
0038

1

Abstract—The paper presents a performance model that can be

used to optimally schedule arbitrary tasks on a network of
heterogeneous computers when there is an upper bound on the
size of the task that can be solved by each computer. We
formulate a problem of partitioning of an n-element set over p
heterogeneous processors using this advanced performance model
and give its efficient solution of the complexity O(p3×log2n).

Index Terms—Heterogeneous (hybrid) systems,
Scheduling and task partitioning, Load balancing and task
assignment

I. INTRODUCTION
n this paper, we deal with the problem of optimal
distribution or scheduling of arbitrary tasks on a network of
heterogeneous computers when there is an upper bound on

the size of the task that can be solved by each computer. These
tasks are processed in parallel by the computers of the
heterogeneous network. Examples of applications include
search for patterns in text, audio, graphical files, processing of
very large linear data files as in signal processing, image
processing, and experimental data processing, linear algebra
algorithms, simulation, combinatorial optimization algorithms,
and many others.

Our efforts are mainly concentrated towards programming
parallel and distributed applications on heterogeneous
networks of computers, which are ubiquitous in university
departments and companies, and programming distributed
applications on computing grids, which are composed of nodes
that may well be scattered around the world. Some of the
issues with programming applications on such networks of
heterogeneous computers have been explained in [1]. These
are mainly:

• On such networks, all available resources, namely,
slower machines in addition to faster machines must be
used to execute the distributed application efficiently
taking into account the memory structure of each
processor. These processors may have significantly
different sizes at each level of their memory

hierarchies. It is quite likely that the subprograms
assigned to some processors may not fit into their main
memory leading to paging.

• Unlike dedicated distributed computer systems, such
networks are not strongly centralized and consist of
relatively autonomous and mainly general-purpose
computers, where each one may be used and
administered independently by its users. On the other
hand, each computer is an integrated part of the
network, which means that it periodically does some
computations and communications just as such an
integrated node of the network. One of the implications
with the multi-user decentralized loosely-integrated
nature of these networks is the unstable performance
characteristics of processors during the execution of a
parallel program as the computers may be involved in
other computations and communications. As a result,
the dependence of the speed of the processor on the
problem size is not as sharp and distinctive as observed
on dedicated distributed multiprocessor computer
systems. In this case, the speed of the processors is
more realistically represented by a continuous and
relatively smooth function of the problem size.

The performance model discussed in [1] can be used to
efficiently schedule arbitrary tasks on such network of
heterogeneous computers when one or more arbitrary tasks do
not fit into the main memory of the processors. This model
particularly addresses the problem of optimal data partitioning
in heterogeneous environments when relative speeds of
processors cannot be accurately approximated by constant
functions of the problem size. In this model, each processor is
represented by its absolute speed as a continuous function of
problem size.

However this model fails to address the problem of
efficiently scheduling arbitrary tasks on a network of
heterogeneous computers when there is an upper bound on the
size of the task that can be solved by each computer. Hence we
extend this model of networks of heterogeneous computers by
introducing an additional parameter, namely, the upper bound
on the size of the task that can be solved by each computer.
The upper bound could signify one of the following cases:

Data Partitioning with a Realistic
Performance Model of Networks of

Heterogeneous Computers with Task Size
Limits

Alexey Lastovetsky, Member, IEEE and Ravi Reddy

I

0038

2

• Allocation of a task whose size is beyond this bound
could result in processor failure.

• Allocation of the task whose size is beyond this bound
could result in unacceptable execution time to
accomplish the task.

Consider a small network of three processors, whose speeds
as functions of problem size during the execution of the
matrix-matrix multiplication are shown in Figure 1. Consider
the case of optimal distribution for problem sizes that lie
between line 1 and line 2. Line 1 corresponds to the problem
size b1 that is the upper bound for processor represented by
s

2
(x). Line 2 corresponds to the problem size b2, which is the

upper bound for the processors represented by speed functions
s

1
(x) and s

3
(x). For these problem sizes, any distribution

obtained by this model will most likely either crash the
processor whose speed is represented by the speed function
s

2
(x) or result in unacceptable execution time to execute the

subtask assigned to this processor.
The advanced performance model retains the restrictions

imposed by performance model [1] on the shape of the graph
representing the speed function. However each processor is
represented by its absolute speed as a continuous function of
problem size only up till its upper bound on the problem size
and beyond that, the absolute speed of the processor is
assumed to be almost equal to zero.

