
http://hpc.sagepub.com

Computing Applications
International Journal of High Performance

DOI: 10.1177/1094342006074864
 2007; 21; 76 International Journal of High Performance Computing Applications

Alexey Lastovetsky and Ravi Reddy
 Data Partitioning with a Functional Performance Model of Heterogeneous Processors

http://hpc.sagepub.com/cgi/content/abstract/21/1/76
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing Applications Additional services and information for

 http://hpc.sagepub.com/cgi/alerts Email Alerts:

 http://hpc.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.co.uk/journalsPermissions.navPermissions:

 http://hpc.sagepub.com/cgi/content/refs/21/1/76 Citations

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://hpc.sagepub.com/cgi/content/refs/21/1/76
http://hpc.sagepub.com

76 COMPUTING APPLICATIONS

DATA PARTITIONING WITH
A FUNCTIONAL PERFORMANCE
MODEL OF HETEROGENEOUS
PROCESSORS

Alexey Lastovetsky
Ravi Reddy
SCHOOL OF COMPUTER SCIENCE AND INFORMATICS,
UNIVERSITY COLLEGE DUBLIN, BELFIELD, DUBLIN 4,
IRELAND (ALEXEY.LASTOVETSKY@UCD.IE,
MANUMACHU.REDDY@UCD.IE)

Abstract

In this paper, we address the problem of optimal distribu-
tion of computational tasks on a network of heterogeneous
computers when one or more tasks do not fit into the main
memory of the processors and when relative speeds vary
with the problem size. We propose a functional perform-
ance model of heterogeneous processors that integrates
many essential features of a network of heterogeneous
computers having a major impact on its performance such
as the processor heterogeneity, the heterogeneity of mem-
ory structure, and the effects of paging. Under this model,
the speed of each processor is represented by a continu-
ous function of the size of the problem whereas traditional
models use single numbers to represent the speeds of the
processors. We formulate a problem of partitioning of an n-
element set over p heterogeneous processors using this
model and design an algorithm of the complexity O(p ×
log2n) solving the problem.

Key words: heterogeneous systems, scheduling and task
partitioning, load balancing and task assignment, high
performance computing.

1 Introduction

In this paper, we deal with the problem of optimal distri-
bution of computational tasks across heterogeneous com-
puters when one or more tasks do not fit into the main
memory of the processors and when relative speeds vary
with the problem size.

A number of algorithms of parallel solution of scien-
tific and engineering problems on heterogeneous net-
works of computers (HNOCs) have been designed and
implemented (Crandall and Quinn 1993, 1995; Beau-
mont et al. 2001b; Kalinov and Lastovetsky 2001). They
use different performance models of HNOCs but all the
models represent the speed of a processor by a single
positive number, and computations are distributed over
the processors such that their volume is proportional to
this speed of the processor. Cierniak et al. (1997) use the
notion of normalized processor speed (NPS) in their
machine model to solve the problem of scheduling paral-
lel loops at compile time for HNOCs. NPS is a single
number and is defined as the ratio of time taken to exe-
cute on the processor under consideration, with respect to
the time taken on a base processor. In Beaumont et al.
(2001b) and Petitet and Dongarra (1999), normalized
cycle-times are used, i.e. application dependent elemen-
tal computation times, which are computed via small-
scale experiments (repeated several times, with an aver-
aging of the results). Several scheduling and mapping
heuristics have been proposed to map task graphs onto
HNOCs (Tan et al. 1997; Maheswaran and Siegel 1998;
Iverson and Ozguner 1998). These heuristics employ a
model of a heterogeneous computing environment that
uses a single number for the computation time of a sub-
task on a machine. Yan, Zhang and Song (1996) use a
two-level model to study performance predictions for
parallel computing on HNOCs. The model uses two
parameters to capture the effects of an owner workload.
These are the average execution time of the owner task
on a machine and the average probability of the owner
task arriving on a machine during a given time step.

Thus traditional heterogeneous parallel and distributed
algorithms implicitly assume that the relative speed of
the processor does not depend on the size of the compu-
tational task solved by the processor. This assumption
can be quite satisfactory if the code executed by the proc-
essors fully fits into the main memory. But as soon as the
restriction is relaxed, it will not be true.

First of all, the processors may have significantly dif-
ferent sizes of main memory and the partitioning of the
problem may result in some computational tasks not fit-
ting into the main memory of the assigned processor. In
this case, solution of the computational task of any fixed
size does not guarantee accurate estimation of the relative
speed of the processors. The point is that beginning from

The International Journal of High Performance Computing Applications,
Volume 21, No. 1, Spring 2007, pp. 76–90
DOI: 10.1177/1094342006074864
© 2007 SAGE Publications

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

77HETEROGENEOUS COMPUTING

some problem size, the task of the same size will still fit
into the main memory of some processors and stop fitting
into the main memory of others, causing the paging and
visible degradation of the speed of these processors. This
means that their relative speed will start significantly
changing in favor of non-paging processors as soon as
the problem size exceeds the critical value.

Secondly, even if the processors of different architec-
tures have almost the same size of main memory, they
may employ different paging algorithms resulting in dif-
ferent levels of speed degradation for the task of the same
size, which again means the change of their relative
speed as the problem size exceeds the threshold causing
the paging.

Thus, taking account of memory heterogeneity and the
effects of paging significantly complicates the design of
algorithms distributing computations in proportion with
the relative speed of heterogeneous processors. One
approach to this problem is just to avoid the paging as it
is normally done in the case of parallel computing on
homogeneous multi-processors. However, avoiding pag-
ing in local and global heterogeneous networks may not
make sense because in such networks it is likely that one
processor with paging will be running faster than other
processors without paging. It is even more difficult to
avoid paging in the case of distributed computing on glo-
bal networks. There may not be a server available to
solve the task of the size you need without paging.

Therefore, to achieve acceptable accuracy of distribu-
tion of computations across heterogeneous processors in
the possible presence of paging, a more realistic perform-
ance model of a set of heterogeneous processors is
needed. In this paper, we suggest a model where the
speed of each processor is represented by a continuous
function of the problem size. This model is application
centric in the sense that, generally speaking, different
applications will characterize the speed of the processor
by different functions.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the functional performance model. In
Section 3, we investigate the simple problem of optimal
partitioning of an n-element set over p heterogeneous
processors with the functional model and design an algo-
rithm of its solution of the complexity O(p × log2n). We
then apply this set partitioning algorithm to multiplica-
tion of large matrices on a cluster of heterogeneous com-
puters. In Section 4, we present results of experiments
with this application. Section 5 concludes the paper.

