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Abstract—The paper presents an approach to improve 
performance of GridRPC applications by statically analysing 
dynamic workflows. An extension to GridRPC API is used to 
specify the region of code to apply static code analysis to, 
during the compilation phase. The information collected is 
then used at runtime for building a graph of dependencies 
between tasks, which is analysed to assign servers to tasks in 
an optimal way, minimising the time of computation and 
communication. This approach handles branching and looping 
correctly by building an extended dependency graph, which 
covers all branches of the code. 

The experimental results are provided to show that in many 
practically important cases this approach leads to better 
results than individual mapping of tasks or run-time task 
discovery. 

Keywords- Grid; GridRPC; task mapping; task scheduling; 
workflows mapping 

I. INTRODUCTION 
GridRPC [1] is a standard API for grid computing, 

promoted by Open Grid Forum. It specifies a set of functions 
which can be used to start computations on remote servers 
and wait for their results. There are several popular 
implementations of GridRPC API, including GridSolve [2], 
Ninf-G [3] and DIET [4]. 

The advantage of GridRPC is its simplicity. Any 
application written in a modular way can be converted into a 
Grid client by replacing function calls performing expensive 
computations with GridRPC calls performing the same 
computations remotely. 

The important feature of GridRPC is that the programmer 
does not have to specify a server to run a task on: the server 
can be assigned by middleware. Also, unlike other RPC 
implementations, GridRPC does not use client-side IDL to 
build stub functions for RPC calls. All information about 
remote function argument types is provided by servers at 
runtime. 

The simplicity of GridRPC API leads to some 
limitations. Remote task calls are independent of each other, 
and a server is assigned to each task call individually, 
without taking other tasks into account. This can lead to non-
optimal load distribution. 

Also, the client-server nature of RPC causes arguments 
and results of each call being sent and received directly from 
and to client. This leads to unnecessary communication 

overhead in a very common case when a result of one task is 
used by another task, but not directly used on the client. The 
servers running both tasks can be connected by a high speed 
link, so direct transfer of data would lead to much better 
performance than communication through the client. 

There are several approaches to improve performance of 
GridRPC applications by extending GridRPC API, but they 
either put strict limitations on application code, or require 
using an additional description of application's performance 
model. 

This paper describes another approach to building 
application performance model automatically by applying 
static code analysis to the application's source code. This 
approach does not incur additional restrictions on application 
code and does not require manual efforts for describing the 
performance model. 

The rest of the paper is structured as follows. In Section 
II, existing approaches to mapping remote tasks to servers 
are discussed, with their advantages and limitations. In 
Section III, the new approach using static code analysis is 
presented. In Section IV, the experimental results showing 
advantages of static code analysis approach over runtime 
discovery are presented. In Section V, factors contributing to 
speed improvement are described. Section VI concludes the 
paper. 

II. EXISTING APPROACHES TO MAPPING TASKS TO 
SERVERS 

A. Individual Mapping 
Individual mapping is traditionally used by GridRPC 

implementations. RPC calls are performed independently 
from each other, all arguments are sent by the client, and all 
results are returned to the client. 

Figure 1gives an example of application using GridRPC 
API. First, function handles t1, t2, t3 and p1 are 
initialised for remote tasks T1_cond, T2_cond, T3_cond 
and P1_cond respectively. Then two instances of remote 
task T1_cond are started in parallel asynchronously: the 
grpc_call_async() function starts a remote task, but 
does not wait for its completion. Then the program waits for 
all remote tasks completion using grpc_wait_all() 
function. The remote tasks T2_cond and P1_cond are run 
sequentially and synchronously: the grpc_call() 
function starts a remote task and waits for its completion. 
The result of the remote task P1_cond is saved in variable 



p, which is used as a condition in the if statement. Both 
branches of this statement run two instances of the same 
T3_cond remote task in parallel and then wait for their 
completion, but the input arguments for these tasks are 
different. 

The individual mapping works well when the client starts 
remote tasks sequentially, when next task is called only after 
the previous one has finished. 

