
MPIBlib: Benchmarking MPI Communications
for Parallel Computing on Homogeneous and

Heterogeneous Clusters

Alexey Lastovetsky, Vladimir Rychkov, and Maureen O’Flynn

School of Computer Science and Informatics, University College Dublin,
Belfield, Dublin 4, Ireland

{alexey.lastovetsky,vladimir.rychkov,maureen.oflynn}@ucd.ie
http://hcl.ucd.ie

Abstract. In this paper, we analyze existing MPI benchmarking suites,
focusing on two restrictions that prevent them from a wider use in appli-
cations and programming systems. The first is a single method of mea-
surement of the execution time of MPI communications implemented by
each of the suites. The second one is the design of the suites in the form
of a standalone executable program that cannot be easily integrated into
applications or programming systems. We present a more flexible bench-
marking package, MPIBlib, that provides multiple methods of measure-
ment, both operation-independent and operation-specific. This package
can be used not only for benchmarking but also as a library in applica-
tions and programming systems for communication performance model-
ing and optimization of MPI operations.

Keywords: MPI, benchmark, parallel computing, computational clus-
ter, communication performance model.

1 Introduction

Accurate estimation of the execution time of MPI communication operations
plays an important role in optimization of parallel applications. A priori infor-
mation about the performance of each MPI operation allows a software devel-
oper to design a parallel application in such a way that it will have maximum
performance. This data can also be useful for tuning collective communication
operations and for the evaluation of different available implementations. The
choice of collective algorithms becomes even more important in heterogeneous
environments. In addition to general timing methods that are universally ap-
plicable to all communication operations, MPIBlib includes methods that can
only be used for measurement of some particular operations. Where applicable,
these operation-specific methods work faster than their universal counterparts
and can be used as time-efficient alternatives. The efficiency of timing methods
will be particularly important in self-adaptable parallel applications using run-
time benchmarking of communication operations to optimize their performance
on the executing platform.

A. Lastovetsky et al. (Eds.): EuroPVM/MPI 2008, LNCS 5205, pp. 227–238, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://hcl.ucd.ie

228 A. Lastovetsky, V. Rychkov, and M. O’Flynn

A typical MPI benchmarking suite uses only one timing method to estimate
the execution time of the MPI communications. The method provides a certain
accuracy and efficiency. The efficiency of the timing method is particularly im-
portant in self-adaptable parallel applications using runtime benchmarking of
communication operations to optimize their performance on the executing plat-
form. In this case, less accurate results can be acceptable in favor of a rapid
response from the benchmark. In this paper, we analyze different timing meth-
ods used in the benchmarking suites and compare their accuracy and efficiency
on homogeneous and heterogeneous clusters. Based on this analysis, we design a
new MPI benchmarking suite called MPIBlib that provides a variety of timing
methods. This suite supports both fast measurement of collective operations and
exhaustive benchmarking.

In addition to general timing methods that are universally applicable to all
communication operations, MPIBlib includes methods that can only be used
for measurement of one or more specific operations. Where applicable, these
operation-specific methods work faster than their universal counterparts and
can be used as their time-efficient alternatives.

Most of the MPI benchmarking suites are designed in the form of a standalone
executable program that takes the parameters of communication experiments
and produce a lot of output data for further analysis. As such, they cannot be
integrated easily and efficiently into application-level software. Therefore, there
is a need for a benchmarking library that can be used in parallel applications
or programming systems for communication performance modeling and tuning
communication operations. MPIBlib is such a library that can be linked to other
applications and used at runtime.

The rest of the paper is structured as follows. Section 2 outlines existing bench-
marking suites. We analyze different methods of measuring MPI communication
operations, which are implemented in the suites or described in work on MPI
benchmarking. Section 3 describes main features of MPIBlib, the benchmarking
library that provides a variety of operation-independent and operation-specific
methods of measurement. In Section 4, we discuss application of the library. The
results of experiments on homogeneous and heterogeneous clusters are presented
in Section 5. We compare the results and costs of different methods of measure-
ment and focus on measuring point-to-point, scatter and gather communication
operations as their results are used in the estimation of parameters of advanced
heterogeneous communication performance models.