2 Functional Performance Model

Under the functional performance model, the speed of
each processor is represented by a continuous function of
the problem size.

The speed is defined as the number of computation
units performed by the processor per one time unit. The
model is application specific. In particular, this means
that the computation unit can be defined differently for
different applications. The important requirement is that
the computation unit does not have to vary during the
execution of the application. An arithmetical operation
and the matrix update a = a + b × c, where a, b, and c are
r × r matrices of fixed size r, give us examples of compu-
tation units.

The problem size is understood as a set of one, two or
more parameters characterizing the amount and layout of
data stored and processed during the execution of the
computational task [as compared with the notion of prob-
lem size as the number of basic computations in the best
sequential algorithm to solve the problem on a single
processor (Kumar et al. 1994)]. The number and seman-
tics of the problem size parameters are problem- or even
application-specific. It is assumed that the amount of
stored data will increase with the increase of any of the
problem size parameters.

For example, the size of the problem of multiplication
of two dense square n × n matrices can be represented by
one parameter, n. During solution of the problem, three
matrices will be stored and processed. So the total
number of elements to store and process will be 3 × n2. In
order to compute one element of the resulting matrix, the
application uses n multiplications and (n – 1) additions.
So, in total (2 × n – 1) × n2 arithmetical operations are
needed to solve the problem. If n is large enough, the
number can be approximated by 2 × n3. Alternatively, a
combined computation unit, which is made up of one
addition and one multiplication, can be used to express
the volume of computation needed to multiply two large
square n × n matrices. In this case, the total number of
computation units will be approximately equal to n3.
Therefore, the speed of the processor demonstrated by
the application when solving the problem of size n can be
calculated as n3 (or 2 × n3) divided by the execution time
of the application. This gives us a function from the set of
natural numbers representing problem sizes into the set
of nonnegative real numbers representing speeds of the
processor, f: N → R+. The functional performance model
of the processor is obtained by continuous extension of
function f: N → R+ to function g: R+ → R+ (f(n) = g(n)
for any n from N).

Another example is the problem of multiplication of
two dense rectangular n × k and k × m matrices. The size
of this problem is represented by three parameters, n, k,
and m. The total number of matrix elements to store and
process is (n × k + k × m + n × m). The total number of
arithmetical operations needed to solve this problem is
(2 × k – 1) × n × m. If k is large enough, the number can
be approximated by 2 × k × n × m. Alternatively, a com-

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

78 COMPUTING APPLICATIONS

bined computation unit, which is made up of one addition
and one multiplication, can be used to express this vol-
ume of computation. In this case, the total number of
computation units will be approximately equal to k ×
n × m. Therefore, the speed of the processor exposed by
the application when solving the problem of size (n, k, m)
can be calculated as k × n × m (or 2 × k × n × m) divided
by the execution time of the application. This gives us a
function, f: N3 → R+, mapping problem sizes to speeds of
the processor. The functional performance model of the
processor is obtained by continuous extension of function
f: N3 → R+ to function g: R+

3 → R+ (f(n) = g(n) for any n
from N3).

Thus, under the proposed functional model, the speed
of the processor is represented by a continuous function
of the problem size. Moreover, we can make some further
assumptions about the shape of the function. Namely, we
can realistically assume that along each of the problem
size variables, either the function is monotonically
decreasing, or there exists point x such that:

• On the interval [0, x], the function is
• monotonically increasing,
• concave, and

• any straight line coming through the origin of the
coordinate system intersects the graph of the func-
tion in no more than one point.

• On the interval [x, ∞), the function is monotonically
decreasing.

We have conducted numerous experiments with diverse
scientific kernels and computers, and in all the experi-
ments the speed of the processor could be approximated
accurately enough by a function satisfying the above
assumptions (within the accuracy of measurements).
Some typical observed shapes of the speed function are
given in this paper.

An alternative approach is to use a piecewise constant
function in order to represent the dependence of the
speed of the processor on the problem size (Drozdowski
and Wolniewicz 2003). There are at least two reasons
behind the proposal to represent the speed of the proces-
sor by a continuous function of the problem size.

First of all, we want the model to adequately reflect the
behavior of common, not very carefully designed applica-
tions. Consider the experiments with a range of applications
using memory hierarchy in different ways that are presented
by Lastovetsky and Twamley (2005) and shown in Figure 1.

Fig. 1 The effect of caching and paging in reducing the execution speed of each of the four applications run on net-
work of heterogeneous computers shown in Table 1. (a) ArrayOpsF, (b) MatrixMult, and (c) MatrixMultATLAS.

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

79HETEROGENEOUS COMPUTING

Carefully designed applications ArrayOpsF and Matrix-
MultAtlas, which efficiently use memory hierarchy, dem-
onstrate quite a sharp and distinctive performance curve of
dependence of the absolute speed on the problem size. For
these applications, the speed of the processor can be
approximated by a stepwise constant function of the prob-
lem size. At the same time, application MatrixMult, which
implements a straightforward algorithm of multiplication
of two dense square matrices and uses inefficient memory
reference patterns, displays quite a smooth dependence of
speed on the problem size. For such applications, the speed
of the processor cannot be accurately approximated by a
stepwise constant function. It should be approximated by a
continuous function of the problem size if we want the per-
formance model to be accurate enough.

The other main motivation is that we target common
heterogeneous networks rather than dedicated high per-
formance computer systems. A computer in such a net-
work is persistently performing some minor routine
computations and communications just as an integrated

node of the network. Examples of such routine applica-
tions include e-mail clients, browsers, text editors, audio
applications, etc. As a result, the computer will experi-
ence constant and stochastic fluctuations in the workload.
This changing transient load will cause a fluctuation in
the speed of the computer in the sense that the execution
time of the same task of the same size will vary for differ-
ent runs at different times. The natural way to represent
the inherent fluctuations in the speed is to use a speed
band rather than a speed function. The width of the band
characterizes the level of fluctuation in the performance
due to changes in load over time. The shape of the band
makes the dependence of the speed of the computer on
the problem size less distinctive and sharp even in the
case of carefully designed applications efficiently using
the memory hierarchy. Therefore, even for such applica-
tions the speed of the processor can be realistically approx-
imated by a continuous function of the problem size.
Figure 2 shows experiments conducted with application
MatrixMultATLAS on a set of computers whoses speci-

Fig. 2 Effect of workload fluctuations on the execution of application MatrixMultATLAS on computers shown in
Table 1. The region between the bold curves composes the performance band. The width of the performance band is
given as a percentage of the maximum speed of execution of the application. The dotted curve corresponds to the
curve shown in Figure 1. (a) Performance band for Comp1; (b) performance band for Comp2; and (c) performance
band for Comp4.

