
Scientific Programming for Heterogeneous Systems – Bridging the Gap between
Algorithms and Applications

Alexey Lastovetsky

School of Computer Science and Informatics, University College Dublin
Alexey.Lastovetsky@ucd.ie

Abstract

High performance computing in heterogeneous
environments is a dynamically developing area. A number
of highly efficient heterogeneous parallel algorithms have
been designed over last decade. At the same time,
scientific software based on the algorithms is very much
under par. The paper analyses main issues encountered
by scientific programmers during implementation of
heterogeneous parallel algorithms in a portable form. It
explains how programming systems can address the
issues in order to maximally facilitate implementation of
parallel algorithms for heterogeneous platforms and
outlines two existing programming systems for high
performance heterogeneous computing, mpC and
HeteroMPI.

1. Introduction

There are several reasons why heterogeneous platforms

are constantly increasing their share in high performance
computing. The point is that hierarchical infrastructure of
supercomputer centres cannot meet increasing demand in
high performance computing from research and
development community. One reason is that access to
such facilities is too complicated and formal. The other is
that the batch mode predominantly used in the
supercomputer centres cannot satisfy many interactive
applications. Therefore, many researchers and engineers
use local clusters for high performance computing. The
local clusters are mostly and naturally heterogeneous.
Moreover, collaborative inter-institutional efforts
normally lead to heterogeneous high performance
computing platforms in the form of two or more
interconnected clusters. Faster communications make even
geographically distributed clusters suitable for high
performance computing. Finally, global networks and high
performance Grid computing are inherently
heterogeneous.

Parallel programming for heterogeneous platforms is a
more difficult and challenging task than that for traditional
homogeneous ones. The heterogeneity of processors
means that they can execute the same code at different
speeds. The heterogeneity of communication network

means that different communication links may have
different bandwidths and latency. As a result, traditional
parallel algorithms that distribute computations and
communications evenly over available processors and
communication links will not be optimal for
heterogeneous platforms. New, heterogeneous, algorithms
should be designed to achieve top performance on
heterogeneous networks of computers. Such algorithms
should distribute computations and communications
unevenly, taking into account the heterogeneity of the
processor and the material nature and heterogeneity of the
communication network.

The design of heterogeneous parallel algorithms has
been quite an active research area over last decade. A
number of highly efficient heterogeneous algorithms have
been proposed and analysed. At the same time, there is
practically no available scientific software based on these
algorithms. The most important reason is that accurate
implementation of the algorithms in a portable form is
extremely tedious and poses a number of additional
challenges that should be addressed by scientific
programmers. The first one is the accuracy of the
hardware model. A lot of complex extra code is needed to
provide accurate values of parameters of the performance
model of heterogeneous hardware. The second challenge
is the portability and the ability to automatically tune to
any executing platform, probably, dynamically changing
their performance characteristics. Another good deal of
complex code has to be written to enable the application
with this feature.

The paper analyses in detail these challenges and
outlines how they can be addressed by programming
systems for heterogeneous parallel computing in order to
maximally facilitate implementation of parallel algorithms
for heterogeneous platforms. The paper also briefly
explains how the proposed principles are implemented in
existing programming systems for high performance
heterogeneous computing, mpC and HeteroMPI.

2. Heterogeneous algorithms

An immediate implication from the heterogeneity of
processors is that the processors run at different speeds. A
good parallel algorithm for homogeneous distributed
memory multiprocessor systems tries to evenly distribute

computations over available processors. This very
distribution ensures the maximal speedup on the system
consisting of identical processors. If the processors run at
different speeds, faster processors will quickly perform
their part of computations and begin waiting for slower
ones at points of synchronization and data transfer.
Therefore, the total time of computations will be
determined by the time elapsed on the slowest processor.
In other words, when executing parallel algorithms, which
evenly distribute computations among available
processors, the cluster of heterogeneous processors will
demonstrate the same performance as a set of
interconnected identical processors equivalent the slowest
processor of the heterogeneous cluster.

