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Abstract—The paper presents a performance model that can be 

used to optimally schedule arbitrary tasks on a network of 
heterogeneous computers when there is an upper bound on the 
size of the task that can be solved by each computer. We 
formulate a problem of partitioning of an n-element set over p 
heterogeneous processors using this advanced performance model 
and give its efficient solution of the complexity O(p3×log2n). 
 

Index Terms—Heterogeneous (hybrid) systems, 
Scheduling and task partitioning, Load balancing and task 
assignment 
 

I. INTRODUCTION 
n this paper, we deal with the problem of optimal 
distribution or scheduling of arbitrary tasks on a network of 
heterogeneous computers when there is an upper bound on 

the size of the task that can be solved by each computer. These 
tasks are processed in parallel by the computers of the 
heterogeneous network. Examples of applications include 
search for patterns in text, audio, graphical files, processing of 
very large linear data files as in signal processing, image 
processing, and experimental data processing, linear algebra 
algorithms, simulation, combinatorial optimization algorithms, 
and many others. 

Our efforts are mainly concentrated towards programming 
parallel and distributed applications on heterogeneous 
networks of computers, which are ubiquitous in university 
departments and companies, and programming distributed 
applications on computing grids, which are composed of nodes 
that may well be scattered around the world. Some of the 
issues with programming applications on such networks of 
heterogeneous computers have been explained in [1]. These 
are mainly: 

• On such networks, all available resources, namely, 
slower machines in addition to faster machines must be 
used to execute the distributed application efficiently 
taking into account the memory structure of each 
processor. These processors may have significantly 
different sizes at each level of their memory 

 
 

hierarchies. It is quite likely that the subprograms 
assigned to some processors may not fit into their main 
memory leading to paging.  

• Unlike dedicated distributed computer systems, such 
networks are not strongly centralized and consist of 
relatively autonomous and mainly general-purpose 
computers, where each one may be used and 
administered independently by its users. On the other 
hand, each computer is an integrated part of the 
network, which means that it periodically does some 
computations and communications just as such an 
integrated node of the network. One of the implications 
with the multi-user decentralized loosely-integrated 
nature of these networks is the unstable performance 
characteristics of processors during the execution of a 
parallel program as the computers may be involved in 
other computations and communications. As a result, 
the dependence of the speed of the processor on the 
problem size is not as sharp and distinctive as observed 
on dedicated distributed multiprocessor computer 
systems. In this case, the speed of the processors is 
more realistically represented by a continuous and 
relatively smooth function of the problem size. 

The performance model discussed in [1] can be used to 
efficiently schedule arbitrary tasks on such network of 
heterogeneous computers when one or more arbitrary tasks do 
not fit into the main memory of the processors. This model 
particularly addresses the problem of optimal data partitioning 
in heterogeneous environments when relative speeds of 
processors cannot be accurately approximated by constant 
functions of the problem size. In this model, each processor is 
represented by its absolute speed as a continuous function of 
problem size.  

However this model fails to address the problem of 
efficiently scheduling arbitrary tasks on a network of 
heterogeneous computers when there is an upper bound on the 
size of the task that can be solved by each computer. Hence we 
extend this model of networks of heterogeneous computers by 
introducing an additional parameter, namely, the upper bound 
on the size of the task that can be solved by each computer. 
The upper bound could signify one of the following cases:   
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• Allocation of a task whose size is beyond this bound 
could result in processor failure. 

• Allocation of the task whose size is beyond this bound 
could result in unacceptable execution time to 
accomplish the task. 

Consider a small network of three processors, whose speeds 
as functions of problem size during the execution of the 
matrix-matrix multiplication are shown in Figure 1. Consider 
the case of optimal distribution for problem sizes that lie 
between line 1 and line 2. Line 1 corresponds to the problem 
size b1 that is the upper bound for processor represented by 
s

2
(x). Line 2 corresponds to the problem size b2, which is the 

upper bound for the processors represented by speed functions 
s

1
(x) and s

3
(x). For these problem sizes, any distribution 

obtained by this model will most likely either crash the 
processor whose speed is represented by the speed function 
s

2
(x) or result in unacceptable execution time to execute the 

subtask assigned to this processor.  
The advanced performance model retains the restrictions 

imposed by performance model [1] on the shape of the graph 
representing the speed function. However each processor is 
represented by its absolute speed as a continuous function of 
problem size only up till its upper bound on the problem size 
and beyond that, the absolute speed of the processor is 
assumed to be almost equal to zero. 