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

80 COMPUTING APPLICATIONS

fications are shown in Table 1. The performance bands
are obtained using the procedure given by Lastovetsky,
Reddy and Higgins (2006). The application employs the
level-3 BLAS routine dgemm (Dongarra et al. 1990)
supplied by Automatically Tuned Linear Algebra Soft-
ware (ATLAS; Whaley, Petitet and Dongarra 2000).
ATLAS is a package that generates efficient code for
basic linear algebra operations. The computers have
varying specifications and varying levels of network
integration and are representative of the range of com-
puters typically used in networks of heterogeneous
computers.

The problem of optimally scheduling divisible loads
has been studied extensively and the theory is com-
monly referred to as divisible load theory (DLT). The
main features of earlier works in DLT (Bharadwaj et al.
1996; Drozdowski and Wolniewicz 2003b) are that they
assume distributed systems with a flat memory model
and use a mathematical model where the speed of the
processor is represented by a constant. Drozdowski and
Wolniewicz (2003a) propose a new mathematical model
that relaxes the above two assumptions. They study dis-
tributed systems, which have both the hierarchical
memory model and a piecewise constant dependence of
the speed of the processor on the problem size. How-
ever, the model they formulate is targeted mainly
towards optimal distribution of arbitrary tasks for care-
fully designed applications on dedicated distributed
multiprocessor computer systems, whereas our model is
aimed towards optimal distribution of arbitrary tasks for
any arbitrary application on common heterogeneous
networks.

3 Distributing Independent Chunks

In this section, we study the problem of distributing inde-
pendent chunks of computations over a unidimensional
arrangement of heterogeneous processors. The form of

presentation is very much inspired by that used in Beau-
mont et al. (2001a) to present the same problem but for
heterogeneous processors whose performance is charac-
terized by constants.

The problem is formulated as follows: Given n inde-
pendent chunks of computations, each of equal size (i.e.
each requiring the same amount of work), how can we
assign these chunks to p (p < n) physical processors P1,
P2, ..., Pp of respective speeds s1(x), s2(x), ..., sp(x) so that
the workload is best balanced? Here, the speed of the
processor is understood as the number of computation
chunks performed by the processor per one time unit.
The speed depends on the number of chunks assigned to
the processor and is represented by a continuous function
s: R+ → R+. How, then, do we distribute chunks to proc-
essors? The intuition says that the load xi of Pi should be
proportional to si(xi). Since the load (i.e. numbers of
chunks) on each processor must be integers, we use the
following two-step algorithm to solve the problem. Let ni

denote the number of chunks allocated to processor Pi.
Then, the overall execution time obtained with allocation

(n1, n2, …, np) is given by maxi . The optimal solu-

tion minimizes the overall execution time.

Algorithm 1. Optimal distribution for n independent
chunks over p processors of speeds s1(x), s2(x), ..., sp(x):

• Step 1. Initialization: We approximate the ni so that

 and .

Namely, we find ni such that either or ni =

 for where

.

Table 1
Specifications of the four heterogeneous processors

Processor Architecture cpu MHz
Main memory

(kBytes)
Cache (kBytes)

Comp 1 Linux 2.4.20-8
Intel(R) Pentium(R) 4

2793 513304 512

Comp 2 SunOS 5.8 sun4u sparc
SUNW,Ultra-5_10

440 524288 2048

Comp 3 Windows XP 3000 1030388 512

Comp 4 Linux 2.4.7-10 i686 730 254524 256

ni

si ni()

ni

si ni()
------------- ≈ const n 2 p n1 n2 … np n≤+ + +≤×–

ni xi=

xi 1– 1 i p≤ ≤
x1

s1 x1()

x2

s2 x2()
-------------- …= = =

xp

sp xp()

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

81HETEROGENEOUS COMPUTING

• Step 2. Refining: We iteratively increment some ni

until n1 + n2 + … + np = n.

Approximation of the ni (Step 1) is not as easy as in the
case of constant speeds si of the processors, when ni can

be approximated as (see Beaumont 2001a).

The algorithm which we propose is based on the follow-

ing observation: If , then

all the points (x1, s1(x1)), (x2, s2(x2)), …, (xp, sp(xp)) lie on
a straight line passing through the origin of the coordi-
nate system, being intersecting points of this line with the
graphs of the speed functions of the processors. This is
shown in Figure 3. Our algorithm is seeking for two
straight lines passing through the origin of the coordinate
system so that:

• The “ideal” optimal line (that is, the line, which intersects
the speed graphs in points (x1, s1(x1)), (x2, s2(x2)), …, (xp,

sp(xp)) such that and

x1 + x2 + … + xp = n) lies between the two lines.
• There is no more than one point with integer x coordi-

nate on either of these graphs between the two lines.

Algorithm 1.1. Approximation of the ni so that either

 or for where

 and :

1. The upper line U is drawn through the points

(0, 0) and , and the lower line L

is drawn through the points (0, 0) and

, as shown in Figure 4.

2. Let and be the coordinates of the intersec-

tion points of lines U and L with the function si(x)

Fig. 3 “Ideal” optimal solution showing the geometric proportionality of the number of chunks to the speed of the
processor.

si

si1

p

∑
------------ n×

x1

s1 x1()

x2

s2 x2()
--------------= …

xp

sp xp()
--------------= =

x1

s1 x1()

x2

s2 x2()
--------------= …

xp

sp xp()
--------------= =

ni xi= ni xi 1–= 1 i p≤ ≤
x1

s1 x1()

x2

s2 x2()
--------------= …

xp

sp xp()
--------------= = x1 x2 … xp+ + + n=

n
p
--- maxi si

n
p

,

n
p
--- mini si

n
p

,

xi
U()

xi
L()

Fig. 4 Selection of the initial two lines L and U; n is the size of the problem and p is the number of processors.