2 Related Work

There are several commonly used MPI benchmarking suites [1]-[5]. The aim of all
these suites is to estimate the execution time of MPI communication operations
as accurate as possible. In order to evaluate the accuracy of the estimation
given by different suites, we need a unified definition of the execution time.
As not all of the suites explicitly define their understanding of the execution
time, we suggest the following as a natural definition. The execution time of a

MPIBlib: Benchmarking MPI Communications for Parallel Computing 229

communication operation is defined as the real (wall clock) time elapsed from
the start of the operation, given all the participating processors have started
the operation simultaneously, until the successful completion of the operation
by the last participating processor. Mathematically, this time can be defined
as the minimum execution time of the operation, given that the participating
processors do not synchronize their start and are not participating in any other
communication operation. It is important to note that the definition assumes
that we estimate the execution time for a single isolated operation.

Practically, the execution time of the communication operation is estimated
from the results of an experiment that, in addition to the operation, includes
other communications and computations. As parallelism introduces an element of
non-determinism, there is a problem of reproducibility of such experiments. The
methodology of designing reproducible communication experiments is described
in [1]. It includes:

– Repeating the communication operation multiple times to obtain the reliable
estimation of its execution time,

– Selecting message sizes adaptively to eliminate artifacts in a graph of the
output of the communication operation, and

– Testing the communication operation in different conditions: cache effects,
communication and computation overlap, communication patterns, non-
blocking communication etc.

In the mpptest suite [1], these ideas were implemented and applied to bench-
marking point-to-point communications.

The execution time of communication operations depends on the MPI library,
native software, and hardware configurations. NetPIPE [2] provides benchmarks
for different layers in the communication stack. It is based on the ping-pong
communication experiments that are implemented over memcpy, TCP, MPI
etc. In addition to evaluation of communication performance, this suite helps us
identify where inefficiencies lie.

Regarding both the reproducibility of communication experiments and the de-
pendency on communication layers, we focus on benchmarking not only point-
to-point operations but also collective ones. We analyzed several MPI bench-
marking suites that include tests for collective operations. Despite the different
approaches to what and how to measure, they have several common features:

– computing an average, minimum, maximum execution time of a series of the
same communication experiments to get accurate results;

– measuring the communication time for different message sizes – the number
of measurements can be fixed or adaptively increased for messages when
time is fluctuating rapidly;

– performing simple statistical analysis by finding averages, variations, and
errors.

The MPI benchmarking suites are also very similar in terms of the software
design. Usually, they provide a single executable that takes a description of

230 A. Lastovetsky, V. Rychkov, and M. O’Flynn

communication experiments to be measured and produces an output for plotting
utilities to obtain graphs.

As more than two processors are involved in collective communications and
connected in different ways (communication trees), there are two main issues
concerned with the estimation of execution time of MPI collective operations:
– measuring the execution time, and
– scheduling the communication experiments.

2.1 Measuring the Execution Time of MPI Collective Operations

Estimation of the execution time of the communication operation includes the se-
lection of two events marking the start and the end of the operation respectively
and measuring the time between these events. First of all, the benchmarking
suites differ in what they measure, which can be:
– The time between two events on a single designated processor,
– For each participating processor, the time between two events on the pro-

cessor, or
– The time between two events but on different processors.

The first two approaches are natural for clusters as there is no global time
in these environments where each processor has its own clock showing its own
local hour. The local clocks are not synchronized and can have different clock
rates, especially in heterogeneous clusters. The only way to measure the time
between two events on two different processors is to synchronize their local clocks
before performing the measurement. Therefore, the third approach assumes the
local clocks to be regularly synchronized. Unlike the first two, this approach
introduces a measurement error as it is impossible to keep the independent
clocks synchronized all the time with absolute accuracy.