We formulate a problem of partitioning of an n-element set 
over p heterogeneous processors using this advanced 
performance model and give its efficient solution of the 
complexity O(p3×log2n). This problem is a simple variant of 
the most advanced problem of partitioning a set with weighted 
elements [2]. We use the simple variant to explain how 
complex is the problem of scheduling arbitrary tasks amongst 
processors when (a) The processors have significantly 
different memory structure, (b) One or more tasks do not fit 
into the main memory of the processors, and (c) There is an 
upper bound on the size of task that can be solved by each 
processor. We also use this variant to explain in simple terms 
how the advanced model can be used to achieve better data 
partitioning on networks of heterogeneous computers before 
moving on to solve the most advanced problem. 

To demonstrate the efficiency of the advanced performance 
model, we perform experiments using naïve parallel 
algorithms for linear algebra kernel, namely, matrix 
multiplication and Cholesky Factorization using horizontal 
striped partitioning of matrices on a local network of 
heterogeneous computers. Our main aim is not to show how 
matrices can be efficiently multiplied or efficiently factorized 
but to explain in simple terms how advanced model can be 
used to optimally schedule arbitrary tasks on networks of 
heterogeneous computers when one or more tasks do not fit 
into the main memory of the processors and when there is an 
upper bound on the size of task that can be solved by each 
processor. We also view these algorithms as good 
representatives of a large class of data parallel computational 
problems and a good testing platform before experimenting 
more challenging computational problems. 

Some of the applications using distributed algorithms 
include Monte Carlo Simulations of Cellular Microphysiology 

[3], Grid Computing in high energy physics [4] that involves 
collecting petabyte-scale datasets and deployment of enormous 
computational, storage and networking resources to process, 
distribute and analyze these datasets, Parallel Simulated 
Annealing using Genetic Cross over to predict protein tertiary 
structures [5].  
 

II. ALGORITHMS FOR PARTITIONING SETS 
In this paper, we solve the simple variant of the most 

advanced problem of partitioning a set, which can be 
formulated as: 

• Given: (1) A set of n elements, and (2) A well-ordered 
set of p processors whose speeds are functions of the 
size of the problem, si=fi(x), with an upper bound bi on 
the number of elements stored by each processor 
(i=0,…,p-1), 

• Partition the set into p disjoint partitions such that the 
maximum of the execution times of the processors is 
minimized. 
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where xi is the number of elements in each partition. 
When the speed of the processor is represented by a single 

number as in the case of standard performance models of 
heterogeneous networks, the algorithm used to perform the 
partitioning is quite straightforward, of complexity O(p). 
When there is an upper bound bi on the number of elements 
stored by each processor (i=0,…,p-1), the algorithm used to 
solve the partitioning problem is of complexity )( 2pO . This 
algorithm can be summarized as follows: 

1. Partition the set such that the number of elements in 
each partition is proportional to the speed of the 
processor and assuming no upper bound exists on the 
number of elements that can be stored by each 
processor. If the number of elements assigned to each 
processor is less than or equal to the upper bound on 
the number of elements that can be stored by each 
processor, we have the optimal distribution. 

2. For each processor i  (i=0,…,p-1), we check if the 
number of elements assigned to it is greater than the 
upper bound on the number of elements that it can 
store. For all the processors whose upper bounds are 
exceeded, we assign them the number of elements 
equal to their upper bounds. Now we solve the 
partitioning problem of a set with remaining elements 
over the remaining processors. We recursively apply 
this procedure until all the elements have been 
assigned. 