We formulate a problem of partitioning of an n-element set
over p heterogeneous processors using this advanced
performance model and give its efficient solution of the
complexity O(p3×log2n). This problem is a simple variant of
the most advanced problem of partitioning a set with weighted
elements [2]. We use the simple variant to explain how
complex is the problem of scheduling arbitrary tasks amongst
processors when (a) The processors have significantly
different memory structure, (b) One or more tasks do not fit
into the main memory of the processors, and (c) There is an
upper bound on the size of task that can be solved by each
processor. We also use this variant to explain in simple terms
how the advanced model can be used to achieve better data
partitioning on networks of heterogeneous computers before
moving on to solve the most advanced problem.

To demonstrate the efficiency of the advanced performance
model, we perform experiments using naïve parallel
algorithms for linear algebra kernel, namely, matrix
multiplication and Cholesky Factorization using horizontal
striped partitioning of matrices on a local network of
heterogeneous computers. Our main aim is not to show how
matrices can be efficiently multiplied or efficiently factorized
but to explain in simple terms how advanced model can be
used to optimally schedule arbitrary tasks on networks of
heterogeneous computers when one or more tasks do not fit
into the main memory of the processors and when there is an
upper bound on the size of task that can be solved by each
processor. We also view these algorithms as good
representatives of a large class of data parallel computational
problems and a good testing platform before experimenting
more challenging computational problems.

Some of the applications using distributed algorithms
include Monte Carlo Simulations of Cellular Microphysiology

[3], Grid Computing in high energy physics [4] that involves
collecting petabyte-scale datasets and deployment of enormous
computational, storage and networking resources to process,
distribute and analyze these datasets, Parallel Simulated
Annealing using Genetic Cross over to predict protein tertiary
structures [5].

II. ALGORITHMS FOR PARTITIONING SETS
In this paper, we solve the simple variant of the most

advanced problem of partitioning a set, which can be
formulated as:

• Given: (1) A set of n elements, and (2) A well-ordered
set of p processors whose speeds are functions of the
size of the problem, si=fi(x), with an upper bound bi on
the number of elements stored by each processor
(i=0,…,p-1),

• Partition the set into p disjoint partitions such that the
maximum of the execution times of the processors is
minimized.

)(max
1

0
i

i
p

i s
x−

=

That is we solve the following min-max problem:

�
�
�

�
�
� −

=
)(maxmin

1

0
i

i
p

i s
x

where xi is the number of elements in each partition.
When the speed of the processor is represented by a single

number as in the case of standard performance models of
heterogeneous networks, the algorithm used to perform the
partitioning is quite straightforward, of complexity O(p).
When there is an upper bound bi on the number of elements
stored by each processor (i=0,…,p-1), the algorithm used to
solve the partitioning problem is of complexity)(2pO . This
algorithm can be summarized as follows:

1. Partition the set such that the number of elements in
each partition is proportional to the speed of the
processor and assuming no upper bound exists on the
number of elements that can be stored by each
processor. If the number of elements assigned to each
processor is less than or equal to the upper bound on
the number of elements that can be stored by each
processor, we have the optimal distribution.

2. For each processor i (i=0,…,p-1), we check if the
number of elements assigned to it is greater than the
upper bound on the number of elements that it can
store. For all the processors whose upper bounds are
exceeded, we assign them the number of elements
equal to their upper bounds. Now we solve the
partitioning problem of a set with remaining elements
over the remaining processors. We recursively apply
this procedure until all the elements have been
assigned.

The proof of optimality of the solution provided by this
algorithm is given in [6].

