program-

mer to choose which mapping heuristic to use. The second

one indicates the tool that will be used to generate the task

graph, while the following parameters depend on the pre-

vious choice. SmartGridRPC defines another new function,

grpc local, which is used in the following examples as well.

This API function is used to identify the area of code that

contains local computations. The following examples con-

sist of many tasks (T1, T2, . . . ), where all the parameters

are input objects except the last one that is an output object.

The same is applied to the functions (F1, F2, . . . ), which

represent local computations. The objects (A, B, . . . ) used

in the examples are all vectors of double precision numbers.

All the examples have these characteristics except when in-

dicated differently.

Iterative Algorithm An iterative algorithm executes a se-

quence of computations to approximate a problem solution

until the solution reaches a desired accuracy. This algorithm

is a general model of so called iterative methods. They are

used for solving linear and non-linear algebraic equations

that are the base of many numerical simulations.

Table 1 shows the GridRPC implementation of a trivial

application that uses an iterative algorithm. At the begin-

ning, two parallel remote T1 task calls are executed. These

tasks compute a new solution of the objects A0 and A1 from

inputs B0 and B1. Then, the output objects, A0 and A1,

are used as inputs of the remote task T2. The output of the

latter task, D, is then used as input to a local function F1.

The function returns a scalar value E that is compared to a

threshold value, tE. When the returned value is lower than

the threshold, the algorithm stops.

When the application is executed, the GridSolve mid-

Authorized licensed use limited to: University College Dublin. Downloaded on May 25,2010 at 21:11:02 UTC from IEEE Xplore.  Restrictions apply. 



dleware maps each grpc call and grpc call async functions

individually to a server in the Grid environment. Then, the

data is communicated from the client computer to the cho-

sen server and the task executed remotely. At the end of the

task execution, the data is communicated back to the client.

Table 1. Example of GridRPC implementation
of an iterative algorithm

while(E>tE){

grpc call async(T1_hnd,&id1,A0,B0,A0);

grpc call async(T1_hnd,&id2,A1,B1,A1);

grpc_wait_all();

grpc call(T2_hnd,&id3,A0,A1,D);

F1(D,E);

}

Table 2 shows how the SmartGridRPC API can be used

in the previous application to map a group of tasks. This

example uses the automatic task graph generator to build

the task graph. At run-time, when the grpc map method

is executed, the code within its parenthesis will be iterated

through twice. On the first iteration, both grpc call and

grpc call async calls are discovered but not executed. At

the beginning of the second iteration, the task graph and

the mapping solution are generated using the task informa-

tion from the previous discovery. On the second iteration,

the task calls are executed through the SmartGridSolvemid-

dleware on the respective servers specified by the mapping

solution. The block of code defined by grpc local is not ex-

ecuted during the discovery phase, which is done on the first

iteration, but only on the execution phase, which is done on

the second iteration.

Table 2. Example of SmartGridRPC imple-

mentation of an iterative algorithm

while(E>tE){

grpc map("ex_map",auto){

for(i=0;i<nloops;i++){

grpc call async(T1_hnd,&id1,A0,B0,A0);

grpc call async(T1_hnd,&id2,A1,B1,A1);

grpc_wait_all();

grpc call(T2_hnd,&id3,A0,A1,D);

grpc local(){

F1(D,E);

}

}

}

}

In table 2 it is possible to see that for this example the

grpc map method is used inside a while loop. A straight-

forward SmartGridRPC implementation would be to apply

the grpc map to the whole loop, letting the middleware find

the optimal mapping for the group of all remote tasks. Un-

fortunately, the automatic task graph generator will not be

able to build a representative task graph for this straightfor-

ward implementation because the number of iterative cycles

executed is unpredictable during the discovery phase. A

solution to this problem is to use the SmartGridRPC func-

tion inside the while loop in conjunction with a for loop

statement. This implementation prevents the undefined be-

haviour of the algorithm during the discovery phase. Fur-

thermore, the programmer can choose the number of iter-

ations, nloops, to map simultaneously. Although the code

in table 2 executes more iterations than the code of table 1

when there is convergence and nloops is greater than one,

the SmartGridSolve execution of the SmartGridRPC imple-

mentation will usually outperform the GridSolve execution

of the GridRPC one by virtue of the better mapping.