The proof of optimality of the solution provided by this 
algorithm is given in [6].  
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When the speed of the processor is represented by a 
function of the size of the problem, s=f(x), and when there is 
no upper bound on the number of elements stored by each 
processor, efficient algorithms used to perform the partitioning 
have been proposed of  complexity )log( 2

2 npO ×  [1]. 
When the speed of the processor is represented by a 

function of the size of the problem, s=f(x), and when there is 
no upper bound on the number of elements stored by each 
processor, the problem of partitioning a set is non-trivial. 
Consider a small network of three processors, whose speeds as 
functions of problem size during the execution of the matrix-
matrix multiplication are shown in Figure 1. Consider the case 
of optimal distribution for problem sizes that lie between line 1 
and line 2. Line 1 corresponds to the problem size b1 that is the 
upper bound for processor represented by s

2
(x). Line 2 

corresponds to the problem size b2, which is the upper bound 
for the processors represented by speed functions s

1
(x) and 

s
3
(x). For these problem sizes, the standard models that use 

single numbers to represent the speeds of the processors will 
fail to deliver optimal distribution. This is the case with any 
model that does not take into account the upper bound b1 on 
the problem size that the processor represented by speed 
function s

2
(x) can solve. Allocation of problem size greater 

than b1 would either result in failure of processor s
2
(x) or 

adverse execution performance of the distributed application. 
We show few non-optimal solutions in the figure. We prove 
subsequently why these solutions are non-optimal. 

The algorithm we propose to solve this advanced 
partitioning problem is graphically illustrated in Figure 2 and 
has the following main points: 

1. Partition the set such that the number of elements in 
each partition is proportional to the speed of the 
processor and assuming no upper bound exists on the 
number of elements that can be stored by the processor. 
The partitioning algorithm used to perform this task is 
discussed in [1]. If the number of elements in each 
partition assigned to each processor is less than the 
upper bound on the number of elements that can be 
stored by the processor, we have an optimal 
distribution.  

2. For each processor i  (i=0,…,p-1), we check if the 
number of elements assigned to it is greater than the 
upper bound on the number of elements that it can 
store. For all the processors whose upper bounds are 
exceeded, we assign them the number of elements 
equal to their upper bounds. Now we solve the 
partitioning problem of a set with remaining elements 
over the remaining processors. We recursively apply 
this procedure until all the elements have been 
assigned. 

Proof. We prove the optimality of the solution provided by 
this algorithm using mathematical induction. We use the 
maximum time to solve the task assigned to each processor as 
the performance metric.  

Before we proceed to prove the optimality of the algorithm, 
we make the following assumptions: 

• We assume that the speed of each processor is 
represented by a continuous function of the size of the 
problem up till its upper bound on the problem size.  

• The shape of the graph should be such that there is only 
one intersection point of the graph with any straight line 
passing through the origin. These assumptions on the 
shapes of the graph are representative of the most 
general shape of graphs observed for applications 
experimentally. That is the speeds of the processors 
must either be increasing or decreasing functions of 
problem size for the problem sizes for which the 
solutions are sought. 

• We can safely assume that for each processor, for all 
x ≥ y, where x and y are problem sizes, the execution 
times tx and ty are related by tx ≥  ty. 

The cases for p=1 and p=2 are trivial. For p=3, let us 
assume the upper bounds of the processors 1, 2, and 3 on the 
number of elements that they can store are b1, b2, and b3 
respectively. Suppose the optimal distribution assuming there 
are no upper bounds on the number of elements is (x1, x2, x3) 
such that x1+x2+x3=n where n is the size of the problem. 
Consider the case where x1 > b1 and x2 > b2. Let us assign the 
number of elements equal to b1 for processor 1. The remaining 
distribution has to satisfy the equality 1

'
3

'
2 bnxx −=+  

where '
2x and '

3x are to be chosen such that the speed of the 
processor is proportional to the number of elements assigned 
to it. If the speeds of the processors 2 and 3 are non-increasing 
functions of problem size, it can be proved that 2

'
2 xx > and 

3
'
3 xx > . This gives us the inequality 22

'
2 bxx >> . 