However, non-optimal load distribution is likely when 
remote tasks are run in parallel. For example, the client can 
start two tasks, a simple one and a complex one, and then 
start waiting for their results. When the simple task is started 
the fastest server will be allocated to this task in order to 
minimise its execution time. Then, when the complex task is 
started, the fastest server is already busy, and a slower server 
will be allocated. If the information about the parallel remote 
tasks was somehow available prior to mapping the tasks to 
servers, it would be possible to assign servers in a more 
optimal way: the slower server to the simpler task, the faster 
server to the complex task. 

Another problem with individual mapping is non-optimal 
communication. A GridRPC client is usually connected to 
the computational cluster via public internet, whereas servers 
inside cluster are interconnected using high-speed local area 
network. This means that it is much faster to transfer data 
between servers than to the client and then back to the server 
in the case when one remote task uses results from another 
remote task. Unfortunately, the direct server-to-server 
communication is impossible in the framework of the 
unmodified GridRPC API. 

B. Runtime Discovery: SmartGridRPC and SmartGridSolve 
SmartGridSolve [5] is an extension of GridSolve 

middleware. Its design was inspired by mpC programming 
language [6]. It implements an extended version of GridRPC 
API for C programming language called SmartGridRPC [7], 
and uses runtime discovery for collective mapping of tasks to 
servers and enabling server-to-server communication to 
achieve improved performance. 

In SmartGridSolvethe collective mapping applies to a C 
block marked by agrpc_map()preprocessor directive. 

Figure 2 shows an example of the same algorithm as in 
Figure 1 but changed to use SmartGridRPC API. Three 
regions of code are marked for collective mapping. The 
reason why the whole algorithm is not marked for collective 
mapping will be explained later. 

Internally, the grpc_map() directive is implemented as 
a while loop which executes its body block twice. The first 
pass is called discovery phase. During this pass all GridRPC 
calls are recorded but not executed. After the first loop pass, 
the mapping takes place. The client sends the list of remote 
tasks to the SmartGridSolve agent along with information 
about their arguments. The agent uses this information to 
build the graph of dependencies between tasks, which is sent 
back to the client along with information about servers which 
can perform those tasks, their performancecharacteristics and 
the throughput of links between them. This information is 
used by the client to map tasks to servers for optimal 
computation and communication performance. The actual 
computation is done on the second pass of the loop, which is 
called execution phase. 

The approach used in SmartGridSolve is simple and 
efficient, but it puts significant restrictions onthe code inside 
the block marked for collective mapping. The fact that the 
code runs twice means that all side effects will happen twice 
as well. Therefore, the local code should either have no side 
effects, or those side effects should yield the same result 
when the code is run more than once. There is a workaround 
for this: a block of code can be marked with a 
SmartGridRPC grpc_local() directive, making this 
block be executed only during the execution phase. 
However, the way fault tolerance is implemented in 
SmartGridSolve does not guarantee that this block is run 

grpc_function_handle_t t1, t2, t3, p1; 
grpc_sessionid_t s0, s1; 
grpc_function_handle_default(&t1, "T1_cond"); 
grpc_function_handle_default(&t2, "T2_cond"); 
grpc_function_handle_default(&t3, "T3_cond"); 
grpc_function_handle_default(&p1, "P1_cond"); 
grpc_map("ex_map") { 
  grpc_call_async(&t1, &s0, a0, b0, c0, s, c); 
  grpc_call_async(&t1, &s1, a1, b1, c1, s, c); 
  grpc_wait_all(); 
  grpc_call(&t2, c0, c1, d, s, c); 
  grpc_call(&p1, d, s, c, x,&p); 
} 
if (p) { 
  grpc_map("ex_map") { 
    grpc_call_async(&t3, &s0, c0, a0, s, c); 
    grpc_call_async(&t3, &s1, c1, a1, s, c); 
    grpc_wait_all(); 
  } 
} else { 
  grpc_map("ex_map") { 
    grpc_call_async(&t3, &s0, c0, b0, s, c); 
    grpc_call_async(&t3, &s1, c1, b1, s, c); 
    grpc_wait_all(); 
  } 
} 