Conditional Algorithm A common situation in a numer-

ical computation arises when the flow of execution in an

algorithm depends on a conditional statement. This situa-

tion can happen in many types of algorithms, even in the

iterative methods previously discussed. Table 3 shows the

GridRPC implementation of a trivial application that uses a

conditional algorithm. The peculiarity of this application is

that the local function F1 is used in the conditional state-

ment to choose which data objects will be used by the fol-

lowing task T3. If the value returned by this local function

is greater than a given threshold, objects A0 and A1 will be

processed, otherwise it will be objects B0 and B1.

Table 3. Example of GridRPC implementation
of a conditional algorithm

grpc call async(T1_hnd,&id1,A0,B0,C0);

grpc call async(T1_hnd,&id2,A1,B1,C1);

grpc_wait_all();

grpc call(T2_hnd,&id3,C0,C1,D);

if(F1(D)>tE) {

grpc call async(T3_hnd,&id4,C0,A0,A0);

grpc call async(T3_hnd,&id5,C1,A1,A1);

grpc_wait_all();

}

else {

grpc call async(T3_hnd,&id4,C0,B0,B0);

grpc call async(T3_hnd,&id5,C1,B1,B1);

grpc_wait_all();

}

The ideal task graph, to be used to map this application,

would represent the exact run-time execution of the remote

tasks. Thus, the ideal location for the grpc map method

would be at the beginning of the code to contain all the task

calls of the algorithm. As in the case of the previous ex-

ample, this ideal task graph cannot be generated by the au-

tomatic method because the application’s execution is un-

certain in the conditional statement. A technique, that al-

lows the application programmers to still avail themselves

of the group mapping in SmartGridSolve, is to break the

whole code into smaller blocks suitable for the automatic

task graph generation as show in table 4. This solution

however produces many small groups of tasks. Therefore

SmartGridSolve will minimise the execution time of these

small groups rather than the whole algorithm, thus produc-

ing a less optimal mapping. Additionally, the data objects

used between groups instead to be communicated directly
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between servers, they will be communicated through the

client machine. Figure 1 shows a possible ideal task graph

for this example. This graph illustrates the data dependen-

cies between the tasks executed before and after the condi-

tional statement (diamond node client 5 in the figure).

Table 4. Example of SmartGridRPC imple-
mentation of a conditional algorithm

grpc map("ex_map",auto){

grpc call async(T1_hnd,&id1,A0,B0,C0);

grpc call async(T1_hnd,&id2,A1,B1,C1);

grpc_wait_all();

grpc call(T2_hnd,&id3,C0,C1,D);

}

if(F1(D)>tE)

grpc map("ex_map",auto){

grpc call async(T3_hnd,&id4,C0,A0,A0);

grpc call async(T3_hnd,&id5,C1,A1,A1);

grpc_wait_all();

}

else

grpc map("ex_map",auto){

grpc call async(T3_hnd,&id4,C0,B0,B0);

grpc call async(T3_hnd,&id5,C1,B1,B1);

grpc_wait_all();

}

Adaptive Algorithm Typically an algorithm executes its

computation on a specific data structure. Some algorithms

dynamically change their internal data structure, and con-

sequently their behaviour, depending on the data processed.

These algorithms are called adaptive algorithms.

Table 5. Example of GridRPC implementation

of an adaptive algorithm

grpc call(T1_hnd,&id1,A,B,C);

grpc call(T4_hnd,&id2,C,tE,S,n);

for(int i=0;i<n;i++){

grpc call async(T5_hnd,&id3,i,S,A,B,AS[i],BS[i]);

grpc call async(T1_hnd,&id4,AS[i],BS[i],CS[i]);

grpc_wait_all();

}

Table 5 shows the GridRPC implementation of a triv-

ial application that uses an adaptive algorithm. In the first

step of this example, the task T1 calculates the solution C

of the total computational domain. Then, this data together

with a threshold value tE are passed to the task T4. Task T4

checks C and outputs a vector of areas, S, and the number

of such areas, n. The areas in the vector S represent the lo-

cation where the solution error is greater than the threshold

tE. In the next step, task T5 outputs two sub-vectors, AS and

BS. These subvectors are an interpolation, of higher resolu-

tion, of the main vectors (A, B) for each area in S previously

found. The subvectors are then used to calculate a more

accurate solution (CS) through task T1. This is a trivial ex-

ample of the AMR (Adaptive Mesh Refinement) method, a

real-life example of the adaptive algorithm.