Therefore, a good parallel algorithm for heterogeneous
processors must distribute computations unevenly taking
into account the difference in processor speed. The faster
the processor is, the more computations it must perform.
Ideally, the volume of computation performed by a
processor should be proportional to its speed.

The problem of distribution of computations in
proportion to the speed of processors is typically reduced
to the problem of partitioning of some mathematical
objects such as sets, matrices, graphs, etc. Optimal data
partitioning over interconnected heterogeneous processors
has attracted constantly growing attention of researchers
in past 10 years. A number of interesting mathematical
problems have been formulated and investigated (see [1]
for their overview). In a generic form, a typical
partitioning problem is formulated as follows:

• Given a set of processors, the speed of each of
which is characterized by a positive constant,

• Partition a mathematical object into sub-objects of
the same type (a set into sub-sets, a matrix into sub-
matrices, a graph into sub-graphs, etc) so that
o There is one-to-one mapping between the

partitions and the processors,
o The size of each partition (the number of

elements in the sub-set or sub-matrix, the
number of nodes in the sub-graph) is
proportional to the speed of the processor
owing the partition (that is, it is assumed that
the volume of computation is proportional to
the size of the processed mathematical object),

o Some additional restrictions on the relationship
between the partitions are satisfied (for
example, the sub-matrices of the matrix may be
required to form a two-dimensional p×q
arrangement, where p and q may be either
given constants or the parameters of the
problem, the optimal value of which should be
also found),

o The partitioning minimizes some functional,
which is used to measure each partitioning (for

example, minimizes the sum of the perimeters
of the rectangles representing the sub-matrices;
intuitively, this functional measures the volume
of communications for some parallel
algorithms).

The investigated problems mainly deal with
partitioning matrices because matrices are probably the
most widely used mathematical objects in scientific
computing. A general problem of optimal partitioning a
square into rectangles with no restrictions on the shape
and arrangement of the rectangles was studied in [2] and
proved to be NP-complete. It has been also proved that
the optimal column-based partitioning that minimizes the
sum of the perimeters of the rectangles could be achieved
in polynomial time. A version of this optimal column-
based partitioning obtained under the additional restriction
that the rectangles must be arranged into a given two-
dimensional p×q grid was originally suggested and
analyzed in [3]. The latter partitioning can be easily
achieved in linear time.

The performance model of heterogeneous hardware in
all these (and many other) algorithms is very simple –
each processor is characterized by a positive constant
representing its relative speed. A more realistic
performance model that takes account of memory
heterogeneity and paging effects has been recently
proposed and investigated [4]. Under this model, the
speed of each processor is represented by a continuous
function of the size of the problem. Basic data partitioning
algorithms with this functional performance model have
been designed and analyzed. In particular, an algorithm of
the complexity O(p×log2n) solving the problem of
partitioning of an n-element set over p heterogeneous
processors was proposed.

Heterogeneous parallel algorithms using more
advanced communication models are also being designed
and investigated (compare with the above generic problem
where the total volume of communication is minimized).

3. Implementation of heterogeneous
algorithms: challenges and solutions

There is an obvious disproportion in the number of
heterogeneous parallel algorithms, which have been
designed, and scientific software based on these
algorithms. The point is that implementation of a
heterogeneous parallel algorithm itself is also a difficult
and non-trivial task. The program implementing the
algorithm has to be portable and able to automatically
tune itself in order to achieve top performance in any
executing heterogeneous environment. Let us take a closer
look at challenges that should be addressed during the
implementation of a typical heterogeneous parallel
algorithm in a portable form.

A heterogeneous parallel algorithm is normally
designed in a generic, parameterized form. Parameters of
the algorithm can be divided into three groups. The first
group includes problem parameters, that is, parameters of
the problem to be solved (for example, the size of the
matrix to be factorized). Those parameters can only be
provided by the user.