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

82 COMPUTING APPLICATIONS

(). If there exists {1, …, p} such that

≥ 1 then go to step 3 else go to step 5.

3. Bisect the angle between lines U and L by the line

M. Calculate coordinates of the intersection

points of the line M with the function si(x) for

.

4. If ≤ n then U = M else L = M. Repeat
step 2.

5. Approximate the ni so that for 1 ≤ i

≤ p.

Proposition 1. Let the function si(x) (1 ≤ i ≤ p) be contin-

uous and there exist point such that:

• On the interval [0, x'], the function is
• monotonically increasing,
• concave, and
• any straight line coming through the origin of the

coordinate system intersects the graph of the func-
tion in no more than one point.

• On the interval [x', ∞), the function is monotonically
decreasing.

Then Algorithm 1.1 finds the ni such that either

 or for where

 and x1 + x2 + … + xp = n.

Proof. First we formulate a few obvious properties of the
functions si(x).

Lemma 1.1. The functions si(x) are bounded.

Lemma 1.2. Any straight line coming through the origin
of the coordinate system intersects the graph of the func-
tion si(x) in no more than one point.

Lemma 1.3. Let be the coordinate of the intersec-
tion point of si(x) and a straight line Mk coming through
the origin of the coordinate system (k ∈ {1, 2}). Then

 ≥ if and only if ∠(M1, X) ≤ ∠(M2, X), where

∠(Mk, X) denotes the angle between the line Mk and the
x-axis.

Since si(x) are continuous and bounded, the initial lines U
and L always exist. Since there is no more than one point
of intersection of the line L with each of si(x), L will

make a positive angle with the x-axis. Thus, both U and L

will intersect each si(x) exactly in one point. Let and

 be the coordinates of the intersection points of U
and L with si(x) () respectively. Then by design,

 ≤ n ≤ . This invariant will hold after
each iteration of the algorithm. Indeed, if line M bisects
the angle between lines U and L, then ∠(L, X) ≤ ∠(M, X)

≤ ∠(U, X). Hence, ≤ ≤ .

If ≤ n, then ≤ ≤ n ≤

 and after step 4 of the algorithm ≤

n ≤ . If ≥ n, then ≤ n ≤

 ≤ and after step 4 of the algorithm

 ≤ n ≤ . Thus, after each iteration of
the algorithm, the “ideal” optimal line O such that

 = n will be lying between lines U and L.

When the algorithm reaches step 5, we have

 for all , which means that the interval

 contains at most one integer value. Therefore,

either or .

Algorithm 1.2. Iterative incrementing of some ni until
:

1. If then go to step 2 else
stop the algorithm.

2. Find such that

.

3. . Repeat step 1.

Note. It is worth stressing that Algorithm 1.2 cannot be
used to search for the optimal solution beginning from an
arbitrary approximation ni satisfying inequality n1 + n2 +
… + np < n, but only from the approximation found by
Algorithm 1.1.

Proposition 2. Let the functions si(x) () satisfy
the conditions of Proposition 1. Let (n1, n2, …, np) be the
approximation found by Algorithm 1.1. Then Algorithm 1.2
gives the optimal allocation.

1 i p≤ ≤ i ∈

xi
L() xi

U()–

xi
M()

1 i p≤ ≤

xi
M()

1

p

∑

ni xi
U()=

x′ 0≥

ni xi= ni xi 1–= 1 i p≤ ≤
x1

s1 x1()
-------------- =

x2

s2 x2()
-------------- …

xp

sp xp()
--------------= =

xi
Mk()

xi
M1()

xi
M2()

xi
U()

xi
L()

1 i p≤ ≤

xi
U()

i 1=

p

∑ xi
L()

i 1=

p

∑

xi
U()

i 1=

p

∑ xi
M()

i 1=

p

∑ xi
L()

i 1=

p

∑
xi

M()

i 1=

p

∑ xi
U()

i 1=

p

∑ xi
M()

i 1=

p

∑
xi

L()

i 1=

p

∑ xi
U()

i 1=

p

∑
xi

L()

i 1=

p

∑ xi
M()

i 1=

p

∑ xi
U()

i 1=

p

∑
xi

M()

i 1=

p

∑ xi
L()

i 1=

p

∑
xi

U()

i 1=

p

∑ xi
L()

i 1=

p

∑

xi
O()

i 1=

p

∑
xi

L() –

xi
U() 1< 1 i p≤ ≤

xi
L() xi

U(),

ni xi
U() xi

O()= = ni xi
U() xi

O() 1–= =

n1 n2 … np+ + + n=

n1 n2 … np n<+ + +

k 1 … p,{ , }∈
nk 1+

sk nk 1+()
------------------------ =

mini 1=
p ni 1+

si ni 1+()

nk nk 1+=

1 i p≤ ≤

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

83HETEROGENEOUS COMPUTING

Proof. The execution time obtained with allocation (n1,

n2, …, np) is given by . The geometrical inter-

pretation of this formula is as follows. Let Mi be the
straight line connecting the points (0,0) and (ni, si(ni)).

Then . Therefore, minimization of

 is equivalent to maximization of

. Let {S1, S2, …} be the set of all straight lines
such that:

• Sk connects (0,0) and (m, si(m)) for some
and some integer m,

• Sk lies below Mi for any .

Let {S1, S2, …} be ordered in the decreasing order of
. The execution time of the allocation (n1, n2, …,

np) is represented by line Mk such that
. Incrementing of any ni means moving one

more line from the set {S1, S2, …} into the set of lines
representing the allocation. At each step of the incre-
menting, Algorithm 1.2 moves the line making the larg-
est angle with the x-axis. This means that after each
increment the algorithm gives the optimal allocation (n1,
n2, …, np) under the assumption that the total number of
chunks, which should be allocated, is equal to n1 + n2 + …
+ np (any other increment gives a smaller angle and, hence,
longer execution time). Therefore, after the last increment
the algorithm gives the optimal allocation (n1, n2, …, np)
under the assumption that n1 + n2 + … + np = n.

3.1 Complexity

In this section, we estimate the complexity of Algorithm 1.
We start with the complexity of Algorithm 1.1.

Definition. The heterogeneity of the set of p physical
processors P1, P2, ..., Pp of respective speeds s1(x), s2(x),
..., sp(x) is bounded if and only if there exists a constant c

such that where smax(x) = maxi si (x)

and smin(x) = mini si (x).