Therefore we have to necessarily assign b2 number of elements 
to processor 2. If the speeds of the processors 2 and 3 are non-
decreasing functions of problem size, there are three 
possibilities, ( 2

'
2 xx > , 3

'
3 xx > ), ( 2

'
2 xx < , 3

'
3 xx > ) and 

( 2
'
2 xx > , 3

'
3 xx < ). The first and the third possibility give us 

the inequality 22
'
2 bxx >> . For the second possibility, any 

allocation ''
2x such that ''

2x < b2 would result in an allocation of 
''

3x  number of elements to processor 3 such that ''
3x > '

3x  thus 
resulting in a larger execution time. Therefore we have to 
necessarily assign b2 number of elements to processor 2. If the 
speed of the processor 2 is a non-decreasing function of 
problem size and speed of processor 3 is a non-increasing 
function of problem size, there are two possibilities, 
( 2

'
2 xx < , 3

'
3 xx > ) and ( 2

'
2 xx > , 3

'
3 xx < ). In the first 

possibility, any allocation ''
2x  such that ''

2x < b2 would result in 

an allocation of ''
3x  number of elements to processor 3 such 

that ''
3x > '

3x  thus resulting in a larger execution time. The 

second possibility gives us the inequality 22
'
2 bxx >> . 

Therefore we have to necessarily assign b2 number of elements 
to processor 2. Consider the case of optimal distribution where 
x1 > b1 is true. For processor 1, we assign the number of 
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elements equal to b1. The remaining elements are allocated 
such that 1

'
3

'
2 bnxx −=+  where '

2x and '
3x are to be chosen 

such that the speed of the processor is proportional to the 
number of elements assigned to it. Any other allocation 

''
1x such that ''

1x < b1 would result in an allocation where one of 

the inequalities ( ''
2x > '

2x ), ( ''
3x > '

3x ) is satisfied thus resulting 
in a larger execution time. It can be proved similarly for the 
case when x2 > b2. 

Assuming this to be true for p=k processors, we have to 
prove the optimality for p=k+1 processors. For a given 
problem size n, let us assume the distribution given by our 
algorithm to be kmm xxbbbx ,,,,,,, 1210 �� +  such that 

nxbx k =+++ �10 , where without loss of generality 
processors 1,…,m are allocated their upper bounds. It can be 
inferred that the execution times for the rest of the processors 
0,m+1,…,k satisfy the equality km ttt === + �10 . It can 

also be inferred that ikm tttt ≥+ ),,,( 10 �  for all i=1,…,m. 
The execution time for the problem size is equal to 

)(max
0 i

k

imp tt
=

= =  ),,,( 10 km ttt �+ . Consider an alternative 

solution with the distribution ''
1

'
0 ,,, kxxx � where 

nxxx k =+++ ''
1

'
0 �  and mm bxbx ≤≤ '

1
'
1 ,,� . It can be 

easily seen that for atleast one processor i (i=0,m+1,…,k), 

ii xx ≥' , thus giving an execution time '
it , which is greater 

than the execution time given by our algorithm mpt . 

Complexity. There are p major steps in the algorithm. At 
each such major step i, we solve the problem of partitioning of 
a set amongst p-i processors such that the number of elements 
in each partition is proportional to the speed of the processor 
and assuming no upper bound exists on the number of 
elements that can be stored by the processor. The complexity 
of this step is O(p

2
×log

2
n) [1]. Since there are p such steps, the 

overall worst-case complexity is O(p
3
×log

2
n). Mathematically, 

the worst-case complexity is the summation of p terms: 
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III. EXPERIMENTAL RESULTS 
A small heterogeneous local network of 11 different Solaris 

and Linux workstations shown in Table I is used in the 
experiments. The network is based on 100 Mbit Ethernet with 

a switch enabling parallel communications between the 
computers.  

There are two sets of experiments used to demonstrate the 
efficiency of the model. The first set is based on the parallel 
algorithm of matrix-matrix multiplication of two dense 
matrices using horizontal striped partitioning [7, p.199] and 
the second set is based on the parallel algorithm of matrix 
factorization of a dense matrix using horizontal striped 
partitioning [7, p.293]. The matrices are horizontally sliced 
such that the total number of rows mapped to a processor is 
proportional to the speed of the processor. 