In order to measure time, most of the packages rely on the MPI Wtime func-
tion. This function is used to measure the time between two events on the same
processor (the local time). For example, the execution time of a roundtrip can be
measured on one process and used as an indication of the point-to-point commu-
nication execution time [3], [5]. The execution time of a collective communication
operation can also be measured at a designated process. For collective operations
with a root, the root can be selected for the measurement. As for many collec-
tive operations the completion of the operation by the root does not mean its
completion by all participating processes, short or empty messages can be sent
by the processors to the root to confirm the completion. A barrier, reduce, or
empty point-to-point communications can be used for this purpose. The result
must be corrected by the average time of the confirmation. The drawback of this
approach is that the confirmation can be overlapped with the collective opera-
tion and hence it cannot simply be subtracted. As a result, this technique may
give negative values of the execution time for very small messages.

The accuracy of this approach (root timing) is strongly dependent on whether
all processes have started the execution of the operation simultaneously. To en-
sure the more or less accurate synchronization of the start, a barrier, reduce,

MPIBlib: Benchmarking MPI Communications for Parallel Computing 231

or empty point-to-point communications can be used. They can be overlapped
with the collective operation to be measured and previous communications as
well. To achieve even better synchronization, multiple barriers are used in the
benchmarking suites [3]-[5].

The local times can be measured on all processes involved in the communi-
cation and the maximum can be taken as the communication execution time.
This approach (maximum timing) is also dependent on synchronization of the
processes before communication, e.g. with a barrier.

To measure the time between two events on different processors, the local
clocks of the processors have to be synchronized. Such synchronization can be
provided by the MPI global timer if the MPI WTIME IS GLOBAL attribute is
defined and true. Alternatively, local clocks of two processors A and B can be
synchronized by the following simple algorithm implemented in MPIBench [4].
Processor A sends a message to processor B, which contains the current time
plus a half of the previously observed minimum roundtrip time. Processor B
receives the message and returns it to A, which calculates the total time that
the roundtrip took to complete. If the roundtrip time is the fastest observed so
far, then the estimated time of arrival of the initial message is the most accurate
yet. If so, processor B calculates the current approximation of the time offset
as the message’s value received in the next iteration. The processors repeat this
procedure until a new minimum roundtrip time has not been observed for a
prearranged number of repetitions. Given A being a base processor, this syn-
chronization procedure is performed sequentially for all pairs (A, Bi). A similar
procedure is implemented in SKaMPI [5] to find offsets between local times of
the root and the other processes.

As local clocks can run at different speeds, especially in heterogeneous envi-
ronments, the synchronization has to be regularly repeated. The synchronization
procedures are quite costly and introduce a significant overhead in benchmark-
ing when used. As soon as the global time has been set up, the time between
two events on different processors can be measured [4], [5]. The accuracy of
this approach will depend on the accuracy of the clock synchronization and on
whether processors start the communication simultaneously. The global timing
usually gives a more accurate estimate because its design is closer to the natural
definition of the communication execution time given in the beginning of this
section. However, while being more time-efficient, the methods based on local
clocks can also provide quite accurate results for many popular platforms and
MPI implementations. Therefore, it makes sense to allow a choice of different
methods so the user may choose the most efficient for benchmarking with a re-
quired accuracy. This is especially important if the benchmarks are to be used
in the software that requires the runtime results of the benchmarking.

2.2 Scheduling the Communication Experiments

To obtain a statistically reliable estimate of the execution time, a series of the
same experiments are typically performed in the benchmarking suites. If the
communications are not separated from each other in this series, the successive

232 A. Lastovetsky, V. Rychkov, and M. O’Flynn

 0

 0.004

 0.008

 0.012

 0.016

 0 20 40 60 80 100

E
xe

cu
tio

n
tim

e
(s

ec
)

Message size (KB)

Scatter

single (min)
single (max)

multi (avg)

 0

 0.075

 0.15

 0.225

 0.3

 0 20 40 60 80 100

E
xe

cu
tio

n
tim

e
(s

ec
)

Message size (KB)

Gather

single (min)
single (max)

multi (avg)