0038

3

When the speed of the processor is represented by a
function of the size of the problem, s=f(x), and when there is
no upper bound on the number of elements stored by each
processor, efficient algorithms used to perform the partitioning
have been proposed of complexity)log(2

2 npO × [1].
When the speed of the processor is represented by a

function of the size of the problem, s=f(x), and when there is
no upper bound on the number of elements stored by each
processor, the problem of partitioning a set is non-trivial.
Consider a small network of three processors, whose speeds as
functions of problem size during the execution of the matrix-
matrix multiplication are shown in Figure 1. Consider the case
of optimal distribution for problem sizes that lie between line 1
and line 2. Line 1 corresponds to the problem size b1 that is the
upper bound for processor represented by s

2
(x). Line 2

corresponds to the problem size b2, which is the upper bound
for the processors represented by speed functions s

1
(x) and

s
3
(x). For these problem sizes, the standard models that use

single numbers to represent the speeds of the processors will
fail to deliver optimal distribution. This is the case with any
model that does not take into account the upper bound b1 on
the problem size that the processor represented by speed
function s

2
(x) can solve. Allocation of problem size greater

than b1 would either result in failure of processor s
2
(x) or

adverse execution performance of the distributed application.
We show few non-optimal solutions in the figure. We prove
subsequently why these solutions are non-optimal.

The algorithm we propose to solve this advanced
partitioning problem is graphically illustrated in Figure 2 and
has the following main points:

1. Partition the set such that the number of elements in
each partition is proportional to the speed of the
processor and assuming no upper bound exists on the
number of elements that can be stored by the processor.
The partitioning algorithm used to perform this task is
discussed in [1]. If the number of elements in each
partition assigned to each processor is less than the
upper bound on the number of elements that can be
stored by the processor, we have an optimal
distribution.

2. For each processor i (i=0,…,p-1), we check if the
number of elements assigned to it is greater than the
upper bound on the number of elements that it can
store. For all the processors whose upper bounds are
exceeded, we assign them the number of elements
equal to their upper bounds. Now we solve the
partitioning problem of a set with remaining elements
over the remaining processors. We recursively apply
this procedure until all the elements have been
assigned.

Proof. We prove the optimality of the solution provided by
this algorithm using mathematical induction. We use the
maximum time to solve the task assigned to each processor as
the performance metric.

Before we proceed to prove the optimality of the algorithm,
we make the following assumptions:

• We assume that the speed of each processor is
represented by a continuous function of the size of the
problem up till its upper bound on the problem size.

• The shape of the graph should be such that there is only
one intersection point of the graph with any straight line
passing through the origin. These assumptions on the
shapes of the graph are representative of the most
general shape of graphs observed for applications
experimentally. That is the speeds of the processors
must either be increasing or decreasing functions of
problem size for the problem sizes for which the
solutions are sought.

• We can safely assume that for each processor, for all
x ≥ y, where x and y are problem sizes, the execution
times tx and ty are related by tx ≥ ty.

The cases for p=1 and p=2 are trivial. For p=3, let us
assume the upper bounds of the processors 1, 2, and 3 on the
number of elements that they can store are b1, b2, and b3
respectively. Suppose the optimal distribution assuming there
are no upper bounds on the number of elements is (x1, x2, x3)
such that x1+x2+x3=n where n is the size of the problem.
Consider the case where x1 > b1 and x2 > b2. Let us assign the
number of elements equal to b1 for processor 1. The remaining
distribution has to satisfy the equality 1

'
3

'
2 bnxx −=+

where '
2x and '

3x are to be chosen such that the speed of the
processor is proportional to the number of elements assigned
to it. If the speeds of the processors 2 and 3 are non-increasing
functions of problem size, it can be proved that 2

'
2 xx > and

3
'
3 xx > . This gives us the inequality 22

'
2 bxx >> .

Therefore we have to necessarily assign b2 number of elements
to processor 2. If the speeds of the processors 2 and 3 are non-
decreasing functions of problem size, there are three
possibilities, (2

'
2 xx > , 3

'
3 xx >), (2

'
2 xx < , 3

'
3 xx >) and

(2
'
2 xx > , 3

'
3 xx <). The first and the third possibility give us

the inequality 22
'
2 bxx >> . For the second possibility, any

allocation ''
2x such that ''

2x < b2 would result in an allocation of
''

3x number of elements to processor 3 such that ''
3x > '

3x thus
resulting in a larger execution time. Therefore we have to
necessarily assign b2 number of elements to processor 2. If the
speed of the processor 2 is a non-decreasing function of
problem size and speed of processor 3 is a non-increasing
function of problem size, there are two possibilities,
(2

'
2 xx < , 3

'
3 xx >) and (2

'
2 xx > , 3

'
3 xx <). In the first

possibility, any allocation ''
2x such that ''

2x < b2 would result in

an allocation of ''
3x number of elements to processor 3 such

that ''
3x > '

3x thus resulting in a larger execution time. The

second possibility gives us the inequality 22
'
2 bxx >> .