Figure 1. GridRPC program 

Figure 2. SmartGridRPC program

grpc_function_handle_t t1, t2, t3, p1; 
grpc_sessionid_t s0, s1; 
grpc_function_handle_default(&t1, "T1_cond"); 
grpc_function_handle_default(&t2, "T2_cond"); 
grpc_function_handle_default(&t3, "T3_cond"); 
grpc_function_handle_default(&p1, "P1_cond"); 
grpc_call_async(&t1, &s0, a0, b0, c0, s, c); 
grpc_call_async(&t1, &s1, a1, b1, c1, s, c); 
grpc_wait_all(); 
grpc_call(&t2, c0, c1, d, s, c); 
grpc_call(&p1, d, s, c, x,&p); 
if (p) { 
  grpc_call_async(&t3, &s0, c0, a0, s, c); 
  grpc_call_async(&t3, &s1, c1, a1, s, c); 
  grpc_wait_all(); 
} else { 
  grpc_call_async(&t3, &s0, c0, b0, s, c); 
  grpc_call_async(&t3, &s1, c1, b1, s, c); 
  grpc_wait_all(); 
} 



only once. If an error happened during the execution phase, 
all subsequent GridRPC calls and grpc_local() blocks 
would be skipped and the loop would be run once again from 
the beginning, with a different mapping. This leads to 
grpc_local() blocks, which were run before the 
GridRPC call where an error happened, to be run once again. 
Only those grpc_local() blocks which are located after 
the last GridRPC call are guaranteed to be run once. 

There is another important restriction on the code inside 
the grpc_map() block. The workflow of the code during 
discovery and execution phases should be exactly the same. 
This means that all loops inside grpc_map() block should 
have exactly the same number of iterations during discovery 
and execution phase, and all branches should be exactly the 
same as well. As a result, the flow control inside 
thegrpc_map() block should be pre-determined before the 
execution phase, and thus not dependent on remote task 
execution results. 

The violation of the restrictions on code mentioned above 
can lead to disastrous results, causing a program to behave in 
unexpected way. It is very easy to make a mistake and 
violate those restrictions, and there is no automatic detection 
of such mistakes. 

An example of such violation is shown on Figure 3. The 
difference between the original SmartGridRPC code on 
Figure 2 and this example is that the whole algorithm is 
marked for collective mapping. This will not work correctly 
with runtime discovery.Flow control of the code inside the 
grpc_map() block depends on the value of variable p, 
which depends on the result of a remote task call. This result 
is unknown during the discovery phase because GridRPC 
calls are not being executed during this phase. Hence, it is 
impossible to make the workflow inside the grpc_map() 
block run the same way during both iterations. The only way 
to make this algorithm to run correctly with SmartGridSolve 
is to map both branches of the conditional statement 
separately, as shown on Figure 2. 

C. Static Discovery with External Description: ADL 
Another approach to collective mapping is the use of 

ADL [8], the Algorithm Definition Language. It uses an 
extension to GridRPC API similar to pure SmartGridRPC. 
The block of code for collective mapping is also specified 
using a grpc_map() directive, but the code inside this 
block will be run only once. The task dependency graph and 
application's performance model are specified separately, 
using ADL. 

Figure 4 gives an example of an ADL specification for 
the algorithm in Figure 3. The component section specifies 
the remote tasks required for the algorithm. The OBJ section 
specifies non-scalar objects used in the algorithm. The 
algorithm section describes the workflow of the algorithm, 
the order of remote task execution and what arguments are 
involved in this execution. The specification in this example 
has 5 parameters. The complexity of tasks and the workflow 
of the algorithm are dependent onthe actual values of these 
parameters, which are specified at runtime. For example, the 
size of vectors depends on parameter s. Parameters 
cndtrue and cndfalse specify the likelihood of actual 
execution of each branch of the conditional statement in the 
algorithm. If both of those parameters have nonzero value at 
runtime, both branches are mapped as if they are executed in 
parallel. 