Fig. 1. IMB benchmark on a 16-node heterogeneous cluster: single/multiple scat-
ter/gather measurements

executions may overlap, resulting in a so-called pipeline effect [6], when some
processes finish the current repetition earlier and start the next repetition of the
operation before the other processes have completed the previous operation. The
pipeline affects the overall performance of the series of the operations, result-
ing in inaccurate averaged execution time. This is the case for the IMB (former
PMB) benchmark [3], where the repetitions in a series are not isolated in the
attempt to prevent participation of the processes in third-party communications.
The IMB measures the communication execution times locally on each process,
and the minimum, maximum, and average times are then returned. Fig. 1 shows
the results returned by the IMB on a 16-node heterogeneous cluster for scatter
and gather operations when single and multiple repetitions are used in the exper-
iments. One can see that for the scatter experiments with a single repetition, the
minimum time represents the execution time of a non-blocking send on the root
and is therefore relatively small. In the gather experiments with a single repeti-
tion, the maximum time is observed on the root, reflecting the communication
congestion. The difference between the minimum and maximum times decreases
with an increase in the number of repetitions. In both cases, we observe a clear
impact of the pipeline effect on the measured execution time of the operation:

– Scatter: For small and large messages, the execution time of a repetition in
the series is smaller than that measured in a single experiment. For medium-
sized messages, escalations of the execution time are observed that do not
happen in single experiments.

– Gather: Escalations of the execution time for medium-sized messages, ob-
served for single experiments, disappear with the increase of the number of
repetitions due to the pipelining.

Thus, the pipeline effect can significantly distort the actual behavior of the
communication operation, given that we are interested in accurate estimation of
the time of its single and isolated execution.

In order to find the execution time of a communication operation that is
not distorted, it should be measured in isolation from other communications. A

MPIBlib: Benchmarking MPI Communications for Parallel Computing 233

barrier, reduce, or point-to-point communications with short or empty messages
can be used between successive operations in the series. The approach with
isolation gives results that are more accurate.

Some particular collective operations and their implementations allow for the
use of more accurate and efficient methods that cannot be applied to other
collective operations. One example is the method of measurement of linear and
binomial implementations of the MPI broadcast on heterogeneous platforms pro-
posed in [7]. It is based on measuring individual tasks rather than the entire
broadcast and therefore it does not need the global time. An individual task is a
part of the broadcast communication between the root and the i-th process. In
each individual task, the pipelining effect is eliminated by sending an acknowl-
edgement message from the i-th process to the root. The execution time of the
task is then corrected by the value of the point-to-point execution time.

The acquisition of detailed knowledge of the implementation of collective oper-
ations can prove useful towards improving the efficiency of measurement method-
ologies. This becomes particularly important for benchmarking performed at
runtime with on-the-fly optimization of communication operations.

3 MPIBlib Benchmarking Suite

This work is motivated by the absence of an MPI benchmarking suite that would
satisfy the following requirements:

– The suite is implemented in the form of library allowing its integration into
application-level software.

– The suite provides a wide range of timing methods, both universal and op-
eration/implementation specific, allowing for the choice of the optimal (in
terms of accuracy and efficiency) method for different applications and exe-
cuting platforms.

We have developed such a benchmarking library, MPIBlib, the main goal of
which is to support accurate and efficient benchmarking of MPI communication
operations in parallel applications at runtime. The main features of MPIBlib can
be summarized as follows.

MPIBlib is implemented in the form of library and includes the
benchmarks for point-to-point and collective communication opera-
tions. The MPIBlib design was influenced by our work on development of the
software tool for automated estimation of parameters of the heterogeneous com-
munication performance model proposed in [8]. The software tool widely uses
MPIBlib at runtime for accurate and efficient estimation of the execution time
of point-to-point, scatter, and gather communications, which is required to find
the parameters of the model.

To provide reliable results, the communication experiments in each
benchmark are repeated either fixed or variable number of times. The
latter allows the user to control the accuracy of the obtained estima-
tion of the execution time. Namely, the definition of each benchmarking
function includes the following arguments:

234 A. Lastovetsky, V. Rychkov, and M. O’Flynn

– Input: the minimum and maximum numbers of repetitions, min reps and
max reps (min reps ≤ max reps), and a maximum error, alpha (0 <
alpha < 1);

– Output: the actual number of repetitions, reps, and error, a.