Therefore we have to necessarily assign b2 number of elements
to processor 2. Consider the case of optimal distribution where
x1 > b1 is true. For processor 1, we assign the number of

0038

4

elements equal to b1. The remaining elements are allocated
such that 1

'
3

'
2 bnxx −=+ where '

2x and '
3x are to be chosen

such that the speed of the processor is proportional to the
number of elements assigned to it. Any other allocation

''
1x such that ''

1x < b1 would result in an allocation where one of

the inequalities (''
2x > '

2x), (''
3x > '

3x) is satisfied thus resulting
in a larger execution time. It can be proved similarly for the
case when x2 > b2.

Assuming this to be true for p=k processors, we have to
prove the optimality for p=k+1 processors. For a given
problem size n, let us assume the distribution given by our
algorithm to be kmm xxbbbx ,,,,,,, 1210 �� + such that

nxbx k =+++ �10 , where without loss of generality
processors 1,…,m are allocated their upper bounds. It can be
inferred that the execution times for the rest of the processors
0,m+1,…,k satisfy the equality km ttt === + �10 . It can

also be inferred that ikm tttt ≥+),,,(10 � for all i=1,…,m.
The execution time for the problem size is equal to

)(max
0 i

k

imp tt
=

= =),,,(10 km ttt �+ . Consider an alternative

solution with the distribution ''
1

'
0 ,,, kxxx � where

nxxx k =+++ ''
1

'
0 � and mm bxbx ≤≤ '

1
'
1 ,,� . It can be

easily seen that for atleast one processor i (i=0,m+1,…,k),

ii xx ≥' , thus giving an execution time '
it , which is greater

than the execution time given by our algorithm mpt .

Complexity. There are p major steps in the algorithm. At
each such major step i, we solve the problem of partitioning of
a set amongst p-i processors such that the number of elements
in each partition is proportional to the speed of the processor
and assuming no upper bound exists on the number of
elements that can be stored by the processor. The complexity
of this step is O(p

2
×log

2
n) [1]. Since there are p such steps, the

overall worst-case complexity is O(p
3
×log

2
n). Mathematically,

the worst-case complexity is the summation of p terms:

()
()

np
np

bbnbnnp
bbnbnnp

bbnp
bnpnpC

p

2
3

2
2

1002
2

102022
2

102
2

02
2

2
2

log

)(log

))()((log

)(log)(loglog

1)(log)2(

)(log)1(log

×≅

×≅

×−−×−××≅

+−−+−+×≅

++−−×−

+−×−+×=

�

�

�

III. EXPERIMENTAL RESULTS
A small heterogeneous local network of 11 different Solaris

and Linux workstations shown in Table I is used in the
experiments. The network is based on 100 Mbit Ethernet with

a switch enabling parallel communications between the
computers.

There are two sets of experiments used to demonstrate the
efficiency of the model. The first set is based on the parallel
algorithm of matrix-matrix multiplication of two dense
matrices using horizontal striped partitioning [7, p.199] and
the second set is based on the parallel algorithm of matrix
factorization of a dense matrix using horizontal striped
partitioning [7, p.293]. The matrices are horizontally sliced
such that the total number of rows mapped to a processor is
proportional to the speed of the processor.