Proposition 3. Let the functions si(x) () satisfy
the conditions of Proposition 1 and the heterogeneity of
processors P1, P2, ..., Pp be bounded. Then, the complex-
ity of Algorithm 1.1 is .

Proof. First, we estimate the complexity of one iteration
of Algorithm 1.1. At each iteration we need to find the

points of intersection of p graphs y = s1(x), y = s2(x), ...,
y = sp(x) and a straight line y = a × x. In other words, at
each iteration we need to solve p equations of the form
a × x = si(x). As we need the same constant number of
operations to solve each equation, the complexity of this
part of one iteration will be O(p). The test for stopping
(step 2 of the algorithm) also takes a constant number of
operations per function si(x) making the complexity of this
part of one iteration O(p). Therefore, overall the complex-
ity of one iteration of Algorithm 1.1 will be O(p).

Next, we estimate the number of iterations of this algo-
rithm. To do it, we use the following lemma that states
one important property of the initial lines U and L
obtained at the step 1 of Algorithm 1.1.

Lemma 3.1. Let the functions si(x) satisfy the
conditions of Proposition 1 and the heterogeneity of
processors P1, P2, ..., Pp be bounded. Let O be the point
(0, 0), Ai be the point of intersection of the initial line U
and si(x), and Bi be the point of intersection of the initial
line L and si(x). Then, there exist constants c1 and c2 such

that for any .

Proof of Lemma 3.1. The full proof of Lemma 3.1 is
technical and very lengthy. Here, we give a relatively
compact proof of the lemma under the additional
assumption that the functions si(x) are monot-
onically decreasing. First, we prove that there exist con-

stants c1 and c2 such that where A is the

point of intersection of the initial line U and smax(x) =
maxi si (x), and B is the point of intersection of the initial
line L and smax(x) (see Figure 5). Since the heterogeneity of
the processors P1, P2, ..., Pp is bounded, there exists a con-

stant c such that . In particular, this

means that and . Let us prove that .

We have . Since , we

have . Since smin(x) monotonically

decreases on the interval , and, hence,

. Thus, and .

Therefore

, and hence . Since

, then . Next let us prove that

maxi

ni

si ni()

ni

si ni()
------------- cot Mi X,()∠=

maxi

ni

si ni()
------------- mini

Mi X,()∠

i 1 … p,{ , }∈

i 1 … p,{ , }∈

Sk X,()∠
Mk X,()∠ =

mini Mi X,()∠

maxx R+∈
smax x()
smin x()
----------------- c≤

1 i p≤ ≤

O p log2× n()

1 i p≤ ≤()

c1

OBi

OAi

--------- c2≤ ≤ i 1 2 … p, ,{ , }∈

1 i p≤ ≤()

c1
OB
OA
-------- c2≤ ≤

maxx R+∈
smax x()
smin x()
----------------- c≤

BD
FD
-------- c≤ AC

EC
-------- c≤ OB

OA
-------- c≤

OB OD2 BD2+= OD
OC
--------- BD

EC
--------=

OD
BD
EC
-------- OC×=

n
p
--- ∞, FD EC≤

BD
EC
-------- BD

FD
-------- c≤ ≤ OD c OC×≤ BD c EC×≤

OD2 BD2+ c2 OC2 c2 EC2×+×≤ c ×=

OC
2

EC
2+ c OE×=

OB
OE
-------- c≤

OA OE≥ OB
OA
-------- OB

OE
-------- c≤ ≤

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

84 COMPUTING APPLICATIONS

. We have and . Therefore,

. Since , then and

hence .

Now we are ready to prove Lemma 3.1. We have

. Since si(x) is monotonically

decreasing, . Since the heterogeneity of the

processors is bounded by the constant c, . Hence,

. Therefore, .

Next, we have . Since si(x) is monotonically

decreasing, . Since the heterogeneity of the

processors is bounded by the constant c, . There-

fore, . Thus, .

This proves Lemma 3.1.
Bisection of the angle at the very first itera-

tion will divide the segment AiBi of the graph of the func-

tion si(x) in the proportion (see Figure 6).

Correspondingly, . Since (b – a) approx-

imates the number of integers in the interval [a, b],

 will approximate the

lower bound on the fraction of the set

 of possible numbers of chunks to be allo-

cated to the processor Pi, which is excluded from consid-

eration after this bisection. Since , then

. Indeed, let and

. We have . Therefore,

 and

. Hence, .

Fig. 5 The picture after the initial step of Algorithm
1.1. Here, smax(x) = maxisi(x) and smin(x) = minisi(x).

OB
OA
-------- 1

c
---≥ OB OE≥ AC c EC×≤

OB
OA
-------- OE

OA
--------≥ OC2 EC2+

OC2 AC2+

OC 1
EC
OC

2
+×

OC 1 c
2 EC

OC

2
×+×

--= = =

1
c

1
EC
OC

2
+

1

c2

EC
OC

2
+

----------------------------× c 1≥
1

EC
OC

2
+

1

c2

EC
OC

2
+

-------------------------------- 1≥

OB
OA
-------- 1

c
---≥

OBi

OAi

--------- OB
OAi

---------≤ 1
OAi

--------- OB×=

OA
OAi

--------- AC
CHi

----------≤

AC
CHi

---------- c≤

1
OAi

--------- c
OA
--------≤

OBi

OAi

--------- c
OA
-------- OB×≤ = c

OB
OA
-------- c

2≤×

OBi

OAi

OBi

OA
---------≥

BD
FiD
--------- OB

OBi

---------≥

BD
FiD
--------- c≤

OBi
OB
c

--------≥
OBi

OAi

OBi

OA
--------- OB

c OA×
----------------- 1

c
2

----≥ ≥ ≥

Fig. 6 Bisection of the angle at the very first
iteration into two equal angles. The segment AiBi of the
graph of the function si(x) will be divided in the propor-

tion .