In this example, the outputs of task T4 not only change

the flow of execution of the algorithm but also change the

sizes of the objects computed by the following tasks. This is

one of the worst case scenarios for the automatic task graph

generation. On the discovery phase, the data objects n and

S are unknown. Therefore, unpredictable will be not only

the flow of execution but also the data objects’ sizes. As

in the previous example, a solution is to apply grpc map to

smaller blocks of code, as shown in table 6.

Table 6. Example of SmartGridRPC imple-
mentation of an adaptive algorithm

grpc map("ex_map",auto){

grpc call(T1_hnd,&id1,A,B,C);

grpc call(T4_hnd,&id2,C,tE,S,n);

}

for(int i=0;i<n;i++)

grpc map("ex_map",auto){

grpc call async(T5_hnd,&id3,i,S,A,B,AS[i],BS[i]);

grpc call async(T1_hnd,&id4,AS[i],BS[i],CS[i]);

grpc_wait_all();

}

3. ADL and Task Graph

As shown in section 2, the automatic task graph con-

struction method cannot generate representative task graphs

for all the irregular algorithms. Therefore, SmartGridSolve

cannot generate the best mapping solution possible for this

type of algorithm. We have shown that this problem can

be partially solved by mapping smaller code blocks, with

some modification of the code of the application (table 2)

or without it (tables 4 and 6).

In this paper, we present a comprehensive solution of this

problem, which is the use of ADL, the Algorithm Defini-

tion Language. This new language and its compiler provide

a means to the application programmer to explicitly specify

a task graph for all kinds of algorithms. The programmers,

with their knowledge of the application’s algorithm, possess

the right information to produce a representative task graph

for any given group of tasks in the application. The ADL

syntax is similar to the C language. The principal program-

ming unit of this language is a module that is used to spec-

ify the group of tasks of an individual algorithm. The ADL

compiler does not directly produce the task graph from the

module but generates the code that is used at run-time to

build the task graph. In this section, we show how the ap-

plication programmer can use ADL to originate a represen-

tative task graph for the conditional and adaptive example

algorithms.

Conditional Algorithm Table 7 shows the ADL module

that describes the algorithm of our example conditional ap-

plication. An ADL module is composed of a name, a list of

parameters and a body. The body is divided in the follow-

ing sections. The component section includes a declaration

of the tasks used in the algorithm, such as T1, T2 and T3

for the example application. The IFO section contains a

declaration of data objects. In ADL, the data objects, that
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are used in a task and can be moved anywhere on the Grid,

are called Identified Flying Objects (IFOs). Their declara-

tion is composed of the type (in upper-case letters to differ

from a variable type), the number of dimensions and the

list of IFO names. The number of round bracket pairs, lo-

cated after the type, represent the number of dimensions of

an IFO. In the example application, the IFOs A, B, C, D,

are vectors of double precision numbers. The sizes of these

vectors depend on the value of the parameter size. Finally,

the algorithm section describes the flow of execution of the

application.

Table 7. ADL module of the conditional algo-

rithm example

1 module cndalg(int size, int cndtrue, int cndfalse){

2 component:

3 task "cond.idl" T1,T2,T3;

4 IFO:

5 DOUBLE(size) A[2],B[2],C[2],D;

6 algorithm:

7 parfor(int i=0;i<2;i++){

8 T1:(A[i],B[i])->(C[i]);

9 }

10 T2:(C[0],C[1])->(D);

11 client:(D)->();

12 parallel{

13 if(cndtrue)

14 parfor(int i=0;i<2;i++)

15 T3:(C[i],A[i])->(A[i]);

16 if(cndfalse)

17 parfor(int i=0;i<2;i++)

18 T3:(C[i],B[i])->(B[i]);

19 }

20 }

Table 7 shows how a task call is described in ADL. A

remote call is composed of two parts, divided by a semi-

colon. The first part is the name of the task called (e.g. T1),

followed by a list of parameters needed. The second part is

the list of IFOs used as task inputs, e.g. A and B for task T1,

followed by an arrow symbol and the list of output IFOs

(e.g. C). This task call syntax is made in a way that eas-

ily highlights the parameters passed and the IFOs used as

inputs and outputs of the task. The parfor construct speci-

fies that the task calls between the iterations of the loop are

asynchronous while the task calls inside the same iteration

are sequential. The parallel construct indicates that all the

included statements are considered asynchronous. One of

the main differences between the ADL code and the appli-

cation code is the use of the keyword client, as a task name,

to specify any local execution. For the purpose of task graph

generation, ADL does not need to know which local com-

putations will be done and which local data will be used in

these computations. The only information needed is which

IFOs are used in these computations (but not their values).