The advantage of this approach over runtime discovery is 
the absence of restrictions on the code of thegrpc_map() 
block. This means that it allows collective mapping of 
iterative algorithms with loops having the number of 

Figure 3.SmartGridRPC program with side effects

Figure 4. ADL specification 

grpc_function_handle_t t1, t2, t3, p1; 
grpc_sessionid_t s0, s1; 
grpc_function_handle_default(&t1, "T1_cond"); 
grpc_function_handle_default(&t2, "T2_cond"); 
grpc_function_handle_default(&t3, "T3_cond"); 
grpc_function_handle_default(&p1, "P1_cond"); 
grpc_map("ex_map") { 
  grpc_call_async(&t1, &s0, a0, b0, c0, s, c); 
  grpc_call_async(&t1, &s1, a1, b1, c1, s, c); 
  grpc_wait_all(); 
  grpc_call(&t2, c0, c1, d, s, c); 
  grpc_call(&p1, d, s, c, x,&p); 
  if (p) { 
    grpc_call_async(&t3, &s0, c0, a0, s, c); 
    grpc_call_async(&t3, &s1, c1, a1, s, c); 
    grpc_wait_all(); 
  } else { 
    grpc_call_async(&t3, &s0, c0, b0, s, c); 
    grpc_call_async(&t3, &s1, c1, b1, s, c); 
    grpc_wait_all(); 
  } 
} 

modulecndalg(int s, int c, double x, 
intcndtrue, intcndfalse) 
{ 
  component: 
  task "tgtest_cond.idl" 
  T1_cond,T2_cond,T3_cond,P1_cond; 
 
OBJ: 
  DOUBLE(s)a0, a1, b0, b1, c0, c1, d; 
  INTEGER p; 
 
algorithm: 
  parallel { 
    T1_cond:(a0, b0,@s,@c)->(c0); 
    T1_cond:(a1,b1,@s,@c)->(c1); 
  } 
  T2_cond:(c0, c1,@s,@c)->(d); 
  P1_cond:(d,@s,@c,@x)->(p); 
  parallel { 
    if (cndtrue) 
      parallel { 
        T3_cond:(a0, c0,@s,@c)->(a0); 
        T3_cond:(a1,c1,@s,@c)->(a1); 
      } 
    if (cndfalse) 
      parallel { 
        T3_cond:(b0, c0,@s,@c)->(b0); 
        T3_cond:(b1, c1,@s,@c)->(b1); 
      } 
  } 
} 



iterations dependent on remote task results, and conditional 
algorithms with branching dependent on remote task results. 
Hence, the algorithm in Figure 3works correctly when using 
ADL specification in Figure 4. 

The disadvantage of this approach is that it requires a 
programmer to describe the mapping scenario of the 
algorithm using ADL in addition to the program itself. This 
means that significant additional efforts are needed to enable 
more efficient mapping and to keep the program and its ADL 
description in sync. If the program and ADL diverged 
somehow, the mapping will be non-optimal, and there is no 
way to check for this problem automatically. 

III. USING STATIC CODE ANALYSIS FOR COLLECTIVE 
MAPPING 

The approach proposed in this paper is an attempt to 
combine advantages of both pure SmartGridSolve and ADL-
enabled SmartGridSolve, while avoiding their disadvantages. 
This is achieved by using static code analysis to extract from 
the application code itself as much information as possible in 
order to build the task dependency graph before the 
execution of the application, without a separate run-time 
discovery phase. Like the ADL-based approach, this 
approach does not incur limitations on code side effects 
imposed by pure SmartGridSolve and allows for loops and 
branches.On the other hand, it does not require an 
additionalspecification of the algorithm in ADL and 
eliminates the problem of synchronization of the algorithm 
specification with the application code. 

The proposed approach is implementedas a modified 
version of SmartGridSolve, providingSmartGridRPC API 
with minor extensions. It accepts any GridRPC source code 
with or without SmartGridRPC extensions:grpc_map() 
and grpc_local() blocks. 

For example, code on Figure 3 works correctly with 
static code analysis approach, but there is no need to supply 
this code with additional algorithm specification, like the one 
presented in Figure 4. 

Static analysis is applied to the source code before its 
compilation to extract as much information as possible about 
the algorithm. The extracted information is functionally 
equivalent to ADL specification, but uses different 
format.Then the code is modified to add the following stages 
before the algorithm is run: 

1. building application performance model; 
2. building extended dependency graph; 
3. using mapping heuristics. 