The speed function for a processor is built using a set of
few experimentally obtained points. The more the number of
points used in building the speed functions, the more accurate
the speed functions are. However it is prohibitively expensive
to use large number of points to build the speed functions of
the processors. Hence for each processor, an optimal set of few
points needs to be chosen to build an efficient speed function.
Such a speed function built gives the speed of the processor
for any problem size with certain deviation from the ideal
speed function and speed functions built with sets with more
number of points. This deviation must be within acceptable
limits, ideally not exceeding the inherent deviation of the
performance of computers typically observed in the network.
In our experiments, we set the acceptable deviation to be

%5± . This implies that the speed function should give the
speed of the processor for a problem size within

%5± accuracy from the speed given by an ideal speed
function or the speed functions built with sets with more
number of points. Figure 3 show speed functions for matrix
multiplication obtained using three sets of 6, 7, and 8 points
and speed functions for Cholesky Factorization obtained using
three sets of 5, 7, and 8 points for the computer X7 whose
specification is shown in Table 4. It can be seen that 6 points
and 5 points are enough to build an efficient speed function
that fall within acceptable limits of deviation for matrix
multiplication and Cholesky Factorization respectively.

One naïve approach to select a set of i points is: If (xmin,
smin) is the point with minimal problem size experimentally
obtained and (xmax, smax) is the point with maximal problem
size experimentally obtained, the remaining i-2 points
experimentally tested have problem sizes (xmin+(xmax-xmin)/(i-
1)),…,(xmin+(i-2)*(xmax-xmin)/(i-1))) respectively. The
minimum problem size could be as low as a size of memory
that fits into the top level of memory hierarchy of the computer
and the maximum problem size is as high as the size of
memory that can fit into the last level of the memory hierarchy
of the computer.

We use piece-wise linear function approximation illustrated
in Figure 4 to build the speed function. Such approximation of
the speed function is compliant with the requirements of the
model, which are that the speeds be continuous functions of
problem size up till its upper bound on the problem size and
shape requirements of the graph. The absolute speed of the
processor in number of floating point operations per second is
calculated using the formula

0038

5

executionoftime
nnnMF

executionoftime
nscomputatioofvolumespeedAbs

 .

×××=

=

where n is the size of the matrix. MF is 2 for Matrix
Multiplication and 1/3 for Cholesky Factorization. In the case
of matrix-matrix multiplication, the size of the task is the
number of elements in resultant matrix C=A×B. In the case of
Cholesky Factorization, the size of the task is the number of
elements in the factorized matrix.

Figure 5 (a) shows the speedup of the matrix-matrix
multiplication executed on this network using the advanced
model over the matrix-matrix multiplication using the
modified version of the standard model that determines the
speed of the processor based on the multiplication of two
dense 500×500 matrices and two dense 4000×4000 matrices.
For problem sizes beyond 24000, the figure shows that the
distribution given by the performance model [1] will result in
failure of the application. For these problem sizes, the
modified performance model is used to obtain optimal
distribution.

Figure 5 (b) shows the speedup of the matrix factorization
executed on this network using the advanced model over the
matrix factorization using the modified version of the standard
model that determines the speed of the processor based on the
matrix factorization of a dense 2000×2000 matrix, and a dense
10000×10000 matrix. For problem sizes beyond 19000, the
figure shows that the distribution given by the performance
model [1] will result in failure of the application. For these
problem sizes, the modified performance model is used to
obtain optimal distribution.

The speedup calculated is the ratio of the execution time of
the application using the advanced model over the execution
time of the application using the modified version of the
standard model. The modified version of the standard
performance models is described briefly at the beginning of
section II where the speed of the processor is represented by a
single number and there is an upper bound on the number of
elements stored by each processor.

A set of as few as 5 points is used to build the speed
functions of the processors. As can be seen from the figures,
the advanced model performs better than the currently existing
models for a network of heterogeneous computers that
demonstrates relative speeds that are non-constant functions of
the size of the problem and when there is an upper bound on
the size of the task that can be solved by each processor.

IV. CONCLUSION
In this paper, we address the problem of optimal

distribution or scheduling of arbitrary tasks in heterogeneous
environments when one or more tasks do not fit into the main
memory of the processors and when there is an upper bound
on the size of the task that can be solved by each computer.
We have proposed an advanced performance model of a
network of heterogeneous computers and designed efficient
algorithms of data partitioning with this model.