The speed function for a processor is built using a set of 
few experimentally obtained points. The more the number of 
points used in building the speed functions, the more accurate 
the speed functions are. However it is prohibitively expensive 
to use large number of points to build the speed functions of 
the processors. Hence for each processor, an optimal set of few 
points needs to be chosen to build an efficient speed function. 
Such a speed function built gives the speed of the processor 
for any problem size with certain deviation from the ideal 
speed function and speed functions built with sets with more 
number of points. This deviation must be within acceptable 
limits, ideally not exceeding the inherent deviation of the 
performance of computers typically observed in the network. 
In our experiments, we set the acceptable deviation to be 

%5± . This implies that the speed function should give the 
speed of the processor for a problem size within 

%5± accuracy from the speed given by an ideal speed 
function or the speed functions built with sets with more 
number of points. Figure 3 show speed functions for matrix 
multiplication obtained using three sets of 6, 7, and 8 points 
and speed functions for Cholesky Factorization obtained using 
three sets of 5, 7, and 8 points for the computer X7 whose 
specification is shown in Table 4. It can be seen that 6 points 
and 5 points are enough to build an efficient speed function 
that fall within acceptable limits of deviation for matrix 
multiplication and Cholesky Factorization respectively. 

One naïve approach to select a set of i points is: If (xmin, 
smin) is the point with minimal problem size experimentally 
obtained and (xmax, smax) is the point with maximal problem 
size experimentally obtained, the remaining i-2 points 
experimentally tested have problem sizes (xmin+(xmax-xmin)/(i-
1)),…,(xmin+(i-2)*(xmax-xmin)/(i-1))) respectively. The 
minimum problem size could be as low as a size of memory 
that fits into the top level of memory hierarchy of the computer 
and the maximum problem size is as high as the size of 
memory that can fit into the last level of the memory hierarchy 
of the computer. 

We use piece-wise linear function approximation illustrated 
in Figure 4 to build the speed function. Such approximation of 
the speed function is compliant with the requirements of the 
model, which are that the speeds be continuous functions of 
problem size up till its upper bound on the problem size and 
shape requirements of the graph. The absolute speed of the 
processor in number of floating point operations per second is 
calculated using the formula 
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where n is the size of the matrix. MF is 2 for Matrix 
Multiplication and 1/3 for Cholesky Factorization. In the case 
of matrix-matrix multiplication, the size of the task is the 
number of elements in resultant matrix C=A×B. In the case of 
Cholesky Factorization, the size of the task is the number of 
elements in the factorized matrix.   

Figure 5 (a) shows the speedup of the matrix-matrix 
multiplication executed on this network using the advanced 
model over the matrix-matrix multiplication using the 
modified version of the standard model that determines the 
speed of the processor based on the multiplication of two 
dense 500×500 matrices and two dense 4000×4000 matrices. 
For problem sizes beyond 24000, the figure shows that the 
distribution given by the performance model [1] will result in 
failure of the application. For these problem sizes, the 
modified performance model is used to obtain optimal 
distribution. 

Figure 5 (b) shows the speedup of the matrix factorization 
executed on this network using the advanced model over the 
matrix factorization using the modified version of the standard 
model that determines the speed of the processor based on the 
matrix factorization of a dense 2000×2000 matrix, and a dense 
10000×10000 matrix. For problem sizes beyond 19000, the 
figure shows that the distribution given by the performance 
model [1] will result in failure of the application. For these 
problem sizes, the modified performance model is used to 
obtain optimal distribution. 

The speedup calculated is the ratio of the execution time of 
the application using the advanced model over the execution 
time of the application using the modified version of the 
standard model. The modified version of the standard 
performance models is described briefly at the beginning of 
section II where the speed of the processor is represented by a 
single number and there is an upper bound on the number of 
elements stored by each processor. 

A set of as few as 5 points is used to build the speed 
functions of the processors. As can be seen from the figures, 
the advanced model performs better than the currently existing 
models for a network of heterogeneous computers that 
demonstrates relative speeds that are non-constant functions of 
the size of the problem and when there is an upper bound on 
the size of the task that can be solved by each processor. 
 