Assigning to min reps and max reps the same values results in the fixed number
of repetitions of the communication operation, with the error arguments being
ignored. As communication operations in a series are isolated from each other,
we suppose that the measurement errors are distributed according to the nor-
mal law, which enables estimating within a confidence interval, (1 − alpha). If
min reps < max reps, the experiments are repeated until the sample satisfies
the Student’s t-test or the number of repetitions reaches its maximum. In this
case, the number of repetitions the benchmark has actually taken, reps, and the
final error, a, are returned. For statistical analysis, the GNU Scientific Library
[9] is used.

The point-to-point benchmarks can be run either sequentially or in
parallel on the communicator consisting of more than two processors.
The point-to-point benchmark estimates the execution time of the roundtrips
between all pairs of processes in the MPI communicator, i

M1←−−→
M2

j, i < j. It

returns three arrays, each of which contains C2
n values corresponding to each

pair: estimations of execution time, numbers of repetitions and errors. Several
point-to-point communications as well as statistical analysis can be performed in
parallel, with each process being involved in no more than one communication.
This allows us to significantly reduce the overall execution time of the point-to-
point benchmark code and gives us quite accurate results on the clusters based
on switched networks. Network switches are capable of inspecting data packets as
they are received, determining the source and destination device and forwarding
it appropriately. By delivering each message only to the original intended device,
a network switch conserves network bandwidth and offers a generally better
performance for simultaneous point-to-point communications.

The use of the results of the point-to-point benchmarks can be various. They
can be used for the estimation of parameters of the analytical communication
performance models, such as Hockney, LogGP. For example, the parameters of
the Hockney model can be found from the execution times of two roundtrips with
empty and non-empty messages. In practice, due to noises in measurements, they
are found from the execution times averaged in two series of such roundtrips.
MPIBlib point-to-point benchmark provides this accurate estimation.

The set of communication operations that can be benchmarked by
MPIBlib is open for extensions. The definition of operation-independent
benchmark functions includes a data structure argument that includes the func-
tion pointer referencing to an MPI collective operation. MPIBlib provides a
choice of different implementations of MPI collective operations (for example,
linear and binomial MPI Scatter/MPI Gather). Any of those functions as well as
user-defined versions of MPI collective operations can be passed as an argument
to the benchmarking subroutines.

MPIBlib: Benchmarking MPI Communications for Parallel Computing 235

Three timing methods that are universally applicable to all MPI
communication operations are provided; these are global, maximum,
and root timings. MPIBlib provides API to all timing methods described in
Section 2. The user is responsible for building the MPI communicator and map-
ping the processes to processors. To use benchmarks on SMP/multicore pro-
cessors, an accurate MPI Wtime implementation is required, as intra-processor
communications may take very short time.

MPIBlib provides both operation-specific and implementation-
specific methods of measurement. One example is a method of measur-
ing the linear and binomial scatter, which is based on the method of measuring
broadcast proposed in [7].

4 Application

The results of benchmarking the collective operations can be used for evaluation
of their different implementations, for building of the communication perfor-
mance models, and for optimization of collective operations.

With help of MPIBlib, we managed to observe the escalations of the execution
time of linear scatter/gather on the clusters based on Ethernet switch [10]. It was
possible due to the isolation of collective operations and the use of the maximum
timing method for scatter and the root timing method for gather.

The library was also integrated into the software tool that automates the
estimation of parameters of an advanced heterogeneous communication perfor-
mance model [8]. The software tool calls the MPIBlib functions for estimation of
the execution time of the i

0←−−→
0

j and i
M←−−→
0

j roundtrips, scatter and gather
communications. We used this tool on a 16-node heterogeneous cluster with a
single switch, with parallel point-to-point benchmarking and the root timing of
collective operations, which proved efficient and quite accurate on heterogeneous
clusters with a single switch. To estimate the parameters of the heterogeneous
communication performance model, we carried out additional (neither point-
to-point, nor scatter/gather) communication experiments, namely, point-to-two
communications i

M←−−→
0

j, k [11]. The function measuring the execution time of
this communication experiment was implemented on the top of the MPIBlib li-
brary. In this function, the communication experiments between non-overlapping
triplets of processors were performed in parallel on the cluster.