In the presented research we do not take account of
communication cost. Although we well understand the
importance of its incorporation in our performance model, this
is just out of scope of this paper. We also understand the
importance of the problems of efficient building and
maintaining of our model. These two problems are also out of
scope of the paper and are subjects of our current research.

REFERENCES
[1] A. Lastovetsky and R. Reddy, “Data Partitioning with a Realistic

Performance Model of Networks of Heterogeneous Computers,”
Proceedings of the 17th International Parallel and Distributed
Processing Symposium (IPDPS 2004), 26-30 April 2004, New Mexico,
France, CD-ROM/Abstracts Proceedings, IEEE Computer Society 2004.

[2] A. Lastovetsky and R. Reddy, “Classification of Partitioning Problems
for Networks of Heterogeneous Computers,” Proceedings of the 5th
International Conference on Parallel Processing and Applied
Mathematics (PPAM 2003), Czestochowa, Poland, Lecture Notes in
Computer Science, 3019, pp.-, 2003.

[3] J. Stiles, T. Bartol, E. Salpeter and M. Salpeter, “Monte Carlo
simulation of neuromuscular transmitter release using MCell, a general
simulator of cellular physiological processes,” Computational
Neuroscience, pages 279--284, 1998.

[4] P. Avery and I. Foster, “The GriPhyN Project: Towards Petascale
Virtual Data Grids,” Technical Report GriPhyN-2001 - 15, 2001.

[5] T. Yoshida, T. Hiroyasu, M. Miki, M. Ogura, and Y. Okamato,
“Energy Minimization of Protein Tertiary Structure by Parallel
Simulated Annealing using Genetic Crossover,” Proceedings of 2002
Genetic and Evolutionary Computation Conference (GECCO 2002)
Workshop Program, (2002), pp.49-51.

[6] A. Lastovetsky and R. Reddy, “Classification of Partitioning Problems
for Networks of Heterogeneous Computers,” Technical Report,
University College Dublin, December 2003.

[7] A. Lastovetsky. Parallel Computing on Heterogeneous Networks. John
Wiley & Sons, 423 pages, 2003, ISBN: 0-471-22982-2.

Alexey Lastovetsky received the PhD degree from the Moscow Aviation
Institute in 1986, and the Doctor of Science degree from the Russian
Academy of Sciences in 1997. He is currently a lecturer in the Computer
Science Department at University College Dublin, National University of
Ireland. His main research interests are parallel and distributed programming
languages and systems for heterogeneous environments.

Ravi Reddy is currently a PhD student in the Computer Science Department
at University College Dublin, National University of Ireland. His main
research interests are design of algorithms and tools for parallel and
distributed computing systems.

0038

6

TABLE I
SPECIFICATIONS OF THE ELEVEN HETEROGENEOUS COMPUTERS

Matrix-Matrix Multiplication

Size of the problem

A
bs

ol
ut

e
sp

ee
d

Line 1

Line 2

)(1 xs
)(2 xs

)(3 xs

Non-optimal
solutions

nxxx =++ 321
1bx =

2bx =

Fig. 1. A small network of three processors whose speeds are shown against the size of the problem. The
Matrix-Matrix Multiplication used here uses a poor solver that does not use memory hierarchy efficiently. n is
the size of the problem.

Machine Name Architecture cpu
MHz

Main
Memory

(KB)

Maximum size of task
(Matrix-Matrix
Multiplication)

Maximum size of task
(Cholesky

Factorization)

Cache
(KB)

X1 Linux 2.4.18-3 i686
Intel Pentium III

997 254576 24502500 30250000 256

X2 SunOS 5.5 Sun4m sparc
SUNW,SPARCstation-5

110 65536 6000000 6250000 512

X3 Linux 2.4.20-20.9bigmem
Intel(R) Xeon(TM)