The second group consists of algorithmic parameters,
that is, parameters representing different variations and
configurations of the algorithm. Examples are the size of a
matrix block in local computations for linear algebra
algorithms, the total number of processes executing the
algorithm, their arrangement. The parameters do not
change the result of computations but can have an impact
on the performance. The user can be required to provide
(optimal) values of these parameters, or this task can be
delegated to the software implementing the algorithm.

The third group is platform parameters, that is,
parameters of the performance model of the executing
heterogeneous platform such as the speed of the
processes, the bandwidth and latency of communication
links between the processes. The parameters have a major
impact on the performance of the program implementing
the algorithm.

Consider any algorithm distributing computations in
proportion to the speed of processors and based, say, on a
simple constant performance model of heterogeneous
processors. The algorithm should be provided with a set
of positive constants representing the relative speed of the
processors. The efficiency of the corresponding
application will strongly depend on the accuracy of
estimation of the relative speed. If this estimation is not
accurate enough, the load of processors will be
unbalanced, resulting in poorer execution performance.

Traditional approach to this problem is to run some test
code once to measure the relative speed of the processors
of the network and then use this estimation when
distributing computation across the processors.

Unfortunately, the problem of accurate estimation of
the relative speed of processors is not as easy as it may
look. Of course, if you consider two processors, which
only differ in clock rate, it is not a problem to accurately
estimate their relative speed. You can use a single test
code to measure their relative speed, and the relative
speed will be the same for any application. This approach
may also work if the processors used in computations
have very similar architectural characteristics. But if you
consider processors of really different architectures, the
situation changes drastically. Everything in the processors
may be different: set of instructions, number of instruction
execution units, number of registers, structure of memory
hierarchy, size of each memory level, and so on, and so
on. Therefore, the processors may demonstrate different
relative speeds for different applications. Moreover,
processors of the same architecture but different models

or configurations may also demonstrate different relative
speeds on different applications. Even different
applications of the same narrow class may be executed by
two different processors at significantly different relative
speeds.

Another complication comes up if the network of
computers allows for multi-processing. In this case, the
processors executing your parallel application may be also
used for other computations and communications.
Therefore, the real performance of the processors can
dynamically change depending on the external
computations and communications.

The problem of accurate estimation of platform
parameters for more advanced performance models
(using, say, the functional model of processors) is
obviously more difficult.

Thus, a good program implementing a heterogeneous
parallel algorithm should provide accurate platform
parameters of the algorithm and optimal values of (some)
algorithmic parameters. This means that in addition to the
core code of the program, implementing the algorithm for
each valid combination of the values of its parameters, the
scientific programmer has to write a significant amount of
non-trivial code responsible for solution of the above
tasks.

How can a programming system help the scientific
programmer write all the code? First of all, it does not
look realistic to expect that the programming system can
significantly automate writing the core code of the
program. Actually, if it was the case, this would mean the
possibility of automatic generation of good heterogeneous
parallel algorithms from some simple specifications. As
we have seen, the design of heterogeneous parallel
algorithms is a very difficult and challenging task that is
wide open for research. This research area is just taking
first steps and requires a lot of skill and creativity from
contributors. In other words, it is unrealistic to expect that
parallel programming systems for heterogeneous
computing can help common users having no idea about
heterogeneous parallel algorithms but willing, with
minimal efforts, to obtain a good parallel program
efficiently solving their problems in heterogeneous
environments.

At the same time, the programming system can help
qualified algorithm designers write the code responsible
for providing accurate platform parameters and for
optimization of algorithmic parameters. The code
provided by the programming system comes in two forms.
The first one is the application specific code generated by
a compiler from the specification of the implemented
algorithm provided by the application programmer. The
second type of code is not application specific and comes
in the form of run-time support system and library. It is
worth to note that the size and complexity of such code is

very significant and can account for more than 90% of the
total code for some algorithms.