The MPIBlib benchmarking library can also be used to tune MPI communi-
cations either upon installation of an application (or a programming system) or
at runtime. For example, the results of the scatter and gather benchmarks car-
ried out upon installation of HeteroMPI are used for optimization of collective
operations [10].

The following fragment shows an example of the use of MPIBlib for finding
the fastest scatter implementation. In the beginning of the program, MPIB -
measure scatter root function is used to find estimates of the execution time of
different scatter implementations for different message sizes. Then these results

236 A. Lastovetsky, V. Rychkov, and M. O’Flynn

are used in the optimized scatter, Opt Scatter, in order to pick the fastest imple-
mentation for each particular message size. Opt Scatter calculates the message
size in bytes, compares the estimated execution times of all implementations for
this message size and invokes the fastest implementation.

//initialization, in the beginning of main()
for (i=0; i<N; i++)
MPIB_measure_scatter_root(comm, algs[i], n, M,
min_reps, max_reps, alpha, T[i], &reps, &a);

//globals
MPIB_Scatter* impls[N];//N scatter implementations
int M[n];//n message sizes
double T[N][n];//estimated times for each impl/msg

//optimized scatter, to be used instead of MPI_Scatter
int Opt_Scatter(list of MPI_Scatter arguments){
//calculate message size m
//find i such that M[i]<=m and M[i+1]>m
//find j such that T[j][i]=min(T[0..N-1][i])
return impls[j](list of MPI_Scatter arguments);

}

5 Experiments

In addition to the library, the MPIBlib suite provides a standalone application
for benchmarking point-to-point and collective MPI communications, and a set of
gnuplot scripts for visualization of the results of measurements. We performed
experiments with point-to-point, scatter and gather benchmarks on homogeneous
and heterogeneous clusters with different MPI implementations. In this paper, we
present the results for a heterogeneous 16-node cluster: 11 x Xeon 2.8/3.4/3.6,
2 x P4 3.2/3.4, 1 x Celeron 2.9, 2 x AMD Opteron 1.8, Gigabit Ethernet, LAM
7.1.3. They demonstrate the effects of pipelining (Section 2) and the importance of
benchmarking collective operations for different message sizes (in [10], we reported
on the escalations of the execution time of gather caused by the use of TCP/IP
layer in the communication stack with switched networks, see Fig. 1).

Table 1. The execution time of scatter and gather benchmarks with different timing
methods on 16 node heterogeneous cluster

Timing method Scatter, 0..100KB, Gather, 0..100KB,
1KB stride, 1 rep (sec) 1KB stride, 1 rep (sec)

Global 28.7 44.7
Maximum 0.8 15.6
Root 0.8 15.7

MPIBlib: Benchmarking MPI Communications for Parallel Computing 237

 0

 0.004

 0.008

 0.012

 0.016

 0 20 40 60 80 100

E
xe

cu
tio

n
tim

e
(s

ec
)

Message size (KB)

Scatter

root max global

 0

 0.075

 0.15

 0.225

 0.3

 0 20 40 60 80 100

E
xe

cu
tio

n
tim

e
(s

ec
)

Message size (KB)

Gather

root max global

Fig. 2. Comparison of different timing methods for native (linear) LAM scatter and
gather on 16 node heterogeneous cluster

We compared the results of sequential and parallel point-to-point benchmarks.
In the sequential mode, while two processes are communicating, a barrier blocks
all other processes. The experiment included 100 repetitions of 4KB ping-pong
and took 3.5 sec. In the case of parallel roundtrips, the benchmarking procedure
took significantly less time, 0.5 sec, with the same accuracy of estimation, which
was possible due to the nature of the experimental network.