Thus, in the case of a local computation, ADL requires only

the information about the IFOs used as inputs and outputs

of this computation. Therefore, in table 7 the client task has

onlyD as an input and no output, and the name of the client

task, F1, is not included in the specification.

The straightforward description of the conditional algo-

rithm would be with an if-then-else statement, as it is in

the original SmartGridRPC code in table 4. Instead, in the

ADL example in table 7, the module contains two condi-

tional statements, in lines 13 and 16, that check the value of

the parameters cndtrue and cndfalse. The application pro-

grammer, by setting only one of these two values to true, can

choose the flow of execution that is most likely to happen.

Furthermore, the programmer can choose to generate and

use a task graph that contains both branches of the execu-

tion by setting the two parameters to be true simultaneously.

The parallel construct in line 12 is used to avail this option.

Without it, the compiler will consider the two branches as

being executed sequentially, one after the other. The set-

ting of different parameters values allows the application

programmer to easily choose the most representative task

graph from a set of different possible task graphs. Further-

more, the parameters in ADL are not only used to determine

the control flow of the algorithm but also to specify the size

and the number of IFOs utilised in the module. An IFO can-

not change its size after the declaration, consequently all the

parameters are considered constant in the ADL language.

Table 8. Example of ADL use in the condi-

tional algorithm application through Smart-
GridRPC

grpc map("ex_map",ADL,cndalg,"%d,%d,%d",size,1,1){

grpc call async(T1_hnd,&id1,A0,B0,C0);

grpc call async(T1_hnd,&id2,A1,B1,C1);

...

if(F1(D)>tE)

...

else

...

}

Table 8 shows how to use the grpc map method with

ADL to build the task graph. The first argument of the

function is the same as in the example of table 4. The sec-

ond argument, instead of the keyword auto, is the keyword

ADL. This specifies that the task graph will be built by us-

ing the code generated from the ADL module named in the

following argument. The next argument is a string that con-

tains the quantity and the type of parameters passed to the

module. The format is similar to the printf function call

of the C language. The final arguments in the grpc map

method match the parameters of the given ADL module. In

table 8, the application programmer has decided that both

conditional statements are true. The run-time execution of

the grpc map function is different from the case of the au-

tomatic method. The task graph is built and the mapping

solution is generated directly when the method is called.

Therefore, the code inside the parenthesis block will be it-

erated only once while the task calls are executed normally

on the servers specified in the mapping solution. Thus, the

use of the function grpc local is not needed in this situation.
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Figure 1. The task graph generated from the
ADL module of the conditional algorithm

The task graph generated from the code of table 8 is il-

lustrated in figure 1. The rectangles in the graph represent

remote tasks, the diamonds represent the client computation

and the circles represent the IFOs. The incoming arrows of

these circles indicate their source, whether it is the client or

another remote task and the outgoing arrows indicate their

destination. The dotted arrows highlight the order of task

calls and if the tasks are executed in sequence or parallel.

The values inside the circles and rectangles are respectively

the size of an IFO and the computational complexity of a

task. These are correlated to the value of the module pa-

rameter size passed through the third to last argument of

the grpc map method. One can see that the generated task

graph contains the task calls for both possible flows of exe-

cution of the conditional statement.

Adaptive Algorithm Table 9 shows the ADLmodule that

describes the algorithm of our example adaptive applica-

tion. One can see that the sizes of data objects A, B, C,

depend on the parameter size. The parameter n is used to

determine the number of areas in vector S that could be gen-

erated by the task T4. Furthermore, the value of n is used to

set the number of times that task T5 is executed and hence

the number of subvectors (AS, BS, CS) that are generated.

The parameter subsize is a vector of integers that contains

the sizes of each subvector object. Its dimension depends

on the value of n.