Ai∠ OBi

QiBi

AiQi

OBi

OAi

---------≈

Ai∠ OBi

QiBi

AiQi

OBi

OAi

---------≈

xi
L() xi

M()–

xi
M() xi

U()–

OBi

OAi

---------≈

∆i min
xi

L()
xi

M()–

xi
L() xi

U()–

xi
M()

xi
U()–

xi
L() xi

U()–
-------------------------,

=

xi
U()

xi
U() +,

1 … xi
L(), ,

c1

OBi

OAi

--------- c2≤ ≤

∆i

c1

c2 1+
--------------≥ ∆= qi xi

L() xi
M()–=

ri xi
M() xi

U()–= c1

qi

ri

---- c2≤ ≤

c1 ri qi c2 ri×≤ ≤× c1 1+() ri qi ri+ c2 +(≤ ≤×

1) ri×
qi

qi ri+

c1 ri×
c1 1+() ri×

-----------------------------≥
c1

c2 1+
--------------=

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

85HETEROGENEOUS COMPUTING

 means that after this bisection, at least

∆ × 100% of the possible solutions will be excluded from
consideration for each processor Pi. The difference in length
between OBi and OAi will be getting smaller and smaller
with each next iteration. Therefore, no less than ∆ × 100%
of the possible solutions will be excluded from considera-
tion after each iteration of Algorithm 1.1. The number of
possible solutions in the initial set for each processor Pi is
obviously less than n. The constant ∆ does not depend on p
or n (actually, this parameter just characterizes the heteroge-
neity of the set of processors). Therefore, the number of
iterations k needed to arrive at the final solution can be
found from the equation (1 – ∆)k × n = 1, and we have k =

. Thus, the overall complexity of

Algorithm 1.1 will be O(p × log2n). Proposition 3 is proved.

Note. The low complexity of Algorithm 1.1 is mainly
due to the bounded heterogeneity of the processors. This
very property guarantees that each bisection will reduce
the space of possible solutions by a fraction lower
bounded by some finite positive number independent on
n. The assumption of bounded heterogeneity will be inac-
curate if the speed of some processors becomes too slow
for large n, effectively approaching 0. One approach to
this problem is to use a relaxed functional model where
the speed of the processor is represented by a continuous
function until some given size of the problem and by zero
for all sizes greater than this one. Data partitioning algo-
rithms with that model are presented by Lastovetsky and
Reddy (2005). The other approach is to use algorithms
not sensitive to the shape of performance functions such
as the algorithm of complexity O(p2 × log2n) presented in
Lastovetsky and Reddy (2004).

Proposition 4. Let the functions si(x) satisfy
the conditions of Proposition 1 and the heterogeneity of
processors P1, P2, ..., Pp be bounded. Then, the complexity
of Algorithm 1 is O(p × log2n).

Proof. If (n1, n2, …, np) is the approximation found by
Algorithm 1.1, then n – 2 × p ≤ n1 + n2 + … + np ≤ n and
Algorithm 1.2 gives the optimal allocation in at most
2 × p steps of increment, so that the complexity of Algo-
rithm 1.2 is O(p2). This complexity is given by a naïve
implementation of Algorithm 1.2. The complexity of this
algorithm can be reduced down to O(p × log2p) by using
ad hoc data structures (Beaumont et al. 2001a). Thus,
overall the complexity of Algorithm 1 will be O(p ×
log2p + p × log2n) = O(p × log2(p × n)). Since p < n, then

log2(p × n) < log2(n × n) = log2(n
2) = 2 × log2n. Thus, the

overall complexity of Algorithm 1 will be bounded by
O(2 × p × log2n) = O(p × log2n).

3.2 Application of the Partitioning Algorithm

In this section, we apply the set partitioning algorithm to a
matrix multiplication application using horizontal striped
partitioning of matrices on a network of p heterogeneous
computers. Our main aim is not to show how matrices can
be efficiently multiplied but to explain in simple terms how
the set partitioning algorithm using the functional model
can be applied to optimally schedule computational tasks
on networks of heterogeneous computers.

The matrix multiplication application shown in
Figure 7(a) multiplies matrix A and matrix B, i.e. imple-
menting matrix operation C = A × B, where A, B, and C
are dense square n × n matrices. The matrices A and C
are horizontally sliced such that the number of elements
in a slice is proportional to the speed of the processor
owning the slice. All the processors contain all the
elements of matrix B. We assume one process per
processor configuration.

For this application, the absolute speed of the proces-
sor is obtained based on multiplication of two dense
matrices of size n1 × n and n × n respectively to obtain a
resultant matrix of size n1 × n as shown in Figure 7(b).
The size of the problem is represented by two parame-
ters, n1 and n. The total number of matrix elements to
store and process is (2 × n1 × n + n × n). We use a com-
bined computation unit, which is made up of one addition
and one multiplication, to express the volume of computa-
tion. If n is large enough, the total number of computation
units needed to solve this problem will be approximately
equal to n1 × n × n. Therefore, the speed of the processor
exposed by the application when solving the problem of
size (n1, n) can be calculated as n1 × n × n divided by the
execution time of the application. This gives us a func-
tion, f: N2 → R+, mapping problem sizes to speeds of the
processor. The functional performance model of the
processor is obtained by continuous extension of function
f: N2 → R+ to function g: R+

2 → R+ (f(n,m) = g(n,m) for
any (n,m) from N2).

A practical procedure to build the functional perform-
ance model of a processor is given by Lastovetsky, Reddy
and Higgins (2006). In brief, the algorithm presented by
Lastovetsky, Reddy and Higgins (2006) exploits historic
records of workload fluctuations of the processor in order
to minimize the number of experimental points needed to
accurately approximate the performance band by a piece-
wise linear function fitting within the band.

The speed function is geometrically represented by a
surface as shown in Figures 8(a) and 8(b) for two proc-
essors X1 and X5 used in experiments and whose speci-

∆i

c1

c2 1+
--------------≥ ∆=

1

log2

1
1 ∆–

---------------------------- n2log×

1 i p≤ ≤()

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

86 COMPUTING APPLICATIONS

fications are shown in Table 2. Figure 8(c) shows the
geometrical representation of the relative speed of these
two processors calculated as the ratio of their absolute
speeds. One can see that the relative speed varies signifi-
cantly depending on the value of variables n1 and n.

When partitioning a square n × n matrix, we use the
fact that the width of partitions is fixed and equal to n.
Firstly, we section the surfaces representing the absolute
speeds of the processors by the plane parallel to the axis
representing the parameter n1 and parallel to the axis rep-

Fig. 7 (a) Matrix operation C = A × B with matrices A, B, and C. Matrices A and C are horizontally sliced such that
the number of elements in the slice is proportional to the speed of the processor. (b) Serial matrix multiplication A2
× B of dense matrix A2 of size n1 x n and dense matrix B of size n x n to estimate the absolute speed of processor 2.