Programming systems for heterogeneous parallel
computing can help not only in implementation of original
heterogeneous parallel algorithms but also in efficient
implementation of traditional homogeneous parallel
algorithms for heterogeneous platforms. This approach to
parallel programming for heterogeneous networks can be
summarized as follows:

• The whole computation is partitioned into a large
number of equal chunks;

• Each chunk is performed by a separate process;
• The number of processes run by each processor is

proportional to the relative speed of the processor.
Thus, while distributed evenly across parallel

processes, data and computations are distributed unevenly
over processors of the heterogeneous network so that each
processor performs the volume of computations
proportional to its speed. More details on this approach
can be found in [3]. Again, the code responsible for
accurate estimation of platform parameters, optimization
of algorithmic parameters and optimal mapping of
processes to the processors can be provided by the
programming system. The main responsibility of
application programmer is to provide an accurate
specification of the implemented algorithm. The practical
value of the approach is that it can be used to port legacy
parallel software to heterogeneous platforms.

4. Parallel programming systems for high
performance heterogeneous computing

In this section, we briefly outline two parallel
programming systems for heterogeneous computing: mpC,
the first language for heterogeneous parallel
programming, and HeteroMPI, an extension of MPI for
high performance heterogeneous computing.

8.1. The mpC programming language

mpC is a programming language for parallel
computing on heterogeneous networks [5]. It allows the
application programmer to implement their heterogeneous
parallel algorithms by using high level language
abstractions rather than going into details of the message
passing programming model of the MPI level. In addition,
it takes care of the optimal mapping of the algorithm to
the computers of the executing heterogeneous networks.
This mapping is performed at runtime by the mpC
programming system and based on two performance
models:

• The performance model of the implemented
algorithm,

• The performance model of the executing
heterogeneous network.

The performance model of the heterogeneous network
of computers is summarized as follows:

• The performance of each processor is characterized
by the execution time of the same serial code
o The serial code is provided by the application

programmer.
o It is supposed that the code is representative

for the computations performed during the
execution of the application.

o The code is performed at runtime in the points
of the application specified by the application
programmer. Thus, the performance model of
the processors provides current estimation of
their speed demonstrated on the code
representative for the particular application.

• The communication model is seen as a hierarchy of
homogeneous communication layers. Each is
characterized by the latency and bandwidth. Unlike
the performance model of processors, the
communication model is static. Its parameters are
obtained once on the initialization of the
environment and do not change since then.

The performance model of the implemented algorithm
is provided by the application programmer and is a part of
the mpC application. The model is specified in a generic
form and includes:

• The number of processes executing the algorithm
(which is normally a parameter of the model).

• The total volume of computation to be performed
by each process during the execution of the
algorithm.
o The volume is specified in the form of formula

including the parameters of the model.
o The volume of computation is measured in

computation units provided by the application
programmer (the very code which has been
used to characterize the performance of
processors of the executing heterogeneous
network).

• The total volume of data transferred between each
pair of the processes during the execution of the
algorithm.

• How exactly the processes interact during the
execution of the algorithm, that is, how the
processes perform the computations and
communications (which computations are
performed in parallel, which are serialized, which
computations and communication overlap, etc.).
o To specify the interaction of the processes,

traditional serial and parallel are used such as
for, while, parallel for, etc.

o Expressions in the statements specify the
amount of computations or communications
rather than the communications and
computations themselves. Parameters of the
algorithm and locally declared variables are
widely used in that description.

The mpC compiler will translate this model
specification into the code calculating the total execution
time of the algorithm for every mapping of the processes
of the application to the computers of the heterogeneous
network. In the mpC program, the programmer can
specify all parameters of the algorithm. In this case, the
mpC programming system will try to find the mapping of
the fully specified algorithm minimizing its estimated
execution. At the same time, the programmer can leave
some parameters of the algorithm unspecified (for
example, the total number of processes executing the
algorithm can be unspecified). In that case, the mpC
programming system tries to find both the optimal value
of unspecified parameters and the optimal mapping of the
fully-specified algorithm.

Examples of mpC applications can be found in [5-7].