The application programmer, by setting the values of the

three parameters in grpc map, can directly specify the num-

ber of task calls and the sizes of objects in the task graph

generated. Table 10 shows the use of the ADL module

adaptalg in the modified adaptive SmartGridSolve applica-

tion. In this case, the application programmer presumes that

the remote computation of task T4 produces n = 3 and thus

the programmer chooses to generate a task graph with three

T5 calls. The size of data objects will be 1000 and the sub-

vectors’ sizes will be 200, 100 and 300. Figure 2 shows the

generated task graph.

Table 9. ADL module of the adaptive algo-

rithm example

module adaptalg(int n, int size, int subsize[n]){

component:

task "adapt.idl" T1,T4,T5;

IFO:

DOUBLE(size) A,B,C;

DOUBLE(subsize) AS[n],BS[n],CS[n];

INTEGER(n) S;

algorithm:

T1:(A,B)->(C);

T4:(C)->(S);

parfor(int i=0;i<n;i++)

T5:(S,A,B)->(AS[i],BS[i]);

parfor(int i=0;i<n;i++)

T1:(AS[i],BS[i])->(CS[i]);

}

Table 10. Example of ADL use in the adaptive

algorithm application through SmartGridRPC

grpc map("ex_map",ADL,adaptalg,"3,1000,{200,100,300}"){

grpc call(T1_hnd,&id1,A,B,C);

grpc call(T4_hnd,&id2,C,tE,S,n);

for(int i=0;i<n;i++){

grpc call async(T5_hnd,&id3,i,S,A,B,AS[i],BS[i]);

grpc call async(T1_hnd,&id4,AS[i],BS[i],CS[i]);

grpc_wait_all();

}

4. Experimental results

In this section, we compare the execution times, for both

conditional and adaptive example algorithms, of the three

different implementations: the GridRPC version (tables 3

and 5), the SmartGridRPC with smaller mapping blocks

version (tables 4 and 6) and the SmartGridRPC with ADL

version (tables 8 and 10). The first implementation is exe-

cuted through the GridSolve middleware while the last two

are executed through the SmartGridSolve middleware. The

hardware configuration used in the experiments consists of

fives machines: a client and four remote servers. The four

servers are heterogeneous however they have similar perfor-

mance, from 422 to 531 MFlops, and the same size of main

memory, 1GB each. The bandwidth of the communication

links between servers is 1Gb/s. The client machine has a

100Mb/s connection to the servers. This represents a com-

mon situation where a user wants to use a powerful Grid

environment through a relatively slow network connection.

In the experiments, we vary the total input data size, n, from

24 to 576 megabytes. Each remote task executed has a log-

linear complexity, O(n × lnn). This complexity, with the

slow client-to-server connection, permits the computation
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Figure 2. The task graph generated from the

ADL module of the adaptive algorithm

load and the communication load to have an equal impact

on the total execution time of the experiments. In the fol-

lowing tables, the symbol Sp stands for speed-up; while GS

is the abbreviation for GridSolve and SGS is the one for

SmartGridSolve with smaller mapping blocks.

Table 11. Experimental results for the condi-
tional algorithm applications

GridSolve SmartGridSolve

with smaller blocks

Data Size Avg Time Avg Time Sp v GS

24MB 24.08s 19.31s 1.25

48MB 48.30s 40.35s 1.20

96MB 97.51s 81.00s 1.20

192MB 195.80s 156.67s 1.25

384MB 404.31s 317.36s 1.27

576MB 648.02s 497.31s 1.30

SmartGridSolve

with ADL

Data Size Avg Time Sp v GS Sp v SGS

24MB 14.08s 1.71 1.37

48MB 26.94s 1.79 1.50

96MB 57.63s 1.61 1.41

192MB 113.67s 1.72 1.38

384MB 230.03s 1.76 1.38

576MB 364.62s 1.78 1.36

Table 11 shows the results obtained by the GridSolve and

SmartGridSolve executions of the three different implemen-

tations of the conditional algorithm. For each individual

experiment, the average time is calculate from ten separate

executions, where the condition of the conditional statement

is set to return true in half of them. In the SmartGridSolve

with ADL experiments, the task graph generated by ADL

contains both branches of the execution. One can see that

the SmartGridSolve implementation, with smaller blocks to

map, is faster than the simple GridSolve implementation,

showing the speed-up of approximately 1.2. Furthermore,

the SmartGridSolve implementation, that uses a representa-

tive task graph generated from ADL, outperforms the other

two implementations, displaying the speed-up of approxi-

mately 1.7 and 1.4 respectively.