Table 2
Specifications of the eight heterogeneous processors

Processor Architecture CPU MHz
Main memory

(kBytes)
Free main

memory (kBytes)
Cache

(kBytes)

X1 Linux 2.6.8-1.521smp
Intel(R) XEON(TM)

1977 1030508 938976 512

X2 Linux 2.6.8-1.521smp
Intel(R) XEON(TM)

1977 1030508 972924 512

X3 Linux 2.6.8-1.521smp
Intel(R) XEON(TM)

1977 1030508 967176 512

X4 Linux 2.6.8-1.521smp
Intel(R) XEON(TM)

1977 1030508 967312 512

X5 SunOS 5.9 sun4u sparc
SUNW,Ultra-5_10

440 524288 134400 2048

X6 SunOS 5.9 sun4u sparc
SUNW,Ultra-5_10

440 524288 409600 2048

X7 SunOS 5.9 sun4u sparc
SUNW,Ultra-5_10

440 524288 418816 2048

X8 SunOS 5.9 sun4u sparc
SUNW,Ultra-5_10

440 524288 395264 2048

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

87HETEROGENEOUS COMPUTING

Fig. 8 (a) The absolute speed of the processor X1 as a function of n1 and n. (b) The absolute speed of the processor
X5 as a function of n1 and n. (c) The relative speed of the two processors calculated as the ratio of their absolute
speeds. (d) Two surfaces representing the absolute speeds of the two processors are sectioned by the plane n = 9000
parallel to the axis of parameter n1 and parallel to the axis of absolute speed of the processor. Curves on this plane
represent the absolute speeds of the processors against variable n1 given parameter n is fixed.

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

88 COMPUTING APPLICATIONS

resenting the absolute speed of the processor and having
an intercept of n on the axis representing the parameter n.
This is illustrated in Figure 8(d) for two surfaces repre-
senting the absolute speeds of the processors X1 and X5.
In this way we obtain a set of p curves on this plane that
represent the absolute speeds of the processors against
variable n1 given parameter n is fixed. Then we apply the
set partitioning algorithm to this set of p curves to obtain
optimal distribution of slices in matrices A and C.

4 Experimental results

A small heterogeneous local network of 8 different Solaris
and Linux workstations shown in Table 2 is used in the
experiments. The network is based on 100 Mbit Ethernet
with a switch enabling parallel communications between
the computers. The amount of memory, which is the differ-
ence between the main memory and free main memory
shown in the tables, is used by the operating system proc-
esses and a few other user application processes that per-
form routine computations and communications such as
e-mail clients, browsers, text editors, audio applications
etc. These processes use a constant percentage of CPU.

Figure 9 shows the speedup of using the network of
heterogeneous computers shown in Table 2 over the most
powerful computer X1. The speedup calculated is the
ratio of execution time of the serial matrix multiplication
application using X1 over the execution time of the parallel
matrix multiplication application, described in Section 3.2,
using the functional model on the network of heterogene-
ous computers.

Figure 10 shows the speedup of the matrix multiplica-
tion application, described in Section 3.2, executed on
this network using the functional model over the matrix

multiplication using the single number model. In the fig-
ures, for each problem size, the speedup calculated is the
ratio of the execution time of the application using the
single number model over the execution time of the
application using the functional model.

We consider three cases for comparing the functional
model with the single number model in the range (1000,
10 000) of matrix sizes. For the first case the single number
model uses speed obtained by multiplying matrices of sizes
500 × 1000 and 1000 × 1000. This case covers the range of
small sized matrices. The single number model for the sec-
ond case uses speed based on multiplication of matrices of
sizes 2500 × 5000 and 5000 × 5000. This case covers the
range of medium sized matrices. For the third case, speed
obtained by multiplying matrices of sizes 4000 × 8000 and
8000 × 8000 is used. This case covers the large sized matri-
ces. The ratios of speeds of the most powerful computer X1
and the least powerful computer X5 in these cases are 13.5,
3.75, and 57.0 respectively.

It can be seen from the figure that the single number
model in the first case performs poorly in the range of
medium sized to large sized matrices. In the second case
the single number model does not perform well for small
sized and large sized matrices. In the third case the single
number model does not perform well in the range of small
sized and medium sized matrices and for large sized matri-
ces with problem size greater than (8000,8000). Therefore
the functional model performs better than the single
number model for a network of heterogeneous computers
when one or more tasks do not fit into the main memory
of the processors and when relative speeds vary with the
problem size. It can be concluded that our set partitioning
algorithm using the functional model performs better for
all sizes of matrices.

Fig. 9 Speedup of matrix multiplication application using the network of heterogeneous computers shown in
Table 2 over the matrix multiplication application using the most powerful computer X1.

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

89HETEROGENEOUS COMPUTING

5 Conclusion

In this paper, we addressed the problem of optimal distri-
bution of computational tasks on a network of heteroge-
neous computers when one or more tasks do not fit into
the main memory of the processors and when relative
speeds vary with the problem size. We have proposed and
analyzed the functional performance model of heteroge-
neous processors. This model integrates many essential
features of a network of heterogeneous computers having
a major impact on its performance such as the processor
heterogeneity, the heterogeneity of memory structure,
and the effects of paging. Under this model, the speed of
each processor is represented by a continuous function of
the size of the problem whereas traditional models use
single numbers to represent the speeds of the processors.
We have formulated a problem of partitioning of an n-
element set over p heterogeneous processors using this
model and designed an algorithm of the complexity
O(p × log2n) solving the problem. Some early results on
the functional model and data partitioning with this
model were presented by Lastovetsky and Reddy (2004).

Acknowledgment

The work was supported in part by the Science Founda-
tion Ireland.

Author Biographies

Alexey Lastovetsky received his Ph.D. degree from the
Moscow Aviation Institute in 1986, and a Doctor of Sci-
ence degree from the Russian Academy of Sciences in

1997. His main research interests include algorithms, mod-
els and programming tools for high performance heteroge-
neous computing. He is the author of C[], a parallel
language for vector and superscalar processors, and mpC,
the first parallel programming language for heterogeneous
networks of computers. He designed HeteroMPI, an exten-
sion of MPI for heterogeneous parallel computing, and
SmartNetSolve, an extension of NetSolve aimed at higher
performance of scientific computing on global networks.
He has also made contributions into heterogeneous data
distribution algorithms and modeling the performance of
processors in heterogeneous environments. He has pub-
lished over 70 technical papers in refereed journals,
edited books and international conferences. He authored
the monograph “Parallel computing on heterogeneous net-
works” published by Wiley in 2003. He is currently a sen-
ior lecturer in the School of Computer Science and
Informatics at University College Dublin, National Uni-
versity of Ireland. At UCD, he also created and leads the
Heterogeneous Computing Laboratory. He is an editor of
the research journals “Parallel Computing” (Elsevier) and
“Programming and Computer Software” (Springer).