8.2. Heterogeneous MPI

Heterogeneous MPI (HeteroMPI) is an extension of
MPI for programming high-performance computations on
heterogeneous networks of computers (HNOCs) [8]. The
standard MPI specification provides communicator and
group constructors, which allow the application
programmers to create a group of processes that execute
together some parallel computations to solve a logical unit
of a parallel algorithm. The participating processes in the
group are explicitly chosen from an ordered set of
processes. This approach to the group creation is quite
acceptable if the MPI application runs on homogeneous
distributed-memory computer systems, one process per
processor. In this case, the explicitly created group will
execute the parallel algorithm typically with the same
execution time as any other group with the same number
of processes, because the processors have the same
computing power, and the latency and the bandwidth of
communication links between different pairs of processors
are the same. However on HNOCs, a group of processes
optimally selected by taking into account the speeds of the
processors, and the latencies and the bandwidths of the
communication links between them, will execute the
parallel algorithm faster than any other group of
processes. Selection of processes in such a group is
usually a very difficult task. It requires the programmers
to write a lot of complex code to detect the actual speeds
of the processors and the latencies of the communication
links between them, and then to use this information to
select the optimal set of processes running on different
computers of heterogeneous network.

The main idea of HeteroMPI is to automate the process
of selection of such a group of processes that executes the
heterogeneous algorithm faster than any other group.

The first step in this process of automation is the
specification of the performance model of the
implemented heterogeneous parallel algorithm. The
performance model allows an application programmer to
specify his/her high-level knowledge of the application
that can assist in finding the most efficient implementation
on HNOCs. HeteroMPI provides a small and dedicated
model definition language for specifying this performance
model. The model and the model definition language are
borrowed from the mpC programming language. A
compiler compiles the specification of the performance
model generating a set of functions that make up an
algorithm-specific part of the HeteroMPI runtime system.

Having provided such a description of the performance
model, the application programmer can use a new
operation that tries to create a group that would execute
the heterogeneous algorithm faster than any other group of
processes:

 HMPI_Group_create(HMPI_Group* gid,
 const HMPI_Model* perf_model,
 const void* model_parameters)

The parameter perf_model is a handle that
encapsulates all the features of the performance model in
the form of a set of functions generated by the compiler
from the description of the performance model;
model_parameters are the parameters of the
performance model. This function returns a HeteroMPI
handle to the group of MPI processes in gid.

During the creation of this group of processes, the
HeteroMPI runtime system solves the problem of
selection of the optimal set of processes running on
different computers of the heterogeneous network. The
solution to the problem is based on the following:

• The performance model of the parallel algorithm in
the form of the set of functions generated by the
compiler from the description of the performance
model.

• The performance model of the executing HNOC,
which reflects the state of this network just before
the execution of the parallel algorithm. This model
considers the executing heterogeneous network as a
multilevel hierarchy of interconnected sets of
heterogeneous multiprocessors. This model takes
into account the material nature of communication
links and their heterogeneity.

The accuracy of the model of the executing network of
computers depends upon the accuracy of the estimation of
the actual speeds of processors. HeteroMPI provides an
operation to dynamically update the estimation of
processor speeds at runtime. It is especially important if
computers, executing the target program, are used for

other computations as well. In that case, the actual speeds
of processors can dynamically change dependent on the
external computations. The use of this operation, whose
interface is shown below, allows the application
programmers to write parallel programs, sensitive to such
dynamic variation of the workload of the underlying
computer system,

HMPI_Recon (HMPI_Benchmark_function func,
 const void* input_p,
 int num_of_parameters,
 void* output_p)

where all the processors execute the benchmark function
func in parallel, and the time elapsed by each of the
processors is used to refresh the estimation of its speed.

Another principal operation provided by HeteroMPI
allows application programmers to predict the total time
of execution of the algorithm on the underlying hardware
without its real execution:

HMPI_Timeof(
 const HMPI_Model* perf_model,
 const void* model_parameters)

This function invokes the HeteroMPI runtime system,
which selects the optimal set of processes based on the
performance model of the parallel algorithm perf_model,
and the performance model of the executing network of
computers, which reflects the state of this network just
before the execution of the parallel algorithm. The
estimated execution time of the algorithm by this optimal
set of processes is then returned.