Table 12. Experimental results for the adap-

tive algorithm applications

GridSolve SmartGridSolve

with smaller blocks

Data Size Avg Time Avg Time Sp v GS

24MB 28.03s 25.02s 1.12

48MB 51.26s 46.70s 1.10

96MB 112.53s 86.76s 1.30

192MB 216.99s 182.15s 1.19

384MB 435.56s 369.25s 1.18

576MB 713.78s 604.23s 1.18

SmartGridSolve

with ADL

Data Size Avg Time Sp v GS Sp v SGS

24MB 17.41s 1.61 1.44

48MB 30.40s 1.69 1.54

96MB 58.40s 1.93 1.49

192MB 118.70s 1.83 1.53

384MB 269.65s 1.62 1.37

576MB 445.75s 1.60 1.36

Table 12 shows the results of experiments with three dif-

ferent implementations of the adaptive algorithm. As in the

previous experiments, the average time is calculated from

ten separate executions. The number of subvectors, n, and

their sizes, S, generated by task T4, are constant between

experiments of same initial data size but change randomly

between experiments with different data sizes. The max-

imum number of subvectors is set to four and the sum of

their sizes is set to be less than the size of the original input

vectors (A, B, C). In the SmartGridSolve with ADL exper-

iments, the task graph generated by ADL is set to contain

four subvectors which sizes are one quarter of the original

vectors size. Therefore, this task graph is a super-set of the

possible executions since it contains the maximum number

of remote tasks possible.

The speed-up demonstrated by the SmartGridSolve im-

plementation, with smaller blocks to map, over the Grid-

Solve execution is less than in the previous experiments

with the implementations of the conditional algorithm. The

reason is that the tasks in the second mapping block of this

application (see table 6) are less computationally intensive

than the tasks in the first mapping block. The subvectors are

smaller than the original vectors. Therefore, the improved

SmartGridSolve mapping of the parallel tasks in the second

block is limited by the execution time of the tasks in the

first block. At the same time, the speed-up obtained by the

SmartGridSolve implementation using ADL over the other

two implementations is similar to the conditional algorithm

experiments. The reason is that use of ADL permits Smart-

GridSolve to map a larger group of tasks and to minimise
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the amount of data moved in the network.

5. Related Work & Conclusion

SmartNetSolve [4], the predecessor of SmartGridSolve,

was using an XML file to generate the task graph. The

client programmer had to explicitly specify the full task

graph for each group of tasks in the program. A similar

approach is implemented in DIET where a user can define

a task-graph-like structure using an XML file for the whole

application [1]. The limitations of this approach are that

the flow of execution is static and fixed and it is difficult

and time consuming to write the XML description. Fur-

thermore, DIET uses a specific function that executes the

task graph from the XML file without creation of calls in

the client code. This has the additional limitation that client

computation is not allowed.

Workflow management systems, designed specifically

for Grid computing, use data structures that are similar to

the task graph. Many of these systems use specifically de-

signed high level languages, such as the AGWL language

for the Askalon system [7], YvetteML for YML [6] and

Chimera for Pegasus [8]. While these high level languages

are more expressive than simple XML files, they still lack

some important functionalities limiting their use in Smart-

GridRPC model. The AGWL language is a XBL-based-

language with specific tags for generating basic control

flow constructs. However, AGWL code needs to be pre-

processed into a concrete XML file, which limits the possi-

bility to dynamically change the execution flow at run-time.

The YvetteML language has syntax similar to Pascal and

C in order to describe complex workflows. However, it is

missing an easy way to identify input and output data for re-

mote computations. The Chimera language is a data driven

language that allow for generation of complex workflows

by checking the dependencies on existing files and selected

output file name. However, the grammar and syntax of this

language are not easy to understand and consequently its

usage is not trivial.

In this paper, we have studied how the Algorithm Defini-

tion Language (ADL), in conjunctionwith SmartGridSolve,

can be used to improve the execution of typical applications

with irregular algorithms. We have conducted experiments

demonstrating significant performance gains due to the use

of ADL in applications that use conditional statements, iter-

ative computations and adaptive methods. We have demon-

strated that a programmer can improve the performance of

their Grid application by using algorithm specification lan-

guages to descibe the underlying algorithms. This work was

supported by the Science Foundation Ireland.
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