Ravi Reddy received his Ph.D. degree from the Com-
puter Science Department, University College Dublin,
National University of Ireland in 2005. His main research
interests are design of algorithms and tools for parallel
and distributed computing systems.

References

Beaumont, O., Boudet, V., Petitet, A., Rastello, F. and Robert,
Y. (2001a). A proposal for a heterogeneous cluster

Fig. 10 The speedup of the parallel matrix multiplication application using the functional model over single number
model on the network of heterogeneous computers shown in Table 2. The speeds used in the single number model
in the three curves for comparison are obtained using serial matrix multiplication of matrices of problem sizes (n1,
n) = (500, 1000), (2500, 5000), and (4000, 8000) respectively.

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

90 COMPUTING APPLICATIONS

ScaLAPACK (dense linear solvers), IEEE Transactions
on Computers, 50: 1052–1070.

Beaumont, O., Boudet, V., Rastello, F. and Robert, Y. (2001b).
Matrix multiplication on heterogeneous platforms, IEEE
Transactions on Parallel and Distributed Systems, 12:
1033–1051.

Bharadwaj, V., Ghose, D., Mani, V. and Robertazzi, T. G.
(1996). Scheduling Divisible Loads in Parallel and Dis-
tributed Systems, IEEE Computer Society Press and John
Wiley & Sons, Los Alamitos, CA.

Cierniak, M., Li, W. and Zaki, M. J. (1997). Compile-time
scheduling algorithms for heterogeneous network of
workstations, Computer Journal, Special Issue on Auto-
matic Loop Parallelization, 40(6): 356–372.

Crandall, P. and Quinn, M. (1993). Block data decomposition
for data-parallel programming on a heterogeneous work-
station network, in Proceedings of the Second Interna-
tional Symposium on High Performance Distributed
Computing (HPDC ’93), 20–23 July, Spokane, WA, USA,
pp.42–49, IEEE Computer Society.

Crandall, P. and Quinn, M. (1995). Problem decomposition for
non-uniformity and processor heterogeneity, Journal of
the Brazilian Computer Society, 2: 13–23.

Dongarra, J., Croz, J. D., Duff, I. S. and Hammarling, S.
(1990). A set of level-3 basic linear algebra subpro-
grams, ACM Transactions on Mathematical Software,
16: 1–17.

Drozdowski, M. and Wolniewicz, P. (2003a). Out-of-core divis-
ible load processing, IEEE Transactions on Parallel and
Distributed Systems, 14: 1048–1056.

Drozdowski, M. and Wolniewicz, P. (2003b). Divisible load
scheduling in systems with limited memory, Cluster Com-
puting, 6: 19–29.

Iverson, M. and Ozguner, F. (1998). Dynamic, competitive
scheduling of multiple DAGs in a distributed heterogene-
ous environment, in Proceedings of the Seventh Heteroge-
neous Computing Workshop (HCW ’98), Orlando, FL,
IEEE Computer Society Press, pp.70–78, March.

Kalinov, A. and Lastovetsky, A. (2001). Heterogeneous distri-
bution of computations solving linear algebra problems on
networks of heterogeneous computers, Journal of Parallel
and Distributed Computing, 61: 520–535.

Kumar, V., Grama, A., Gupta, A. and Karypis, G. (1994). Intro-
duction to Parallel Computing: Design and Analysis of

Algorithms, Benjamin-Cummings, Addison-Wesley,
Reading, MA.

Lastovetsky, A. and Reddy, R. (2004). Data partitioning with a
realistic performance model of networks of heterogeneous
computers, in Proceedings of the 18th International Paral-
lel and Distributed Processing Symposium (IPDPS 2004),
26–30 April 2004, Santa Fe, New Mexico, USA, CD-
ROM/Abstracts Proceedings, IEEE Computer Society.

Lastovetsky, A. and Reddy, R. (2005). Data partitioning for mul-
tiprocessors with memory heterogeneity and memory con-
straints, Scientific Programming, 13: 93–112, IOS Press.

Lastovetsky, A., Reddy, R. and Higgins, R. (2006). Building the
functional performance model of a processor, in Proceed-
ings of the 21st Annual ACM Symposium on Applied Com-
puting (SAC’06), 23–27 April 2006, Dijon, France,
pp.746–753, ACM Press.

Lastovetsky, A. and Twamley, J. (2005). Towards a realistic per-
formance model for networks of heterogeneous comput-
ers, in High Performance Computational Science and
Engineering: Proceedings of IFIP TC5 Workshop, World
Computer Congress, 22–27 August 2004, Toulouse,
France, eds M. K. Ng, A. Doncescu, L.T. Yang, T. Leng,
pp.39–58, Springer.

Maheswaran, M. and Siegel, H. J. (1998). A dynamic matching
and scheduling algorithm for heterogeneous computing
systems, in Proceedings of the Seventh Heterogeneous
Computing Workshop (HCW 1998), Orlando, FL, pp.57–
69, IEEE Computer Society Press, March.

Petitet, A. and Dongarra, J. (1999). Algorithmic redistribution
methods for block-cyclic decompositions, IEEE Transac-
tions on Parallel and Distributed Systems, 10: 1201–1216.

Tan, M., Siegel, H. J., Antonio, J. K. and Li, Y. A. (1997). Min-
imizing the application execution time through scheduling
of subtasks and communication traffic in a heterogeneous
computing system, IEEE Transactions on Parallel and
Distributed Systems, 8: 857–871.

Yan, Y., Zhang, X., and Song, Y. (1996). An effective and prac-
tical performance prediction model for parallel computing
on non-dedicated heterogeneous NOW, Journal of Paral-
lel and Distributed Computing, 38: 63–80.

Whaley, R. C., Petitet, A. and Dongarra, J. (2000). Automated
empirical optimizations of software and the atlas project,
Technical report, Department of Computer Sciences, Uni-
versity of Tennessee, Knoxville, March.

 at University College Dublin on October 31, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