IV. CONCLUSION 
In this paper, we address the problem of optimal 

distribution or scheduling of arbitrary tasks in heterogeneous 
environments when one or more tasks do not fit into the main 
memory of the processors and when there is an upper bound 
on the size of the task that can be solved by each computer. 
We have proposed an advanced performance model of a 
network of heterogeneous computers and designed efficient 
algorithms of data partitioning with this model.  

In the presented research we do not take account of 
communication cost. Although we well understand the 
importance of its incorporation in our performance model, this 
is just out of scope of this paper. We also understand the 
importance of the problems of efficient building and 
maintaining of our model. These two problems are also out of 
scope of the paper and are subjects of our current research. 
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TABLE I 
SPECIFICATIONS OF THE ELEVEN HETEROGENEOUS COMPUTERS 

 

Matrix-Matrix Multiplication
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Fig. 1.  A small network of three processors whose speeds are shown against the size of the problem. The 
Matrix-Matrix Multiplication used here uses a poor solver that does not use memory hierarchy efficiently. n is 
the size of the problem. 
 

Machine Name Architecture cpu 
MHz 

Main 
Memory 

(KB) 

Maximum size of task 
(Matrix-Matrix 
Multiplication) 

Maximum size of task 
(Cholesky 

Factorization) 

Cache 
(KB) 

X1 Linux 2.4.18-3 i686 
Intel Pentium III 

997 254576 24502500 30250000     256 

X2 SunOS 5.5 Sun4m sparc 
SUNW,SPARCstation-5 

110 65536 6000000      6250000 512 

X3 Linux 2.4.20-20.9bigmem 
Intel(R) Xeon(TM) 

2783 7933500 116640000      262440000 512 

X4 Linux 2.4.18-10smp  
Intel(R) XEON(TM) 

1977 1030508 116640000      144000000 512 

X5 Linux 2.4.18-10smp  
Intel(R) XEON(TM) 

1977 1030508 90250000      108160000 512 

X6 Linux 2.4.18-10smp  
Intel(R) XEON(TM) 

1977 1030508 116640000       144000000 512 

X7 Linux 2.4.18-10smp  
Intel(R) XEON(TM) 

1977 1030508 116640000       144000000 512 

X8 SunOS 5.8 sun4u sparc 
SUNW,Ultra-5_10 

440 524288 31360000 64000000 2048 

X9 SunOS 5.8 sun4u sparc 
SUNW,Ultra-5_10 

440 524288 30250000 59290000 2048 

X10 SunOS 5.8 sun4u sparc 
SUNW,Ultra-5_10 

440 524288 30250000 64000000 2048 

X11 SunOS 5.8 sun4u sparc 
SUNW,Ultra-5_10 

440 524288 30250000 59290000 2048 
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Size of the problem
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Fig. 2.  For processor represented by speed function s2(x), the upper bound on the number of elements that 
the processor can hold is b2. We assign the number of elements equal to the upper bound b2 for the 
processor represented by speed function s2(x). We then partition the set with n-b2 elements amongst the 
processors represented by speed functions s1(x) and s3(x) respectively. The two lines, between which the 
optimal solution of partitioning the set with n-b2 elements amongst the processors s1(x) and s3(x) 
respectively lies, are given by line1 and line2.  
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Fig. 3.  Determination of a set with relatively few points used to build the speed functions of the 
processors. As few as 6 points and 5 points can be used to build an efficient speed function for matrix-
matrix multiplication and Cholesky Factorization respectively with deviation approximately 5% from other 
speed functions built with more number of points. 
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Fig. 4.  Using piece-wise linear approximation to build speed functions for 3 processors. The speed functions 
are built from 3 experimentally obtained points. Speeds of the processors are assumed to be zero for 
problem sizes beyond their upper bounds. 
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Fig. 5.  Results obtained using the network of heterogeneous computers shown in Table 1. (a) Comparison of 
speedups of Matrix-matrix multiplication using horizontal striped partitioning of matrices. (b) Comparison of 
speedups of Cholesky factorization using horizontal striped partitioning of matrices.  
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