2783 7933500 116640000 262440000 512

X4 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 116640000 144000000 512

X5 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 90250000 108160000 512

X6 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 116640000 144000000 512

X7 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 116640000 144000000 512

X8 SunOS 5.8 sun4u sparc
SUNW,Ultra-5_10

440 524288 31360000 64000000 2048

X9 SunOS 5.8 sun4u sparc
SUNW,Ultra-5_10

440 524288 30250000 59290000 2048

X10 SunOS 5.8 sun4u sparc
SUNW,Ultra-5_10

440 524288 30250000 64000000 2048

X11 SunOS 5.8 sun4u sparc
SUNW,Ultra-5_10

440 524288 30250000 59290000 2048

0038

7

Size of the problem

A
bs

ol
ut

e
Sp

ee
d

)(1 xs)(2 xs)(3 xs

line 1

line 2

line 3: line 4:)(231 bnxx −<+
)(231 bnxx −>+

1x 3x
3

33

1

11)()(
x
xs

x
xs

=

231 bnxx −=+Optimally sloped line:

 b2

Fig. 2. For processor represented by speed function s2(x), the upper bound on the number of elements that
the processor can hold is b2. We assign the number of elements equal to the upper bound b2 for the
processor represented by speed function s2(x). We then partition the set with n-b2 elements amongst the
processors represented by speed functions s1(x) and s3(x) respectively. The two lines, between which the
optimal solution of partitioning the set with n-b2 elements amongst the processors s1(x) and s3(x)
respectively lies, are given by line1 and line2.

Matrix-Matrix Multiplication

80
90

100
110
120
130

0 2000 4000 6000 8000 10000 12000

Size of the matrix

A
bs

ol
ut

e
sp

ee
d

(m
flo

ps
)

N=8
N=7
N=6

N = Number of experimentally
obtained pointsWidth of the band of accuracy

is 5%

Cholesky Factorization

0
20
40
60
80

100
120

0 2000 4000 6000 8000 10000 12000

Size of the matrix

A
bs

ol
ut

e
sp

ee
d

(m
flo

ps
)

N=8
N=7
N=5

N = Number of experimentally obtained points

Width of the band of accuracy is 5%

Fig. 3. Determination of a set with relatively few points used to build the speed functions of the
processors. As few as 6 points and 5 points can be used to build an efficient speed function for matrix-
matrix multiplication and Cholesky Factorization respectively with deviation approximately 5% from other
speed functions built with more number of points.

0038

8

Size of the problem

A
bs

ol
ut

e
sp

ee
d

)(1 xs
)(2 xs

)(3 xs
= Upper bound for

)(2 xs
)(1 xs= Upper bound for

= Upper bound for

)(3 xs

1b
2b

3b

1b

2b
3b

Fig. 4. Using piece-wise linear approximation to build speed functions for 3 processors. The speed functions
are built from 3 experimentally obtained points. Speeds of the processors are assumed to be zero for
problem sizes beyond their upper bounds.

Matrix-Matrix Multiplication

1.5

1.7

1.9

2.1

2.3

2.5

2.7

20000 21000 22000 23000 24000 25000 26000

Size of the matrix

Sp
ee

du
p

Speedup over parallel MM multiplication
using speeds obtained from serial MM
multiplication of tw o dense N*N matrices.

N = 4000
N = 500

24000=x

Point beyond w hich the performance
model that does not take into account
the upper bounds fails

(a)

Cholesky Factorization

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000

Size of the matrix

Sp
ee

du
p

Speedup over parallel Cholesky
factorization using speeds obtained from
MM multiplication of a dense N*N matrix.

N = 10000
N = 2000

Point beyond w hich the performance
model that does not take into account
the upper bounds fails19000=x

(b)

Fig. 5. Results obtained using the network of heterogeneous computers shown in Table 1. (a) Comparison of
speedups of Matrix-matrix multiplication using horizontal striped partitioning of matrices. (b) Comparison of
speedups of Cholesky factorization using horizontal striped partitioning of matrices.

	INTRODUCTION
	ALGORITHMS FOR PARTITIONING SETS
	EXPERIMENTAL RESULTS
	Conclusion
	Fig. 3. Determination of a set with relatively few points used to build the speed functions of the processors. As few as 6 points and 5 points can be used to build an efficient speed function for matrix-matrix multiplication and Cholesky Factorization r
	Fig. 4. Using piece-wise linear approximation to build speed functions for 3 processors. The speed functions are built from 3 experimentally obtained points. Speeds of the processors are assumed to be zero for problem sizes beyond their upper bounds.