These stages use the information collected during the static 
code analysisfor making the optimal decision on task-to-
server mapping and server-to-server communication. 

Static code analysis and the runtime stages are described 
in details below. 

A. Analysing Code To Find GridRPC Calls 
The algorithm of the block for collective mapping is 

analysed on the source code level using Clang [9], a frontend 
for the C family of languages (C, C++, Objective C), which 
is a part of LLVM [10], a toolkit for building compilers. 

Clang is implemented as a modular library, allowing using it 
as a toolkit for analysing C code. 

First, all source code modules are parsed by Clang 
generating their respective Clang-specific internal AST 
(abstract syntax tree) representations. 

Then, these abstract syntax trees are analysed together in 
order to find blocks marked by grpc_map() directives. 
These blocks are analysed for conditional statements, loops 
and function calls. GridRPC function calls are being 
recorded; all other function calls are analysed recursively. 

Arguments of GridRPC calls are analysed across function 
calls to find if they reference the same values even if they are 
used deeply inside function call hierarchy. First arguments of 
GridRPC calls are analysed to find the corresponding 
function handle initialisation functions, and thus to find the 
names of remote tasks which are run by those calls. All other 
arguments are analysed and the numerical ID values are 
assigned to them so that the same arguments had the same ID 
values. 

The analysing algorithm tries to guess the number of loop 
iterations and the values of scalar GridRPC call arguments 
which determine the size of other non-scalar arguments 
(vectors and matrices). The warning is produced if the 
algorithm is unable to guess these values. In this case the 
programmer can either simplify algorithm or provide the 
most likely value using grpc_likely() directive. This is 
similar to specifying these values in ADL. 

Also, the analysing algorithm tries to guess which branch 
is executed in conditional statement if this is dependent on a 
value computed outside of grpc_map() block only. 
Otherwise, both branches of the conditional statement are 
analysed as if they are run in parallel. 

The result of this analysis is a C code with 
grpc_map() blocks modified by adding static variable 
declarations initialised with information collected during 
static code analysis and code to build application 
performance model at runtime. The information stored in 
these static variables is used during runtime to build the 
dependency graph for the grpc_map() block. This 
information is a parameterised application performance 
model, which can be used later to build actual performance 
model by substituting parameters with actual runtime values. 
Functionally this information is similar to algorithm 
description used in ADL approach, but without the need to 
write this description manually. 

B. Building Application Performance Model 
When the program is run, it uses the parameterised 

performance model built during static code analysis and 
stored in global variables to build actual application 
performance model at runtime. The parameters are 
substituted with actual runtime values. Then the resulting 
performance model is sent to the SmartGridSolve agent for 
building the extended task dependency graph. 

C. Building Extended Dependency Graph 
The SmartGridSolve agent uses the application 

performance model to build a task dependency graph by 
analysing the order of tasks to be run and their arguments. 



The task A is considered dependent on task B if it is started 
later than task B and uses a task B's output argument as its 
input argument. The resulting task dependency graph is sent 
back to the client along with a list of servers the tasks can be 
run on and those servers' performance characteristics. 

This stage is the same as in unmodified SmartGridSolve, 
but with one important difference. The dependency graph is 
extended, covering the remote tasks which can potentially be 
run. It is however possible that some tasks in this 
dependency graph will be skipped during the actual 
algorithm execution. This can happen if there are branches in 
the algorithm's code. 

D. Using Mapping Heuristics 
The task dependency graph is used to build a mapping 

between tasks and servers the same way as SmartGridSolve 
client does. The heuristic specified by 
grpc_map()argument is used for this task. The optimal 
mapping algorithm is NP-complete, so it is the programmer's 
responsibility to choose the heuristic which produces best 
results in acceptable time [11]. 

IV. EXPERIMENTAL RESULTS 
The proposed approach based on the static code analysis 

outperforms the runtime discovery approach used in 
unmodified SmartGridSolve in many important cases. It 
allows for applying the collective mapping to larger regions 
of code when loops or branches dependent on remote task 
results are present. For example, the code in Figure 3will not 
work correctly with pure SmartGrisSolve, so it should be 
modified to reduce the size of code regions marked for 
collective mapping to contain no flow control dependent on 
remote task results, leading to the code shown in Figure 2, 
which produces much less optimal mapping. 