In the next experiment, we use MPIBlib to compare the cost and accuracy
of different methods of the measurement of native MPI scatter and gather op-
erations on the target platform. Table 1 shows the overall execution time of the
benchmarks that use different timing methods and consist of one collective com-
munication for each message size from 0 to 100 KB, with 1 KB stride. One can
see that the global-time approach is very costly. The maximum and root meth-
ods are as accurate as that with global-time (see Fig. 2) but much more efficient.
The difference between overall scatter and gather execution times is caused by
escalations of the execution time of gather for messages of middle sizes.

In summary, the experimental results demonstrate that the use of MPIBlib
can significantly speed up the estimation of the execution time of MPI commu-
nication operations without the loss of its accuracy.

6 Conclusion

In the paper, we have analyzed the commonly used MPI benchmarking suites and
the methods of measurement of communication execution time. We have presented
MPIBlib, the new MPI benchmarking library, which provides various operation-
independent and operation-specific methods of measurement. MPIBlib is aimed
at accurate and efficient runtime benchmarking of MPI communication operations
in parallel applications. We have also presented an experimental demonstration
showing that the use of MPIBlib can significantly speed up the benchmarking of
MPI communication operations, not compromising the accuracy of the estimation.
The library is freely available at http://hcl.ucd.ie/project/MPIBlib.

http://hcl.ucd.ie/project/MPIBlib

238 A. Lastovetsky, V. Rychkov, and M. O’Flynn

Acknowledgments. This work is supported by the Science Foundation Ireland
and in part by the IBM Dublin CAS.

References

1. Gropp, W., Lusk, E.: Reproducible Measurements of MPI Performance Charac-
teristics. In: Margalef, T., Dongarra, J., Luque, E. (eds.) PVM/MPI 1999. LNCS,
vol. 1697, pp. 11–18. Springer, Heidelberg (1999)

2. Turner, D., Oline, A., Chen, X., Benjegerdes, T.: Integrating New Capabilities into
NetPIPE. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003.
LNCS, vol. 2840, pp. 37–44. Springer, Heidelberg (2003)

3. Intel MPI Benchmarks. User Guide and Methodology Description (2007)
4. Grove, D., Coddington, P.: Precise MPI performance measurement using

MPIBench. In: Proceedings of HPC Asia (September 2001)
5. Worsch, T., Reussner, R., Augustin, W.: On Benchmarking Collective MPI Opera-

tions. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J., Volkert, J. (eds.) PVM/MPI
2002. LNCS, vol. 2474, pp. 271–279. Springer, Heidelberg (2002)

6. Bernaschi, M., Iannello, G.: Collective communication operations: experimental
results vs. theory. Concurrency: Practice and Experience 10(5), 359–386 (1998)

7. Supinski, B., de Karonis, N.: Accurately measuring MPI broadcasts in a computa-
tional grid. In: The 8th International Symposium on High Performance Distributed
Computing, pp. 29–37 (1999)

8. Lastovetsky, A., Mkwawa, I., O’Flynn, M.: An Accurate Communication Model
of a Heterogeneous Cluster Based on a Switch-Enabled Ethernet Network. In:
Proceedings of ICPADS 2006, Minneapolis, MN, pp. 15–20 (2006)

9. GNU Scientific Library (2007), http://www.gnu.org/software/gsl/manual/
10. Lastovetsky, A., O’Flynn, M., Rychkov, V.: Optimization of Collective Communi-

cations in HeteroMPI. In: Cappello, F., Herault, T., Dongarra, J. (eds.) PVM/MPI
2007. LNCS, vol. 4757, pp. 135–143. Springer, Heidelberg (2007)

11. Lastovetsky, A., Rychkov, V.: Building the Communication Performance Model of
Heterogeneous Clusters Based on a Switched Network. In: Proceedings of the 2007
IEEE International Conference on Cluster Computing (Cluster 2007), pp. 568–575.
IEEE Computer Society, Los Alamitos (2007)

http://www.gnu.org/software/gsl/manual/

	Introduction
	Related Work
	Measuring the Execution Time of MPI Collective Operations
	Scheduling the Communication Experiments

	MPIBlib Benchmarking Suite
	Application
	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