One of the most important parameters, which
influence the performance of the parallel application on
HNOCs, is the number of processes used to execute the
parallel application. Another principal operation provided
by HeteroMPI frees application programmers from having
to find the optimal number of processes that can execute
the parallel application. They can specify only the rest of
the parameters thus leaving the detection of the optimal
number of processes to the HeteroMPI runtime system. Its
interface is shown below,

 HMPI_Group_auto_create (HMPI_Group* gid,
 const HMPI_Model* perf_model,
 const void* model_parameters)

This function returns an HeteroMPI handle to the
group of MPI processes in gid. The parameter
perf_model is a handle that encapsulates all the
features of the performance model. These features are in
the form of a set of functions generated by the compiler
from the description of the performance model. The
parameter model_parameters is an input parameter.
Application programmer fills the parameter
model_parameters with values of the input
parameters to the performance model and ignores the
return parameters specifying the number of processes to

be involved in executing the algorithm and their relative
performances.

9. Conclusion

The paper analysed in detail two main challenges
encountered by scientific programmer during the
implementation of heterogeneous parallel algorithms,
accurate estimation of parameters of the performance
model of the executing platform and automatic tuning of
the implemented algorithm to each particular (possibly,
dynamically changing) heterogeneous platform. It outlined
how the challenges can be addressed by programming
systems for heterogeneous parallel computing in order to
maximally facilitate implementation of parallel algorithms
for heterogeneous platforms. The paper also briefly
explained how the proposed principles were implemented
in existing programming systems for high performance
heterogeneous computing, mpC and HeteroMPI, and
how.the systems help algorithm designers implement their
algorithms, minimizing their efforts in writing complex
and error-prone but routine code and allowing them to
focus on creative aspects of the application.

10. References

[1] J. Dongarra and A. Lastovetsky, “A Survey of
Heterogeneous High Performance and Grid Computing”, In
Engineering the Grid: Status and Perspective, Eds
B.DiMartino, J.Dongarra, A.Hoisie, L.Yang, and H.Zima,
American Scientific Publishers, February 2006.
[2] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Mtrix
Multiplication on Heterogeneous Platforms”, IEEE
Transactions on Parallel and Distributed Systems 12(10),
October 2001, pp. 1033-1051.
[3] A. Kalinov and A. Lastovetsky, “Heterogeneous Distribution
of Computations While Solving Linear Algebra Problems on
Networks of Heterogeneous Computers”, Lecture Notes in
Computer Science 1593, Springer, 1999, pp. 191-200
[4] A. Lastovetsky and R. Reddy, “Data Partitioning with a
Realistic Performance Model of Networks of Heterogeneous
Computers”, Proceedings of the 18th International Parallel and
Distributed Processing Symposium (IPDPS 2004), 2004.
[5] A. Lastovetsky, Parallel Computing on Heterogeneous
Networks, John Wiley & Sons, June 2003, 423 pages.
[6] A. Kalinov, S. Klimov, et al, “Mathematical Modeling of a
Supernova Explosion on a Parallel Computer”, Computational
Mathematics and Mathematical Physics, 44(5), Springer, 2004,
pp. 907-914.
[7] G. Chen, P. Thulasirama, and R. Thulasiram, “Distrubuted
Quasi-Monte Carlo Algorithm for Option Pricing on HNOWs
Using mpC”, Proceedings of the 39th Annual Simulation
Symposium, IEEE Computer Society Press, 2006, pp. 90-97.
 [8] A. Lastovetsky and R. Reddy, “HeteroMPI: Towards a
Message-Passing Library for Heterogeneous Networks of
Computers”, Journal of Parallel and Distributed Computing
66(2), Elsevier, 2006, pp. 197-220.