To validate these performance advantages 
experimentally, the algorithm in Figure 1, Figure 2 and 
Figure 3 was tested using SmartGridSolve with individual 
mapping, SmartGridSolve with runtime discovery and 
SmartGridSolve modified for the static analysis approach 

 

 
Figure 5. Experimental results 

 

 
Figure 6. Task graph for the first region of code 

 
Figure 7. Task graph for then branch of if statement 



respectively. 
The hardware setup used in the experiments consists of 4 

heterogeneous servers with performance ranging from 422 to 
531 MFlops and 1GB of memory each interconnected with 
1Gbit/s Ethernet switch and a client machine which has 
100Mbit/s connection to server network. 

Figure 5shows the results of the experiment with input 
data sizes 24, 48, 96, 192, 384 and 576 megabytes. The 
average time is calculated from 10 executions for each data 
size and implementation. 

The experimental results show that the larger region of 
code for collective mapping allowed by static code analysis 
approach consistently yields better performance for all input 
data sizes. 

Figure 6 and Figure 7 show the task graphs generated for 
two regions of code marked for collective mapping in 
algorithm in Figure 2, before the conditional statement and 
inside its then branch. Solid arrows show data 
communications between the client and remote task and 
between remote tasks. These arrows are labelledwith the 
names of input and output arguments. The oval shapes 
represent variables in the program. The grey squares 
represent remote tasks. 

Arrows between remote tasks going through a variable 
represent server-to-server communication. Although it looks 
like one remote task stored its result in the variable and 
another remote task received its argument from this variable 
in the program code, the client is not involved in this 
communication, and the result is directly sent between 
servers running remote tasks. Only arrows going from and to 
grey diamonds represent communications involving the 
client. 

Figure 8 shows the task graph generated for the whole 
algorithm in Figure 3. The resulting communication is much 
more optimal. For example, c0 and c1 arrays are sent 
directly from servers running task T1_cond to servers 
running tasks T3_cond, which does not happen when 
conditional statement's branches are mapped separately. 
Also, arrays a0, a1, b0 and b1 are being sent to servers 
running tasks T1_cond and T3_cond in parallel, further 
improving communication speed. 

V. FACTORS CONTRIBUTING TO SPEED IMPROVEMENT 
Although the detailed analysis of speed improvement 

provided by collective mapping is not given here, we did it in 
another paper [12], which shows that there are three factors 
contributing to it. 
• The primary factor is server-to-server communication. 

Computational grid usually consists of nodes connected 
by high-speed local area network, whereas client 
connects to the grid using low-speed Internet 
connection. Direct server-to-server communication 
allows avoiding sending intermediary results through 
low-speed link to the client or even avoiding sending 
data at all in cases when tasks run on the same server. 
ADL and static code analysis approaches allow 
extending theregion of code for collective mapping to 
cover loops and branches, which in turn allows more 
data to be covered by server-to-server communication. 

• The secondary factor is better distribution of 
computational resources. This factor becomes more 
prominent in case of smaller data size or faster link 
between client and grid. Extended regions of code for 
collective mapping provided by ADL and static code 

 
Figure 8. Task graph for the whole algorithm 



analysis approaches allow to take more tasks into 
account and therefore produce better mapping leading to 
better distribution of computational resources. 

• The tertiary factor is the direct result of server-to-server 
communication: avoiding using client's memory 
resources to store intermediary results. Clients are 
usually just regular desktop or laptop computers, 
whereas grid nodes are dedicated servers with vast 
amounts of memory. Storing intermediary result on a 
client just for sending to another server is not only 
inefficient way of communication; it also can lead to 
paging on the client, slowing down the whole algorithm. 

VI. CONCLUSIONS 
In this paper, we have proposed the new approach to 

mapping tasks to servers in GridRPC algorithms using static 
code analysis. This approach lifts restrictions on the code 
imposed by the runtime discovery approach and provides 
better performance by allowing mapping the whole 
algorithms with flow control dependent on remote task 
results, not just regions with predetermined flow control. 
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